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Transition-matrix elements for superlattices consisting of materials with the zinc-blende structure
are presented in analytical form in the k-p approximation including the 'y, I';, and I'g bands. The
resulting selection rules for cases where the magnetic field is absent, and where the magnetic field is
applied perpendicular to the superlattice layers, are discussed. The results can be used for type-I,
-I1, and -III superlattices. They can also be used for other systems, such as a single quantum well.

I. INTRODUCTION

Semiconductor superlattices comprised of alternating
layers of two semiconductor materials having the zinc-
blende structure are of major scientific and technological
importance. Both optical and magneto-optical studies of
such superlattices provide powerful tools for investigat-
ing band parameters of these multilayer systems. For
magneto-optical transitions, the simplest situation for
which the band structure can be calculated corresponds
to the geometry where the magnetic field is applied per-
pendicular to the superlattice layers, and the band struc-
ture for this geometry has been studied theoretically us-
ing various k-p models! ~® involving both conduction and
valence bands. However, the selection rules for transi-
tions between Landau levels in different configurations
have so far been limited only to numerical calculations.
In this paper we will present, analytically, the transition-
matrix elements as well as the corresponding selection
rules.

In a superlattice, each bulk band is quantized into sub-
bands. Depending on the bulk bands to which the sub-
bands belong, labels E, lh, and hh are often used to
represent the electron, light-hole, and heavy-hole sub-
bands, respectively. The quantum number of the sub-
band N is often added to the labels after the letters (e.g.,
E1 and hh2). If a magnetic field is applied, each subband
will again be quantized into Landau levels with quantum
number n.

The purpose of this paper is to find the symmetry prop-
erties of the wave functions of the subbands, or Landau
levels in the presence of a magnetic field (instead of their
exact forms, which are usually complicated) and —using
these symmetry properties—to formulate the transition-
matrix elements in analytical form. The procedure is,
then, to first find the symmetry properties of the wave
functions, in the general case when a magnetic field is
present, and to obtain the transition-matrix elements with
wave functions in the k-p approximation. The resulting
selection rules for transitions between Landau levels will
then be discussed. The results presented in this paper can
be used for both intersubband and intrasubband transi-
tions in type-I, -II, and -III superlattices, as long as the
constituent materials have direct energy gaps. They can
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also be applied to some other cases (e.g., a single square
quantum well) which will be discussed at the end of the
paper.

We will then discuss the special case of vanishing mag-
netic field, describing the limitations of the well-known
selection rule AN =0 used for interband transitions.”
Transitions induced by higher-order perturbations (such
as the effects of inversion asymmetry and warping) will
not be discussed here, although such effects can in princi-
ple be included in the form of perturbations when this be-
comes necessary.

We assume that the k-p approximation can be applied
to both constituent materials near the I" point, and to the
superlattice as well. In Sec. II, we will first briefly review
the forms of the wave equations and of the wave func-
tions for the bulk case. We will then discuss the sym-
metries of the wave functions in a superlattice in the gen-
eral form, with an external magnetic field present. Tak-
ing the wave-function symmetries into account, we will
find the transition-matrix elements and the selection rules
for magneto-optical transitions, which will be presented
in Sec. III. In Sec. IV we discuss the special case of
B=0. Finally, we will discuss the applicability of the re-
sults presented in the paper.

II. SYMMETRIES OF SUPERLATTICE
WAVE FUNCTIONS

For convenience in later discussions, we will briefly re-
view the theory of the band structure of bulk crystals
with a zinc-blende structure. Zinc-blende-structure ma-
terials have been thoroughly studied,''? and it is well
known that the bands of importance to optical properties
are the s-like I'¢ band, and the p-like I'; and I'y bands,
each of which has a double degeneracy at the I' point re-
lated to the spin-up and spin-down states. Different sets
of basis functions with I'g, I';, and I'y symmetries have
been used by various authors for studies involving band
structures,'>!* but the differences between the various
formalisms usually consist only of factors of i or —1 for
some of the components of the basis. We will use the
basis employed in Ref. 14, in the following order, for the
eight u;(r) components:
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u(r)=181),
us(r)= %(X+iY)T>,

ug(r)= —‘/i—-6[(X—iY)T+221]>,

u(r)=|51),
i

uy(r)= \/—E(X—iY)l> ,

ug(r)= ;——6i[(X+iY)l—22T]>,

ug(r)= %[(X+iY)l+ZT]> :

where S is a function which transforms as a scalar; X, Y,
and Z are functions with the symmetries of the coordi-
nates x, y, and z, respectively; and the symbols 1 and |
represent spin-up and spin-down states, respectively.

