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We consider a large class of two-dimensional systems of electrons in a static disorder potential
and subject to an in-plane electric field and to a strong perpendicular magnetic field. The time evo-
lution of the single-particle states is investigated and found to be crucial for quantum Hall behavior.
The macroscopic Hall current is carried by the nonadiabatic states. Quantum Hall behavior results
when the Fermi energy lies in a range of adiabatic levels. Linear-response theory is inadequate to
describe the quantum-mechanical single-particle scattering process in the quantum Hall regime.
The general results are illustrated by an explicit weak-disorder model, where the scattering process
and the nature of dc-insulating and -conducting states can be understood in detail. We stress analo-

gies with one-dimensional conductance in the presence of disorder.

I. INTRODUCTION

The quantum Hall effect' describes the transport of
electrons in two dimensions in the presence of a Hall
electric field and of a strong perpendicular magnetic field.
It is generally accepted that the integer quantum Hall
effect (IQHE) results from a localization-delocalization
process caused by a static disorder potential. The details
of this process are not sufficiently known, since the corre-
sponding quantum-mechanical scattering mechanism is
not in general understood. ' Most theories of the IQHE
apply to a situation where there are no conducting states
at the Fermi energy, and are based on arguments which
do not require a detailed knowledge of the scattering pro-
cess. Such a knowledge is, however, necessary for a com-
plete understanding of the physics in the quantized pla-
teau region, and it is indispensable for understanding the
properties of the system outside this region and for other
effects like breakdown, frequency, and temperature be-
havior.

Potential scattering in crossed electric and magnetic
fields has recently been investigated in the presence of a
square barrier and of a horizontal wall, and it was found
that an extremely complex classical dynamics results.
Preliminary results indicate complex quantum dynamics
as well. A quantum-mechanical investigation of
scattering across a smooth barrier in the presence of dis-
order has shown that rather unusual nonclassical particle
dynamics may result, which rejects previously derived
general properties of Schrodinger functions of particles
subject to an electric field in the presence of disorder.
The importance of this nonclassical behavior for the
IQHE has been investigated in an explicit model system,
and it was found that the nature of the time evolution of
the scattered wave functions is crucial for the IQHE in
the system.

In the present paper we investigate the time evolution
of the scattering process from a more general point of
view. We will consider a large class of two-dimensional
systems, and we will clarify the physical conditions and

the properties of the time-dependent scattering process
that are essential for the occurrence of the IQHE in these
systems. Simultaneously we further investigate our previ-
ously introduced explicit model system, where the na-
ture of insulating and conducting states and the time
dependence of the scattering mechanism can be under-
stood in detail. This explicit model will serve as an illus-
tration of our general developments. The time evolution
of the electron states will show some remarkable nonclas-
sical features which do not seem to have been sufficiently
noticed before. We will point out that there exists an
analogy with ordinary conduction at sufficiently low elec-
tric fields.

II. DEFINITION OF THE MODEL

We consider independent electrons (charge q (0, mass
m), on a long strip (of width L~) in the x direction, sub-

ject to a potential V(x,y), a magnetic field B=(0,0,8),
and an electric field E=(O,E,O). The single-particle
Hamiltonian can be written in the form

H= 1

2m
Bx+ p(t)

C L

2

with

+ V(x,y),

P(t) = cE,L,t—
and the boundary conditions

P(x,y, t)=f(x, y+L, t) .

(2)

Such a model is justified by the results of microwave
experiments, which show that effects due to contacts and
edge states are not essential for the occurrence of the
IQHE. This is analogous to conduction based on Bloch
theory, where also only bulk properties are investigated.

We consider potentials V(x,y) which do not describe a
macroscopic electric field, i.e., the integral of V(x,y) over
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x and over y are zero. If V(x,y) has no symmetry, e.g. , in
the presence of static disorder, it follows ' from the
structure of the Hamiltonian that adiabatic states [for
which E is sufficiently small such that (()(t) in (1) can be
considered as a parameter] have currents which are
periodic in time with zero average and with period

r=ISI(qE, L, )I . (4)

For realistic values of EyLy the period ~ is extremely
small (e.g., r=4X10 ' s for E~L~ =1 mV). Hence adia-
batic states are dc insulating. As a consequence any dc
current must result from nonadiabatic states (see Ref. 6
for a more detailed discussion of this point).

