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Electron transmission through silicon stacking faults
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We use a recently developed formalism [Phys. Rev. B 38, 2021 (1988)] to calculate electron
transmission through silicon stacking faults. These systems are of interest both because of their
effect on transport in silicon and because they can be viewed as prototypical heterostructures con-
sisting of two different orientations of silicon.

Silicon stacking faults are commonly found near
silicon —silicon-dioxide interfaces often bridging two par-
tial dislocations. ' By scattering electrons, these defects
degrade electronic properties near the interfaces. Most
theoretical studies of stacking faults have focused on the
energetics of their formation; ' in this study we consider
their effect on transport. Electron scattering by stacking
faults in copper, which was considered by Bross, was
found to be quite weak. An important difference between
copper stacking faults and those in silicon is that the elec-
trons of interest in copper are those near the Fermi level
and in silicon they are those near the conduction-band
minimum. Defects like stacking faults tend to scatter
electrons much more strongly near band extrema. We
also consider generalized stacking faults, which we will
define below, because they illustrate in a simple system
some of the properties of more complicated heterostruc-
tures.

Intrinsic stacking faults, shown in Fig. 1, result from
the removal of the facing halves of two adjacent double
layers and subsequent rebonding; extrinsic stacking
faults, also shown in Fig. l, result from the insertion and
rebonding of two additional halves of double layers. Al-
ternatively, these two structures can be constructed by
separating two twist boundaries by one or two double lay-
ers, respectively. Pseudopotential calculations by Chou
et al. show that the forces on the atoms in these ideal
structures are small and will not lead to significant atom-
ic rearrangements.

Evanescent states play two important roles in electron
transmission through these interfaces. The first is to pro-
vide the necessary degrees of freedom to satisfy the
wave-function matching conditions when calculating the
transmission across the simple constituent interfaces, the
twist boundaries. In addition to giving a discontinuous
wave function, a matching process which excludes the
evanescent states gives transmission probabilities that
differ greatly from the correct result. The second role re-
sults from their finite decay length. For a compound in-
terface like a stacking fault (consisting of two twist boun-
daries), the evanescent states associated with each simple
interface will effect the transmission through the other.
To better understand this second effect, we will consider
both the stacking-fault structures discussed above and
generalized stacking faults which are constructed in the
same way, but with an arbitrary number of double layers

separating the two twist boundaries.
We calculate transmission probabilities for these struc-

tures in two ways, a full calculation similar to that done
for the twist boundary and an approximate calculation
based on the results of isolated twist-boundary calcula-
tions. Comparing the two results shows the effect evanes-
cent states associated with one interface can have on
transmission though a neighboring interface.

Briefly, the full calculation proceeds in the following
manner. The structure is divided into layers, and we
compute the potential in each layer using a linear
augmented-plane-wave (LAPW) —based local-density-
functional calculation. Using this potential and LAPW
basis functions, we find a set of linear relations between
the bounding-plane values and slopes of variational solu-
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FIG. 1. The structure of stacking faults in silicon, shown
projected along the [110) direction. The long lines represent
bonds lying in (110)planes, while short lines are bonds connect-
ing atoms in neighboring (110) planes. The dashed lines are
twist boundaries which can be viewed as making up the stacking
faults.
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tions of the Schrodinger equation for that layer. For the
bulklike layers, these relations lead to a set of generalized
Bloch states which allow us to join an infinite number of
layers together with scattering-state boundary conditions
at infinity. These generalized Bloch states are matched
together through the joining regions, here the reversed-
orientation silicon, to construct the electron scattering
states for the entire structure of interest.

We compare the full calculation of the electron
transmission with an approximate calculation that is
based on previous results for isolated twist boundaries
and that ignores the affects of the evanescent states from
one such interface on the other. The full twist-boundary
calculation gives a state
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that consists of an incident Bloch state l(;„, a reflected
Bloch state P„,s, a transmitted Bloch state g„,„„and
evanescent contributions that decay away from the inter-
face in either direction Pd„,„. For the approximate cal-
culation, we use the transmission amplitude T and the
reflection amplitude R calculated using all of the evanes-
cent states for matching at each isolated interface, but
then ignore the evanescent contributions to the wave
function in the process of joining the two.

For an isolated twist boundary it is necessary to in-
clude the evanescent states in the matching to get the
transmission probability correct for all energies except
the band minimum. Right at the band minimum, the in-
cident and reflected states are matched perfectly to each
other and the transmitted state is poorly matched to ei-
ther so that the matching conditions can be satisfied with
just the first two states, giving no transmission. As the
incident energy increases [see Fig. 2(f)], the transmission
probability increases until it becomes unity about 0.13 eV
above the conduction-band minimum. If the evanescent
states are not included in the matching, the transmission
probability remains close to zero over that entire range.