The wave function for a band labeled by p, with a wave
vector k, can then be written as'?

8
<I>H,k(r)=‘2 u(0)f i k(1) ()

i=1

where i runs over the doubly degenerate ' band, the two
I's bands and the I'; band. Also, in the above equation
u;(r) is the Bloch function of the ith band at the T point,
and f,;,.(r) are the envelope functions. It has been
shown[{2 that the Schrodinger equation of this system can
be written as a set of coupled differential equations in the
following form:

8

2 Hj,f,(r)zEij(r) 5

i=1
where the subscripts u and k have been omitted. The in-
teractions between the I, the I';, and the 'y bands are
treated exactly, while the effects of higher bands are han-
dled by perturbation theory up to terms in k2. The
effects of inversion asymmetry and warping are neglected
in the following discussions. Using a certain basis, u,(r),
Hj; can be collectively represented in the matrix form by
an 8 X 8 matrix,!3

H

B:
2 H

o~ 0

H.
H,| &)

where H ,, H ,, and H , are all 4 X4 matrices, H . being
proportional to k,, while H , and H , contain terms of
zeroth order and second order in k,. At k,=0,
H =044 and H? is then decoupled into H , and H ,.
The superscript B on the matrix H 2 stands for bulk. The
results obtained, respectively, from H , and H , are often

called the a-set and the b-set solutions.
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The superlattice system which we wish to discuss is of
the most common form, made up of alternating layers of
materials I and II, both with zinc-blende lattices, as
shown in Fig. 1, where d, and d, are the thicknesses of
materials I and II, respectively. The magnetic field is in
the z direction, the growth direction of the superlattice.
With the origin of the z axis chosen at the center of a lay-
er consisting of material I, the Hamiltonian matrix can be
written as

HE md—d,/2<z<md+d, /2
Hf, md+d,/2<z<md+d,/2+d,

m=0,+1,+2, ...

HS= 4)

where d =d, +d,, and H £ and H § are the matrices H B
corresponding to bulk materials I and II, respectively.
The superscript S stands for superlattice. Since k, is gen-
erally nonzero and does not commute with the superlat-
tice Hamiltonian, we replace it by —i(8/3z). Unlike the
bulk case, now the decoupling of H , and H , at k,=0
can no longer be achieved.

In our analysis we will make the assumption that the
basis sets u;(r) in the two materials are the same. The va-
lidity of this assumption has been justified for many
cases, such as for HgTe/CdTe and GaAs/Ga,_ Al As
superlattices.” The wave functions of the superlattice can
then be simply expressed as

8
O(r)=3, u;(r)f(r) . (5)

i=1

Here f;(r) are the envelope functions in the superlattice,
satisfying

HSF(r)=EF(r) , (6)

where F(r) is the matrix form of f;(r). Looking at Egs.
(6) and (4), we see that F(r) has to satisfy H £ and H & in-
dividually in corresponding materials. Furthermore,
F(r) is required to meet the conditions set by the symme-
try and the periodicity of the superlattice, and the condi-
tions of continuityl'3 at the interfaces. We write F(r) as

F(r)= [fb(l‘)

[ o(r)
) (7

where f ,(r) and f ,(r) are the components correspond-
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FIG. 1. Schematic representation of a superlattice used to il-
lustrate the structure of a superlattice and to define parameters.
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ing to the a-set and the b-set basis, respectively, with!?

fl(r) fz(l')
f3(r) falr)
fa(r)= fs(r) and f,(r)= fo(D)
f4(r) Ss(r)

Since, as has been pointed out, HS can no longer be
decoupled into H , and H , in a superlattice, both f ,(r)
and f ,(r) are in general nonzero for a given superiattice
state.