In view of our explicit model system we will now con-
sider a potential of the type

V(x,y) = V(x)+ V'(x,y), (5)

where V'(x, y) represents homogeneous disorder, and
V(x} is a sequence of smooth barriers and wells, whose
first and second spatial derivatives (piecewise) vary slowly
over a magnetic length A=(hc, /qB)'~ [see, e.g. , V(x) of
Fig. 1].

In the absence of V'(x,y), the adiabatic solutions of the
time-dependent Schrodinger equation in the presence of
such a potential V(x) have the approximate form ' (n is
the Landau band index)

gq„(x,y, t)=(Ly) ~ exp(i2mpy/L ')u „(x,t),

with

x (r)=chp/(qBL ) P—(t)I(BL )
—(mc /q B ) V'(x )

and energies

Ez „=fuo{n+—,')+ V(x )+(m/2)

'2
cV'(x )

q8

[the prime denotes d/dx and n&=qBI(mc)]. In the fol-
lowing we consider a single band and the index n will be
dropped. The unperturbed (V'=0) adiabatic functions
P~(x,y, t) are localized in the x direction at sites x (t),
which move with the constant, classical velocity
U =cE /B The. adiabatic variation of E~[P(t)] is essen-
tially given by the term V[x (t)]. Therefore the energy
curves E [P(t)], E [(()(t)] intersect (Fig. 2) if x (t) and

x~ (t) are situated on different sides of a barrier or of a
well (Fig. 1). Note that the set of eigenvalues of H [({I(t)]
is periodic in t with period r (corresponding to the P
period hc/q), but the individual energies E~ [II)(t)] are not
periodic.

In the presence of the disorder potential V'(x, y) the
previously intersecting energy levels anticross and be-
come individually periodic with period ~. We now con-
sider those adiabatic states w, (x,y, t}, which can be de-
scribed by a weak-disorder approximation. This is the
case if (see Ref. 4)

p integer (6)

where uz „(x,t) is the product of a Hermite polynomial
and a Gaussian g~,

g (x, t)= exp[ —[x —x~(t)] /(2A, ))

I v,', ,
I
=

& @, I v'Iq, , &

=
fop IEp(t'+r/2) E(r"+—r/2)I

with

(10)
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FIG. 1. Smooth substrate potential V(x) and the nature of
the orbitals in the case where, in addition to V(x), an electric
field E~ and a magnetic field 8 are present. The orbitals are
characterized by the position of the localization centers x~ of
the corresponding unperturbed ( V' =0) orbitals Ii& (x —x ) (see
text). Solid-line regions, fully nonadiabatic (classically conduct-
ing) orbitals; shaded regions, intermediate nonadiabatic orbitals
(they are composed of a classically and a nonclassically con-
ducting part); dashed-line region, adiabatic (nonconducting) or-
bitals. The parameter values are d~p 0.001 eV, I.~ =0. 1 crn,
8=6T, and E~=2.37X10 Vcm '. V(x) also represents the
energy E~ of the unperturbed orbitals gp; see (9). On the scale
of the figure, unperturbed and perturbed energies coincide for
orbitals situated outside the dashed region.

Here t' is the time, where two unperturbed energies
Ez(t) and Ez.(t) intersect (see Fig. 2). In the weak
disorder approximation the corresponding perturbed
adiabatic states uI, (x,y, t ) are linear combinations
cz(t}fz(x,y, t)+cz.(t)Pz(x, y, t) of only two unperturbed
states at a given value of t, but the pair of indices (p,p')
changes periodically after each time interval r/2. For ex-
ample, in Fig. 2 the indices of u&, (t) are (p,p') for
t E[r' —r/4, t'+r/4] and (p',p+ I) for t E[t'
+r/4, t'+3~/4], and so on. The properties of these
weakly perturbed adiabatic states are discussed in Refs. 4
and 6 and can be summarized as follows: Each state
IJ,(x,y, t) describes a wave packet moving with the veloci-
ty u, but which is alternately localized in a small neigh-
borhood of one of the two fixed sites x (t') and x,(t*),
which are situated on different sides of a barrier (or of a
well) and whose energies E (t) and E~.(t) intersect at
t =t'. This corresponds to a discontinuous motion of a
mass point between the two spatially distinct sites. The
whole motion is periodic in time with period ~.