Using the twist-boundary results we consider the mul-
tiple reflection, transmission, and Bloch propagation of
an electron in a structure with two twist boundaries
separated by n double layers of thickness a. The
transmission amplitude is found by summing the
transmission amplitudes for each of the multiple
reflections and transmissions

(2)

where k„and k, z are the wave vectors for the right- and
left-moving Bloch states in the layers between the twist
boundaries. The transmission amplitudes for electrons
incident from the left are T, and Tz for the first and
second interfaces, respectively. The reflection amplitudes
for right- and left-moving electrons inside the reversed
silicon are R

&
and Rz. All of these quantities are energy

dependent.
Figure 2 compares this approximate calculation with

the full calculation for structures with different numbers
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FIG. 2. The transmission of electrons through silicon stack-
ing faults. (a)—(e) show the transmission probability through
stacking faults consisting of two twist boundaries separated by
1, 2, 4, 8, and 16 double layers of reversed-orientation silicon.
The solid curves are the results of a full calculation, and the
dashed curves are the results of the approximate calculation de-

scribed in the text. (f) shows the transmission through a single
twist boundary (dotted curve) and the incoherent transmission
(long-dashed curve) through two twist boundaries.

of double layers separating the twist boundaries. Figure
2(a) shows the transmission probability for the intrinsic
stacking fault; for low energies, transmission is much
more likely than it is for an isolated twist boundary. In
addition, there is a large difference between the full and
the approximate calculation. These results imply that in-
teraction of the evanescent states associated with each in-
terface tends to "bridge" the reversed region, carrying
the incident wave through to the (identical) transmitted
wave with less distortion. The state has not completely
adapted to the reversed crystal structure before it en-
counters the second interface. The results for the extrin-
sic stacking fault, shown in Fig. 2(b) are qualitatively
similar to the results for the intrinsic stacking fault ex-
cept that the transmission probability is closer to that for
the twist boundary and the discrepancy between the full
and the approximate calculation is reduced. Both of
these differences result from the greater decay of the
evanescent states between the more widely separated
twist boundaries. The decay constants of the most slowly
decaying evanescents are given in Fig. 3.

In Fig. 2(c), which shows the transmission probability
for a structure with four double layers between the two
twist boundaries, the difference between the two calcula-
tions has become much smaller. At this separation the
amplitude of the most slowly decaying evanescent state
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FIG. 3. A detail of the [111]-direction silicon complex band
structure near the conduction-band minimum. The center panel
shows the real, and the left- and right-hand side panels the
imaginary parts of the wave vectors of the most important gen-
eralized Bloch states for energies near those used in Fig. 2. The
wave vector parallel to the interface is that of the conduction-
band minimum projected onto a (111)plane. The layer spacing
a is a,„b„/&3. The solid lines (in the center panel) give the
wave vectors of the propagating states, and the dotted curves
give the real and imaginary parts of the evanescent states.

from the first interface has decayed by a factor of 0.16 at
the second interface. For silicon structures in which sub-
structures are separated by more than four double layers,
we would expect that the effect of evanescent states from
one substructure on the others could be ignored in calcu-
lating the electronic properties. However, this will not be
the case if long-range rearrangements of the lattice occur
or if there are long-range changes in the electronic poten-
tial, both of which can change the appropriate decay con-
stants.

The agreement between the two calculations continues
to improve as the number of reversed double layers in-
creases to eight and 16 as shown in Figs. 2(d) and 2(e).
These panels also show the existence of "Fabry-Perot"
transmission resonances; these occur when the electronic
phase changes by 2m on one full circuit of the region be-

tween the two twist boundaries. Note that to correctly
predict the resonance positions, it is necessary to include
the phase change involved in the reflections; ignoring
that phase change would predict resonances at 0.06, 0.17,
0.24, and 0.34 eV for the 16 double-layer structure rather
than the observed resonances at 0.03, 0.11, 0.19, and 0.28
eV. The apparent resonance at 0.14 eV is due to the unit
transmission probability for the isolated twist boundary.
As is expected, the resonances are narrower where the
twist-boundary reflection is stronger, at lower energies.

The agreement between the full and approximate cal-
culations for the 16 double-layer structure becomes worse
as the energy increases because the decay length of the
slowest decaying evanescent state increases with increas-
ing energy, as can be seen in Fig. 3. The unit transmis-
sion at 0.14 eV is associated with a change in character of
the generalized Bloch states that is reflected in the
change in slope of the conduction band and of one of the
evanescent states seen in Fig. 3. At this energy the band
states and the evanescent states mix with each other as
can be seen by comparing probability and flux distribu-
tions for the states.

As the twist boundaries get further and further apart,
the resonances will become closer and closer together.
At some point the energy resolution of the incoming elec-
tron state will be smaller than the inverse energy separa-
tion of the resonances, and the resonances will be
effectively averaged over. In this situation, the twist
boundaries will scatter incoherently which leads to the
transmission probability shown in Fig. 2(I). This
transmission probability is always less than the transmis-
sion probability for the isolated twist boundary.

In summary, we have calculated transmission probabil-
ities for a series of generalized silicon stacking faults. In-
trinsic and extrinsic stacking faults scatter electrons
much more weakly than an isolated twist boundary. This
decreased scattering is due to the evanescent states asso-
ciated with the matching at each twist boundary affecting
the transmission through the other. For more widely
separated interfaces this effect becomes much smaller, as
would be expected from the decay constants of the
evanescent states. In addition, these more widely
separated structures show sharp transmission resonances
when there is constructive interference for the multiple
reflections between the twist boundaries.
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