As stated at the beginning, our task is to find the
transition-matrix elements. As will be seen, this can be
accomplished by considering symmetries of wave func-
tions of initial and final states. We will thus avoid the
calculations of the band structure and the wave func-
tions, and will concentrate on the symmetry properties of
the wave functions in general.

It is well known that, even for the one-band case of a
superlattice (the Kronig-Penney model), the solutions of
the eigenvalues and eigenfunctions can be quite compli-
cated.!”> However, the symmetries are rather simple. The
same is true for our case, where several bands (i.e., ',
I';, and I'g bands) and the spin are considered. There-
fore, the constraint applied on the wave equation by the
symmetry of the superlattice should automatically give us
the symmetries of the eigenstates.

With the magnetic field applied in the z direction, the
motion in the x-y plane (the in-plane motion for the su-
perlattice) will be quantized into Landau levels. Thus we
can write f;(r), the components of F(r), in the following
form:

f,»(r)=¢,,(,',(x,y)lll,-(z) ’ (8)

where ¢, ;(x,y) is the wave function in the x-y plane in
the form of the n(i)th Landau level of a free electron,
and v,;(z) is the envelope function in the z direction.

Since in the present model inversion asymmetry is not
considered, the superlattice is symmetric with a reflection
through z=0, denoted by an operator R. Therefore the
wave equation should be invariant under such a
reflection. Inspecting Egs. (3) and (4), we find that H S it-
self is not invariant in form under the reflection R, be-
cause H . is proportional to 0/0z. However, the
difference between RHS and H S is only that given by a
unitary transformation. That is

RHS=U"'HSU , 9)
with U being either
I, O4xq
o= Ouxa —L4)° (10)
or
—L4 O4xs
S (TR P an

where I , is the 4 X4 unit matrix. Since H S is not formal-
ly invariant under the operation R, the envelope function
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FE(r) is not an eigenfunction of R. The invariance can be
stated as follows: if Eq. (6) gives the wave function F (r)
and the energy E of a state, so does the equation

R[HSF(r)]=R[EE(r)] . (12)
With Eq. (9), the above equation yields
HS{U[RF(r)]}=E{U[RF(r)]} . (13)

Comparing this equation with Eq. (6), one finds that if the
state is not degenerate,

F(r)=U[RE(r)], (14)

with a properly chosen phase factor. [If the state is de-
generate, one can always find linear combinations of
E(r)’s of the degenerate states such that Eq. (14) is
satisfied.]

Taking U given by Eq. (10), we get

S a(r) Rf (1)
S () —Rf ,(r)

Thus, in the above S o(r) is an even function of z, denoted
by f 2(r), while f ,(r) is an odd function of z, denoted by
f3(r). If, on the other hand, one uses U given by Eq.
(11), one will have

S a(r) —Rf ,(r)

£ () Rf ()

Thus now f ,(r) is an odd function of z, labeled f o(r),
and [ »(r) is an even function of z, labeled f §(r). -

As a result of the invariance discussed above, we find
that there can only be two kinds of eigenfunctions for the
superlattice Hamiltonian (and their linear combinations,
if they are degenerate), having the forms

fa(r) Sfa(r)
fo(r) fi(r)

where we have assigned the subscripts 4 and B to F(r)
with f 2(r) and f {(r), respectively. States having F ,(r)
and F g(r) will be referred to as A4-set and B-set states,
respectively, for convenience. (Capital letter subscripts
A and B are used for superlattice states, which are to be
distinguished from bulk cases.) In a magnetic field, the
states are generally nondegenerate. As we will be shown
later, states are doubly degenerate if B =0, in which case
we will still keep the wave functions given in Eq. (15) as
the eigenfunctions of the superlattice Hamiltonian. One
may have noticed that F ,(r) and F ,(r) are not eigen-
functions of the operator R, which is the direct result of
the lack of formal invariance of HS under the operation
R.