In Ref. 6 the explicit potential V(x} shown in Fig. 1

was used. (The choice of equal shapes of subsequent bar-
riers and wells is made only for simplifying the calcula-
tions. ) Here the weakly perturbed states [i.e., for which

fez 50.2 in Eq. (10)] are situated in the center of each



41 NONCLASSICAL SCATTERING DYNAMICS IN THE QUANTUM. . . 5253

Landau band. This follows from the fact that due to the
Gaussian factors (7) the inatrix elements

~ Vzz. ~
exponen-

tially decrease with increasing distances ~x~
—xz ~.

III. ADIABATIC VERSUS
NONADIABATIC EVOLUTION

At sufficiently low fields E (E ~0}all states of a per-
turbed system behave adiabatically, independent of the
particular form of V(x,y). The adiabatic states are
denoted by w, (x,y, t). If E is increased, the true time-
dependent states become progressively nonadiabatic, i.e.,
they develop into time-dependent linear combinations of
the states w, (x,y, t).

For the weakly perturbed states considered above the
transition from adiabatic to nonadiabatic behavior can be
understood by means of the Zener theory, which gives
the probability P for nonadiabatic transition according to
the dashed line in Figs. 2 and 3. If P =1 the energy ex-
pectation value follows the dashed line, and the perturbed
wave function essentially behaves as the unperturbed
function P (x,y, t} in this time interval, with the localiza-
tion center x .(t) moving with the constant velocity v.

Using the developments of Ref. 4 one readily finds that

CJ'
C

C
Lal

i I i

r
Ep+] i

PC

I I
I

I I
I

1 I I

+1

the probability P, ,+,=P ~ for Zener tunneling from a
weakly perturbed state w, (t)=c (t)P/+c .(t)P at
t =t' r/4 to t—he state w, +,(t) at t =t*+r/4 in Figs. 2
and 3 is given by

FIG. 2. Adiabatic evolution of the single-particle energies in
the absence of the disorder potential V'(x,y) (dashed lines) and
in the presence of V'(x,y) (solid lines). Shown is the weak-
disorder case ~= .

~
h /(qE„L» ) ~.

P.~ =Pip-'~
= exp( —~m. d ~ exp[ —2(x —x )2/(2A, )2]8/[ V'(x )chE ] ~ ),

where d ~. is a Fourier coeScient of V' as de5ned in Ref.
4. Due to a succession of such tunneling events in the
presence of disorder V', any function becomes a time-
dependent linear combination of the adiabatic basis func-
tions w, (x,y, t), which themselves are linear combinations
of the unperturbed functions g/(x, y, t)

From (ll} we see that according to the distances
~x —x/ ~

of the unperturbed functions g and P, which
are localized on opposite sides of a barrier or well, the
corresponding perturbed function describes a fully non-
adiabatic state (if P ~ »5), an intermediate state (if
5 & P ~

& 1 —5), or an adiabatic state (if Pz/. & 5). Here 5
is a small number chosen such that in the first case the
probability 1 —P ~ & 5 for adiabatic behavior is negligible
and in the last case the probability P/~ &5 for nonadia-
batic behavior (i.e., for Zener tunneling).