It should be emphasized that the superlattice states
with wave functions F ,(r) and F g(r) defined above by
their symmetries do not always correspond, respectively,
to the a-set and b-set bulk states for all the subbands.
This is because the subbands of a superlattice originating
from the same bulk band may have different symmetries,
which is most obvious in the one-band case where wave
functions of the subbands originating from the only band
have different symmetries.

F (0= , Fy(r)= , (15)
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III. SELECTION RULES

We are now ready to formulate the transition-matrix
elements. To do so, we will express the wave functions
F ,(r) and F g(r), with components in the form shown in
Eq. (8). With the basis given in Eq. (1), the components
fi(r) of the two kinds of envelope functions for the super-
lattice can be written in matrix form as!>!*

¢, ¥1,(2)
6n—195,4(2)
S +1¥5,4(2)
Gn+1¥9,0(2)
bn+1¥5,4(2) |7
b +2¥4,0(2)

606, (2)

6n ¥, (2)

(16)

6,7, (2)
¢n—1¥3,,(2)
B +1¥5,,(2)
Gn+1¥7,,(2)
G +1¥5,4(2)
®n+2¥4,n(2)

¢, ¥6,n(2)

6,5, (2)

where again the superscripts e and o represent even and
odd parities, respectively, and n is the Landau-level quan-
tum number. Again, we use capital letters 4 and B to
differentiate the superlattice case from the bulk. Here n
indicates the quantum number of the Landau levels in the
band structure, whose wave function F % (r) or F }(r)
consists of components ¢, ,¥; ,(z), n(i) being the quan-
tum number for ¢,.,. The two functions in Eq. (16)
differ, in form, only by an interchange of the superscripts
e and o.

The wave functions given in Eq. (16) are different from
their bulk counterparts in several ways. First of all, the
parts of the wave functions in the z direction are no
longer plane wave functions, as is the case in the bulk.
Instead, they are functions of z with particular parities.

|

(<I>A(n')lH’|<I>A(n)>"e—EP—

=_¢= V3zZe
2k (V32

+(Zg,2,n’,n +‘/§Zg,2,n',n _‘/32‘27,4,n',n )]S*Sn', n+1+[n’=n ]8+8n’, n—l} .

Similarly, matrix elements for transitions within the set B are

N __eEP
(®g(n)|H'|®g(n)) YT

+(Zg,2,n’,n +‘/§Z§,2,n’,n _‘/325,4,n‘,n )]E—Sn’, n+1 + [nl=n ]€+8

Since k, is generally not zero in a superlattice, all eight
components of the wave functions are, in principle, non-
vanishing. In the bulk case, however, based on density-
of-states considerations, k, can be assumed to be zero for
most situations of interest, which leads to the decoupling
of H, and H ,, leaving only four nonvanishing com-
ponents [either the top four, or the bottom four com-
ponents of the eight-component wave functions given in
Eq. (16)]. The mixing of the a-set and b-set bulk states in
a superlattice depends on the energy gaps of the bulk ma-
terials. A smaller energy gap gives stronger mixing.

With the symmetries of the superlattice wave functions
known, we can find the matrix elements for transitions
both within each set [e.g., within F " (r)], and between
the two sets [i.e., between F " (r) and F 3(r)]. In the k-p
approximation, the Hamiltonian of the interaction be-

tween an electron and the electromagnetic wave is'®
eE e A
r— L +£4A ./é ,
2mo c

without the phase factor of the electromagnetic wave,
where E, A, and w are the electric field, the vector poten-
tial, and the angular frequency of the electromagnetic
wave, respectively; m is the free-electron mass; and the
polarization of the wave is represented by €. The
transition-matrix elements between an initial state ®; and
a final state @, [both having the form shown in Eq. (2)]
can be written as

(<DFIH’I<I>,)=2 [CuqD)]u () (filD)|H'|fi(1))

+Cup(n) [ H |u (0)) i) fi (o)) ],

(17)
because u,(r)’s are the I'-point Bloch functions varying
with periods of the size of a unit cell of the bulk crystals,
while the envelope functions f;(r) are slow varying.