In the numerical example corresponding to Fig. 1, 5
was set equal to 0.01, and the physical parameters have
been chosen so that all the basis functions w, (x,y, t),
which belong to the nonadiabatic (including intermedi-
ate) energy region, can be expressed in the weak-disorder
formalism [i.e., (10) holds for the corresponding unper-
turbed states]. On the other hand, most of the states in
the adiabatic energy region (dashed line in Fig. 1}have to
be described in a "strong"-disorder formalism since (10)
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FIG. 3. Anticrossing situation around the value t =t (mod
7). Ppp denotes the Zener tunneling probability for the nonadia-
batic process from to to tf. 1 Ppp is the probability for the two
corresponding adiabatic processes. d, (t) and d, +,(t) denote the
time-dependent expansion coe5cients of a weakly perturbed or-
bital expressed in the basis of the adiabatic orbitals w, (t) and
w, +l(t) in the interval t —v/4~ t ~ t +~/4.
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no longer holds. According to (11) these adiabatic states

are linear combinations of (more than two) functions g~
with localization centers x situated in the vicinity of the

center of a barrier or of a well. As we have seen, adiabat-

ic states do not contribute to the dc current. Their exact
mathematical form is therefore irrelevant for the follow-

ing dIscusslon.
Figure 4 schematically shows the structure of the

single-particle energies of a Landau band (corresponding
to Fig. 1) as a function of time. In the center of the band
(between E, and E, )—are situated the nonadiabatic lev-

els, which are represented by the energies E (P) of the
unperturbed levels g„(P}of which they are composed, as
we have discussed (see below). In Fig. 4 only unper-
turbed levels belonging to functions 1it~ with centers x
situated on opposite sides of the same barrier or well are
shown, since levels E (P} belonging to functions f (P)
with centers situated on slopes further away do not in-
teract appreciably (their anticrossing probability 1 P is-
negligible).

In our model system intermediate states split into two
components at each level anticrossing of Fig. 2. One
component develops according to the anticrossing (i.e.,
adiabatic) branch with probability 1 P, the o—ther com-
ponent according to the unperturbed (i.e., nonadiabatic)
branch with probability P (see Fig. 3}. In our system the
adiabatic basis functions iv, (x,y, t) of this intermediate re-

gion are expressed in the weak-disorder approximation,
i.e., they are linear combinations g~cz(t)g~(x, y, t) of
only two unperturbed functions g (x,y, t) at a given time.
In this approximation, the basis functions iv, (x,y, t} are
identical to a single unperturbed function P~(x,y, t) for
times exactly halfway between two successive anticross-
ings; see Refs. 4 and 6. The coefficients c~(t) can be cal-
culated at times t = to+ m X rl2= T (m integer) situated

E

I I t t t I I i s

0 2 4 6 t/t.

FIG. 4. Schematic time dependence of the single-particle en-
ergies corresponding to the model of Fig. 1. A single broadened
Landau band is shown. Horizontal lines: adiabatic levels {with
Zener probabilities P 5). Solid lines: fully nonadiabatic levels
{1~P~1—5). Dot-dashed lines: intermediate states {6(P
& 1 —5).

halfway between two consecutive splittings. For exam-

ple, in Fig. 3 the two coefficients d, +,(tf) [=c~(tf)] and

d, (tf } [=cz (tf )] are obtained from the corresponding
coefficients at t =to by a complex unitary 2X2 matrix.
Since the basis states iv, (x,y, t) of the adiabatic region do
not mix with those of the nonadiabatic region in the
course of time (since the corresponding nonadiabatic
transitions between the two regions are negligible per
definition), the set of coefficients c~( T) associated with all

the nonadiabatic states can be obtained from the corre-
sponding set of the coefficients cz(to) by a large unitary
matrix, which is a product of matrices, each of which is
composed of 2 X2 matrices.

Starting with the initial condition c (to)=1 for p =q
[c (to) =0 for pWq], each expansion coefficient c~( T) can
be expressed as a sum g c~' ' '(T), where j(q,p) labels
the diff'erent splitting paths which lead from c (to) to

cg (T). The complex numbers c~'~'~'(T) are products of
matrix elements of the 2 X 2 matrices, which describe the
individual splittings encountered on the path j(q,p). By
an analysis of the 2 X 2 matrices it can be shown that the
c '~' '(T) and cz(T) have random phases. This is analo-

gous to the time evolution of weakly perturbed Bloch
electrons in a constant electric field. ' '" The phase ran-
domness implies that for sufficiently large T we have

(12)

This means that for the calculation of the final occupa-
tion numbers ~c~(T}~ only the splitting probabilities P
and 1 Pz ~ (being—absolute squares of splitting matrix
elements) at the level anticrossings are needed. [It is
highly probable that an analogous phase randomness also
holds for the expansion coefficients in the general case,
where each perturbed adiabatic function iv, (x,y, t) is a
linear combination of more than two unperturbed func-
tions g (x,y, t) at a given time. ] In this way the time evo-
lution in the x direction of the total particle density of a
wave packet, which passes through a barrier or a well of
V(x} and which is scattered by the disorder potential
V'(x, y ), can be calculated explicitly in the weak-disorder
case. Numerical calculations of such scattered particle
densities are in progress.

The time-dependent scattering process leads to delocal-
ization in the v direction of the shape of an initially local-
ized Landau function g, since it develops into a superpo-
sition of different P ., which are localized at different
centers x . It also leads to a spreading of the energies of
the nonadiabatic levels which will range over the whole
zone from E t, to EI,. Mathematically, this process is
analogous to the scattering of Bloch waves in one-
dimensional systems with static disorder in the presence
of a constant electric field. ' ' In both systems the time
evolution leads to delocalization in k space, where k is
parallel to the applied electric field. This implies localiza-
tion in real space in the direction of the electric field. In
the presence of a strong magnetic field it also implies
delocalization in the direction perpendicular to the elec-
tric field (the x direction in our case) as a consequence of
(6) and (8).
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We remark that screening is not considered explicitly
in this paper. The potential V(x,y) in the Hamiltonian
(1) is already supposed to be the total screened potential.
In our explicit model system the slowly varying potential
V(x) of Eq. (5) could be obtained in a Hartree approxi-
mation along the lines developed in Ref. 13 (see, also, the
remarks made in Ref. 6).

IV. ABSENCE OF DISSIPATION

We consider now the general case where we do not as-
sume weak-disorder conditions and where V(x,y) may be
any sufficiently asymmetric potential [but the integrals
over x and y are zero, i.e., V(x,y) does not describe a
macroscopic electric field]. We inake the assumption,
that the nonadiabatic states are sandwiched between adi-
abatic states. This is, e.g. , the case in our model system
(see Figs. 1 and 4). We let the system be in thermo-
dynarnic equilibrium through inelastic scattering with a
surrounding heat bath. We consider the case where the
Fermi level EF is contained in the range of adiabatic lev-

els and where the temperature is suSciently low that the
nonadiabatic states below EF (and the empty nonadiabat-
ic states above EF) are not affected by inelastic scattering
events. Therefore, these nonadiabatic states continue to
evolve according to the tine-evolution operator 5(t) as-
sociated with the Hamiltonian (1}. Since the nonadiabat-
ic states do not mix with the adiabatic states, we have

'M(t}2)(0)CS(t), (13)

where 2)(t) denotes the subspace of the highest occupied
nonadiabatic states at the time t S(t).is spanned by the
corresponding subset of the adiabatic basis states
w, (x,y, t) We now d. efine an operator Q'(t) by

'll(t) = ll'(t)'M„(t), (14)

g ld,'(t) I'=I (15)

for all s labeling the basis states w, (x,y, t) of 2)(t)
Since the left-hand side of (15) is the total occupation

number of the state w, (x,y, t), Eq. (15) means that under
the stated conditions the total occupation number of each
basis state w, (w, y, t) in 2)(t) remains equal to 1 in the
course of time. In our weak-disorder model, relation (15)

where 'M, d(t} is the adiabatic time evolution [which trans-
forms each state w, (x,y, O) into w, (x,y, t)]. Therefore, to-
gether with (13), and since 'M(t) and 'M,d(t) are unitary in
our Hilbert space, it follows that '9'(t) restricted to 2)(t)
is unitary.