The first and second terms in Eq. (17) are often referred
to as the intraband and the interband term, respectively.
However, in most II-VI and III-V compound semicon-
ductors (e.g., in superlattices involving GaAs, CdTe, or
HgTe), the second term in Eq. (17) is much greater than
the first for both intraband and interband transitions be-
cause of the large values of the momentum matrix ele-
ment P=—(i#/m){S|P,|X ) characteristic of these ma-
terials. Only when the band gap is very large (e.g., for
systems involving ZnSe) will the first term be of
significance for intraband transitions. Therefore in what
follows we will first discuss the second term. We then ob-
tain the matrix elements for transitions within the A4 set:

__7e S7e
3,L,n',n Zl,S,n',n+‘/221,7,"',’l)

(18a)

{[(‘/Szg,l,n',n _Z?,S,n‘,n +‘/§Z?,7,n’,n )

(18b)

n’,n-—l] ’
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and for transitions between sets 4 and B, we have

eEP

(Dp(n')|H'|® =—
p(n")|H'|® ((n)) VT

+(‘/22‘5),2,n’,n +Zt7,,2,n',n +‘/22(l7,6,n',n —Z?,S,n’,n )]828,,',,, .

Here Z;”, ,. , (with v being either e or o) is defined by
Zi"/,i,n',n:<¢1Y',n‘(2)|¢;/,n(z)> ’ (19)

and [n'=n] denotes a term which is the same as the
preceding term, but with n’ and n interchanged. For the
polarizations, we have used

a+:—‘7%(ex+iey ), E_-:“71=27(8x—i€y) ,

which represent the polarizations of CRI (cyclotron-
resonance-inactive, or o) and CRA (cyclotron-
resonance-active, or o) polarizations, respectively. In
Eq. (18¢), €, corresponds to the E||B, or 7, polarization.

Equations (18a) and (18b) describe transitions elicited
by the circularly polarized electromagnetic waves having
q||B, where q is the wave vector of the radiation. Equa-
tion (18¢) requires a linearly polarized electromagnetic
wave having €||B, which implies BLq. In order to keep B
in the =z direction—i.e., along the axis of the
superlattice—q must then be in the plane of the layers.
In practice, experiments involving the €, polarization can
be carried out in the so-called strip-line technique.!’

Now we will present the selection rules implied by Eq.
(18), according to the familiar bulk a-set and b-set states.
To do this, we first discuss the relation between the states
represented by F ,(r) and Fg(r) and the corresponding
bulk states. In the one-band case, different subbands in a
superlattice are characterized by the different parities and
the number of extrema of the wave functions in the su-
perlattice unit cell. If the lowest subband is designated
with N=1, all the subbands with N=2m—1
(m=1,2,3,...) have functions of z even under the
reflection operation R. Meanwhile, all the subbands with
N =2m have odd functions of z. Also, the number of ex-
trema of the Nth subband is equal to N in a well of the su-
perlattice.!® In our case (where several bands and the
spin are considered), the situation is analogous in that the
different subbands originating from one particular band
(with relatively weaker mixing from the other bands) are
distinguished by wave functions with different sym-
metries (and the number of extrema within the superlat-
tice unit cell).

With wave functions given in Eq. (16) and the basis
given in Eq. (1), one finds that all the Landau levels in the
spin-up E1 subband [with f,(r) being the major com-
ponent of the wave function originating from the a set in
the bulk] have wave functions in the form of FJ(r) in Eq.
(16), because they have f,(r) even in z, as a result of
N=1. The Landau levels in the spin-up E2 subband
[again with f,(r) being the major component] have wave
functions described by F j(r), because N=2. In the same
way, one finds that the Landau levels in the spin-down E1
and E2 subbands [both having f,(r) as major com-
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[(\/223,5,n’,n +Z§,7,n'.n + ‘/ZZg,l,n',n - g,l,n’,n )

(18¢)

—

ponents, originating from the bulk b set] have wave func-
tions F3(r) and F "(r), respectively. In general, if
N=2m—1, E"(r) and F (r) correspond to the bulk a-
set and b-set states, respectively. When N=2m, F " (r)
and F (r), respectively, originate from the bulk b-set
and a-set states.