Suppose now the initial condition, where all the basis
states wj(x, y, t =0) of $(0) are occupied with a probabil-
ity of 1. According to (14) the time evolution Q(t) of
these states can be seen as a transformation by Q,d(t)
from 2)(0) to 2)(t) [which transforms each w, (x,y, O) into
w, (x,y, t), and le.aves the occupation numbers unchanged]
followed by Vl'(t) restricted to the subspace Xl(t), which
transforms each w (x,y, t ) into a li.near combination

g, dj(t)w, (x,y, t). Since Q'(t) restricted to 2)(t) is uni-

tary, we have

can be checked immediately for t =(r/2) times integer
by using the fact that the final occupation numbers can
be obtained from the individual splitting probabilities en-
countered in the course of the time evolution.

Now consider the total charge density originating from
the nonadiabatic states of 2)(t):

p&(x,y, t)=gP*(x,.y, t)g (x,y, t)

=g g dj (t)d,'w, '(x,y, t)w, (x,y, t)
J $~$

=y y ld,'(t)I'lw, (x,y, t)l'
s j
+ g gd~'(t)d~. (t)w,*(x,y, t)w, (x,y, t).

$~$ J
(s&s')

(16)

0 zz 07 0
yy

0 (17)

whence I» =0 (since E =0; see above).
The prerequisites for deriving (15) are also fulfilled for

a band of Bloch electrons in the presence of a constant
electric field (which is not too high, so that no Zener
transitions to the next-higher band occur), if EF is situat-
ed in a band gap (semiconductor}, or, in the presence of
disorder, if one could create a situation where EF is in the
fully adiabatic levels near the upper edge of the band or
near the lower edge of the next-higher band. Therefore

The last term in (16) is zero since the matrix of the
coefficients dj(t) is unitary. We have seen that in the
presence of disorder the modulus of the adiabatic basis
states w, (x,y, t} is periodic in time with period r (which is
extremely small; it tends to zero for an infinitely large
strip). Therefore, and as a consequence of (15), p&(x,y, t)
is periodic in time with period ~. Further, the occupation
of the adiabatic states above 2)(t) (part of which are sub-
ject to inelastic scattering) is statistically constant in
time.

As a consequence there is no self-consistent
modification (due to charge redistribution) of the poten-
tial V(x,y), provided at t =0 V(x,y) represents the self-
consistent potential of the ground state. This means that,
under the considered assumptions, the presence of the
field E does not modify the self-consistent potential
V(x,y} of the Hamiltonian (1} in the course of time (in
particular, no macroscopic field E„ is created) and all adi-
abatic energies e, (t) remain periodic with period ~. Since
we have assumed a physical situation, where the nonadia-
batic states (whose energies are not periodic with time
and therefore could lead to energy change over macro-
scopic time intervals, i.e., over times greater than ~, in
contrast to the adiabatic states) are not affected by inelas-
tic scattering events, these states obey relation (15) also in
the presence of the heat bath, and the total energy of
these states remains equal to the ground-state energy. As
a consequence the system cannot lose energy to the heat
bath: there is no dissipation.

Since the density of dissipated power is given by I.E,
where I is the macroscopic current density, we have
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Eq. (15) holds and the same conclusions follow, i.e., no
dissipation and absence of diagonal dc conductivity.

V. NONLINEAR PARTICLE CURRENTS
AND QUANTIZED HALL CONDUCTANCE

The macroscopic dc current I results from the non-
adiabatic states. [It is constant in time since the total en-
ergy (averaged over r) associated with the nonadiabatic
states is constant in time as long as EF is situated in the
range of adiabatic levels. ] In the weak-disorder model
which corresponds to Fig. 1 we find

I, =nq/r=nq E L /h, (18)

and hence

o =nq /h. (19)

Equation (18) follows from the fact that there is a spa-
tial region which is occupied only by fully nonadiabatic
states (see Fig. 1). These states are linear combinations of
the basis states w, (x,y, t) such that their modulus is just
equal to that of an unperturbed state g (x,y, t), as we
have discussed above. At each time mr/2 halfway be-
tween two splittings they represent a different adiabatic
basis state w, (x, y, mr/2), since there is perfect Zener
tunneling (see Figs. 2 and 3}. Note that according to (15)
the corresponding basis states w, (x,y, t), and hence the
resulting fully nonadiabatic states 1(, are occupied with a
total probability equal to 1 for all times. (In general, this
probability is the sum of contributions from different
time-dependent single-particle functions. } Since the lo-
calization center of g~(x, y, t) moves with the velocity
v =cE /B, it describes the transport of exactly one
charge q from xz(to) to xz &(to) in the time interval
to t to+a. In the next time interval of length v, the
orbital gz is replaced by gz+, and the scenario repeats it-
self in the same spatial interval, since x +,(t +r) =x (t)
according to (8) and because q &0. Therefore in this re-
gion a current results which is exactly equal to q/r per
occupied band (including the highest occupied band with
Fermi energy situated in the adiabatic levels above the
nonadiabatic states).

On the other hand, the dc current of the fully adiabatic
states is zero. These states are situated between the spa-
tial regions occupied by nonadiabatic states (see Fig. 1).
Since (18) holds in the spatially separated regions of fully
nonadiabatic states and since the total charge of the sys-
tem is conserved and since there is no charge redistribu-
tion in the course of time, one charge q (per band) must
disappear per time interval ~ in the intermediate region
on the left of a barrier (well) and one charge q must reap-
pear in the same time interval in the intermediate region
on the right of the barrier (well}. This means that, al-
though the adiabatic orbitals situated in the dashed re-
gion of Fig. 1 carry no dc current, the dc current is not
zero in this region. This is a nonclassical current, which
corresponds to discontinuous propagation of single parti-
cles between the spatially distinct regions, where the
nonadiabatic states are situated. This nonclassical parti-
cle propagation is the result of the time-dependent
scattering process in the intermediate-energy zone; in

particular, it is due to the adiabatic components of the in-
termediate states. For further discussion see Ref. 6.

The total current J„[Eq.(18)] can also be expressed as
the sum of all the single-particle currents of the system.
Equating this sum with (18) gives a definition of the
effective velocities associated with each nonclassical
current of the intermediate states. The sum of these
effective velocities just compensates the loss of current
from the adiabatic states and from the adiabatic com-
ponents of the intermediate states. The effective veloci-
ties are of the order of the distance between intermediate
areas (shaded in Fig. 1) divided by r times the number of
intermediate states per shaded area. This means they are
much higher than the classical velocity v =cE /B of the
fully nonadiabatic states P~. A simple illustration would
be the case, where there is only one state per shaded area.
Then the effective velocity of this intermediate state is
just v times the number of adiabatic states between the
two shaded areas on opposite sides of a barrier or well (cf.
Ref. 6).

Our analysis shows that these compensating currents
are not created by increased stationary single-particle
currents, as one might think on classical grounds. In-
stead, they result from a disappearance of charge in a
small area and from a reappearance a definite distance
further ahead after a short time interval. (As we have
seen, this is the result of time-dependent scattering be-
tween Landau functions localized at different sites. ) Dur-
ing this short time interval the effective particle velocity
is higher than v. But at any time the sum of the time-
dependent single-particle currents of all the nonadiabatic
states of the n bands has a dc component equal to (18).

This macroscopic Hall current is linear in E and so
are the single-particle currents associated with the fully
nonadiabatic states and with the nonadiabatic com-
ponents of the intermediate states. However, it is impor-
tant to realize that the adiabatic single-particle currents,
and hence the currents due to the intermediate states
(which are partly composed of adiabatic basis states) are
nonlinear, particularly the compensating currents. The
nonclassical, nonlinear behavior of the adiabatic and in-
termediate states has been illustrated by our weak-
disorder model in Fig. 1. This microscopic nonlinearity
is a general property of all our disordered systems (in-
dependent of the weak-disorder assumption). It follows
from the general form of the adiabatic time evolution of
systems which can be described by a Hamiltonian of type
(1). In the presence of disorder this time evolution im-
plies periodicity as a function of P= cE~L~t of all adia-—
batic currents and of the modulus of the adiabatic basis
states w, (x,y, t) To describe su. ch a behavior correctly by
an expansion with respect to E, all orders have to be in-
cluded. (A linear description would only be a good ap-
proximation for time intervals much smaller than half a
period r. } Now, we have seen that the full time-
dependent behavior of each nonadiabatic state is neces-
sary for a correct quantum-mechanical description of the
system and, in particular, for the derivation of (15). As a
consequence, linear-response theory cannot correctly de-
scribe the quantum-mechanical state which leads to
quantum Hall behavior for all the systems which are de-
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scribed by Eqs. (1)—(3). This result is quite remarkable,
since most theoretical approaches to the IQHE presented
so far have been placed into the framework of linear-
response theory.