It has been pointed out that only subbands with the
same quantum number N have significant overlap in their
wave functions.'® This, however, is only true when the
interactions between different bands can be neglected.
From the symmetries of the wave functions in the one-
band case (either even or odd in z, depending on the
quantum number N), the coexistence of components both
even and odd in z in the wave function given in Eq. (16)
can be understood as the result of the mixing of subbands
belonging to the bulk a set and b set with different sym-
metries (having different quantum numbers N). Such a
mixing cannot be solved exactly even in the simple case
of two bands coupled through d/9z, with barrier heights
being infinite in both bands. In this simple case, however,
we find that if the coupled component is taken to be a
linear combination of the wave functions of all the sub-
bands without coupling (i.e., the wave functions of sub-
bands in a one-band single quantum well with infinite
barriers, which can be solved exactly) satisfying the sym-
metry requirement discussed before, the dominant contri-
butions are from the subbands with quantum numbers
N=1. This indicates that the wave functions given in Eq.
(16) will lead to a substantial overlap between the wave
functions of subbands with AN ==1, if the k, coupling is
strong.

With the above discussions the selection rules for
specific polarizations can be obtained from Eq. (18) by
identifying terms associated with €., €_, and ¢,, as fol-
lows:

CRA (Or o ): a, —>an+1, bn—')bn+l )

CRI (or og): a,—a,_,, b,—b,_,, (20a)
E|B (or 7): a,<b, ,
for AN =0, and
CRA: a,—b,.), b,—a,,,
CRI: a,—b,_,, b,—a,_,, (20b)

E”B: a,<a,, bn<—>bn ’

for AN==1, which is induced by the k, coupling be-
tween the a set and the b set.

Comparing Eq. (20a) with the selection rules for bulk
crystals,'* we see that in the CRA and CRI
configurations, the selection rules for both cases are the
same. In the E||B configuration (with B perpendicular to

the layers in the superlattice), the selection rules appear
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to be different from the bulk case, because in Eq. (20a)
An =0 for all the allowed transitions. This is caused sim-
ply by the fact that in a superlattice the coupling of H,
and H, makes the assignments of n(i) to the components
belonging to H, and H, different from that used in Ref.
14, where the assignments of n to H, and to H, are in-
dependent. In fact, the transitions allowed in E||B given
above, which look like spin-flip transitions, correspond to
the so-called combined resonance in the bulk case.
Therefore the selection rules for intrasubband transitions
and interband transitions with AN =0 are the same as in
the bulk case.

The intersubband transitions given in Eq. (20b), having
no counterpart in the bulk case, are induced by the cou-
pling through k,. The intensity of such transitions will
therefore depend on the coupling. They will be stronger
for superlattices with smaller energy gaps, such as
HgTe-CdTe superlattices. As we can see in Eq. (20b),
transitions within the same set (either the a set or the b
set) occur in the configuration with E||B. In contrast to
bulk magnetoptics, transitions between the a set and the
b set can only be seen in the CRA and CRI
configurations.

So far we have focused on the transitions allowed by
the second term in Eq. (17). As mentioned earlier, the
first term in Eq. (17) cannot be neglected for intraband
transitions when the band gap is very large. The reason
for this is that for large band gaps the mixing of the con-
duction band and the valence bands is small, resulting in

eE#

small values of the intraband transition-matrix elements
from the second term in Eq. (17). To obtain the
transition-matrix elements resulting from the first term, it
is easier to introduce the “raising” and “lowering” opera-
tors, defined as

1
a (P, +iP,),
#V2s
1
a= — (P, —iP,) ,
#V 2s y
respectively, where
—eB
fic
and
e A
P=p+—.
P c

Then H' becomes

H'=

Mo )+P,e,]. (21)

For simplicity of discussion in this case, we replace the
superscripts “‘e” and “0” representing the parities by the
subband quantum number N. The transition-matrix ele-
ments can now be written as

(®pn")|H' |¢N(n))—

2\/[n )+ )]s (o,

8n', n—1€+

|¢fvn(2)) 8n n+1€— + [2‘/” i)s <¢N (z) 'l,bf\_,,,(z))

N.(2))

—i lz (YN (2) ‘ai

where ®,.(n’) is from either the A4 set or the B set, and
sois @y(n).