The IQHE starts to break down when E is sufficiently
high such that the nonadiabatic component of the states
at the Fermi level EF are no longer negligible, i.e., when
the states at EF become intermediate. Here the condi-
tions for the validity of the key equation (15) are no
longer fulfilled. This leads to dissipation (hence o„„+0),
since the occupied nonadiabatic states, especially those at
the Fermi level EF, have energies or energy fiuctuations
which, in the course of time, would go beyond EF if they
were not continuously absorbed by inelastic interaction
with the surrounding heat bath.

If E~ (hence I„) increases beyond some threshold value
E'" (which corresponds to a threshold value for I„), the
adiabatic components of all the states in the highest occu-
pied band become negligible with respect to their nonadi-
abatic components. In this case, each state essentially de-
scribes again a linear classical current qv =qcE /B.
Therefore, for sufficiently high Hall currents I„ the Fermi
level is always in the range of energies of fully (or almost
fully) nonadiabatic states, and the total Hall current I„
essentially shows the linear classical behavior without
pleateaus.

In the context of the IQHE the nonlinear behavior of
single-particle currents may seem surprising. However,
we emphasized before that the general structure of the
time evolution is analogous to that of one-dimensional
Bloch electrons in a static disorder potential in the pres-
ence of a homogeneous electric field (but in the absence of
a magnetic field). In this case of one-dimensional conduc-
tion, it was pointed out previously' ' that linear-
response theory is inadequate to give a correct quantum-
mechanical description of the currents whenever the elec-
tric field is below a threshold value.

VI. SUMMARY

We have investigated the time evolution of the single-
particle states in a large class of two-dimensional quan-
tum Hall systems in the presence of a static disorder po-
tential. It was found that the nonadiabatic states carry

the dc-Hall current, whereas adiabatic states are dc insu-
lating. If the Fermi energy is in a range of adiabatic ener-

gy levels (at sufficiently low temperatures), the diagonal
conductivities vanish and the dc-Hall current shows a
plateau. This result follows directly from the unitarity of
the time-evolution operator and from the special form of
the adiabatic time evolution. No further assumptions are
needed. Linear-response theory is inadequate for a
correct quantum-mechanical description of all the
single-particle currents in the quantum Hall regime, par-
ticularly of the so-called compensating currents, which
constitute an important part of the quantized macroscop-
ic Hall current. Our general results are illustrated by a
weak-disorder model system, where the time-dependent
scattering process of the current-carrying states can be
understood explicitly. Here the compensating currents
correspond to discontinuous particle motion (which has
no classical analogy), and the macroscopic Hall conduc-
tance in the plateau region is found to be equal to nq /h
(n integer}.

A widely accepted conventional approach to the ex-
planation of the plateaus in the Hall conductance is the
localization model, which assumes the existence of local-
ized and extended states in the tails and the centers of the
disorder-broadened Landau bands, respectively. Our re-
sults are consistent with this general picture, since adia-
batic states are nonconducting and nonadiabatic states
are conducting, and therefore can be identified with the
localized and extended states assumed in the localization
model. The mobility edge corresponds to the separation
between intermediate and fully adiabatic states. This sep-
aration is not completely sharp, since the intermediate
states gradually go over into fully adiabatic states. As
the electric field E increases, this mobility edge moves
away from the center of the conducting states (as illus-
trated by the weak-disorder case ). This leads to the
disappearance of the conductance plateaus for sufficiently
high Hall fields (currents). For the systems considered in
this paper we have shown that the understanding of con-
ducting and nonconducting states is crucially based on
their characteristic time dependence in the presence of
the Hall field. We plan to give a detailed analysis (based
on our present results) of previous theories of the IQHE
in forthcoming papers.
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