With the symmetries of the wave functions discussed
earlier, the resulting selection rules are found to be exact-
ly the same, in form, as that in Egs. (20a) and (20b).
However, since the transition-matrix elements given in
Eq. (22) are only significant in wide-gap superlattices, we
should exclude the transitions resulting from the mixing
of the conduction band and the valence bands. Thus the
dominant intraband transitions follow the selection rules

CRA: a,—a,,y, b,—b,y,

(23a)
CRI: a,—a,_,, b,—b,_,,
for AN =0, and
E|B: a,—a,, b,—b, (23b)

for AN==x1. The interband transitions in this case will
still follow the selection rules resulting from the second
term (i.e., the interband term), namely, Eqgs. (20a) and
(20b). But the transitions described in Eq. (20b) become

8 n€; } s (22)

negligible because of the weak mixing of the conduction
band and the valence bands.

IV. THE CASE OF B=0

In this section we will first discuss the degeneracy of
the eigenstates arising when the magnetic field is zero.
We will then write the transition-matrix elements for this
special case, and we will discuss the corresponding transi-
tions.

When B=0, we have'> H_ =H,, in addition to
H! . =H .. Under this condition

HS=U"'HU , (24)
where
Ouxs 14 25)
U=
- I, Quxs

with I, being the 4X4 unit matrix. We assume that a
wave function
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Sfé(r) 1(z)
Fo=15, |, (26) vi
AL $(2)
given in Eq. (15) as F ,(r), is an eigenfunction of Eq. (6). Vi(z)
(The subscripts a and b have now been omitted.) Replac- .
ing HS in Eq. (6) by U 'HSU according to Eq. (24), and ik x ik, 7(2)
multiplying by U from the left, we obtain E4(n)= Y(z2) |’
HSU F(r)=EU F(r) . 4(z)
This means that U F(r) is also an eigenfunction with the 6(z)
same energy E. Explicitly, o(z)
8
fotr) ]
E(r)= |7, .
== fe(r) °(z)
One finds that U F(r) given above has the form of F y(r) ¥3(z)
given in Eq. (15). Thus, every eigenstate of HS with an %(2)
A-set wave function is degenerate with a B-set eigenstate yslz
at B=0. In the same way we can prove that every B-set _ ) Y(z)
. . . . ik _x ik y
eigenstate is degenerate with an A-set eigenstate at B=0. Fg(r)=e *e o
Such a degeneracy is the direct result of the degenerate ¥a(2)
spin states in bulk materials without external magnetic Ye(z)
fields.
When B=0, both k, and k, commute with HS, as in ¥e(2)
the bulk case.!* Thus we can replace the Landau level ¥5(2)

wave functions in Eq. (16) with plane wave functions for
the in-plane motion, which gives

|

The transition-matrix elements will then be

(O, |H'|® , )= Z\e/%:m ([ZA+(i"=1i)]e, +i[ZA—(i’¢='i)]sy JO(ky —k, )8k, —k,), (27a)
with

ZA=V13Z5,~2Z%+V2Z5,+28,+V2Z,—V3Z3,
for transitions within the A4 set;

(P |H'|®p) = 23€6:w {[ZB+(i’=>i)]ex+i[ZB—(i’=i)]ey]8(k;—kx )8(k,—k,) , (27b)
where

Z8=v373,-2,+V223,+2¢,+V22Z5,—V3Z5, ,
for the transitions within the B set, and

(DL H'|® ) =— ;g:w[(V§Z§’5+Z§,7+\/§Z§J ~z5,)

+(V2Z3,+2Z5,+V2Z5 —Z5 )18k, —k, )8k, —k, ), , (27¢)

for transitions between the A4 set and the B set. The
quantities Z”; are defined by Eq. (19), except that in the
present case the quantum number # of the Landau levels
does not exist. The term [i’ =] stands for the repetition
of the preceding term, with i’ and i interchanged.

In order to find probable transitions, we must know the
components of the wave functions of the states involved.
With the discussion in the last section on the subbands
and the H,, H,, and H, given in Ref. 13, we can obtain
the significant components of the wave functions for the
first two subbands belonging to the conduction band (E

f

series), the light-hole band (lh series), and the heavy-hole
band (hh series). In Table I we list the zeroth-order com-
ponent and the directly coupled components'® for the
first two subbands in each band mentioned above. The
coupled components are put into different columns ac-
cording to the dependence on k, and k; (the in-plane
wave vector) in addition to the components in the column
(or columns) on the left.

Since the wave vector of electromagnetic waves is usu-
ally in the z direction, we will only discuss transitions al-
lowed by Egs. (27a) and (27b). Using the zeroth-order
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TABLE I. Components of F ,(r) and Fy(r) for E1, E2, 1hl, 1h2, hhl, and hh2 subbands. For both
F ,(r) and Fg(r), the coupled components are listed in columns according to the dependence on k, and
k,, in addition to the components in the column (or columns) on the left.

F4(r) Fp(r)

zeroth k,#0 k,#0 zeroth k,#0 k,#0

order k, =0 k,#0 order k, =0 k,#0
El U4 V6, Y5 Y5, 95, 95 1] Y5, 99 Ve, V6 ¥k
E2 Y3 Y5, 93 Ve, v6, Uk U4 Y6, Y& ¥5, 95, ¢
Ihl Y5 Y3 YL Y5 9%, ¥4 v 148 V5, 95, YRY3
1h2 123 U4 V5,95, ¥8, Y5 Y3 ¥ YL, 95, 95,44
hhl Y5 L YS, ¥7, Y6 1 V5, Y6 ¥, ¥
hh2 Vs V% V6, Y8, Y5 Y3 1 Y3, Y5, Y6

wave functions from Table I in Egs. (27a) and (27b), we
find that the allowed transitions follow the well-known
selection rules AN =0 (e.g., E1—lhl). However, k, is
nonvanishing in a superlattice. Furthermore, overlap be-
tween wave functions with AN ==1 can also occur, as
discussed in the preceding section. If k| can be taken as
zero while k,70, the coupled components related to
k, =0 and k,70 in Table I have to be included in Egs.
(27a) and (27b). As a result, an additional transition from
E1 to E2 is allowed. When &, has a finite value, in addi-
tion to k,70, all the components listed in Table I should
be included, and transitions between any pair of the six
subbands are in principle possible.

We note finally that there are certain guidelines to fol-
low in estimating the strength of the couplings. For in-
stance, the couplings between the I'; band and the I'g
bands are stronger for narrow-gap materials. The cou-
plings between the different I'y bands are only present if
k,#0. With these couplings considered, the selection
rule AN =0 has to be changed to AN=0,=*1, which is
more important if narrow-gap materials are involved.
This is consistent with the numerical calculations in the
tight-binding scheme presented in Ref. 20. It can be
shown, in the same way, that such a change in the selec-
tion rules is also necessary for higher subbands.

V. CONCLUDING REMARKS

Although Fig. 1 represents the simplest case of a type-I
superlattice, the results apply equally well to type-II and

-III superlattices. Furthermore, the results can also be
used for cases where band bending occurs because of elec-
trons and holes transferring between neighboring layers.
The only requirements for the above-selection rules to be
valid are that the band bending is symmetric around the
center of each layer, and that the states in question are
not the ones trapped at the interfaces by the band bend-
ing itself (in which case the envelope-function approxima-
tion used here may be inappropriate).

In fact, with all the assumptions made, the validity of
the results described above can be generally stated as fol-
lows: the results can be applied to any layered structure
consisting of zinc-blende materials in which the basis
functions, u;(r), are approximately the same for all the
materials and the k-p approximation can be used, and a
plane can be found through which the system is sym-
metric under a reflection R. One finds that a single
square quantum well made of CdTe and HgTe with a
width much larger than the lattice parameter of the ma-
terial satisfies such requirements. One can also find other
systems which meet these assumptions.
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