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Transport of an optically generated electron-hole plasma in a semiconductor slab:
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The perpendicular transport of an optically generated ambipolar electron-hole plasma is investi-

gated in a semiconductor slab. Under the condition of high carrier-carrier scattering rates, a hydro-

dynamical description with heated and displaced Maxwellians is possible. The transition of the sys-

tem into its stationary state is examined with respect to the validity of an effective one-component

approximation. Scattering mechanisms implying different ratios of momentum and energy relaxa-

tion rates are found to induce different spatial profiles of hydrodynamical variables.

I. INTRODUCTION II. THE HDM MODEL

The ambipolar transport of optically generated carriers
in semiconductors has been investigated in a series of ex-
periments. ' Under low excitations it has been possible
to explain the results in terms of isothermal diffusion. ' '

In these cases the transport is dominated by excitons. In
other cases, however, additional degrees of freedom ap-
peared to be necessary to fit theoretical calculations to
measured data. Steranka and Wolfe' have introduced a
phonon wind to explain their experiments, while Tsen
and Sankey have included a high drift velocity for
fitting. In previous papers (cited hereafter as I and II,
respectively) the importance of a varying carrier tempera-
ture has finally been demonstrated, which can even in-
duce reverse diffusion, i.e., a particle current density
directed towards increasing density. These investigations
were carried out with an effective one-component system
under stationary conditions using a kinetic description.

On the other side there are a lot of theoretical "and
experimental' ' studies on carrier cooling in homo-
geneous systems of various dimensionality. The theoreti-
cal investigations cover the range from electron-hole in-
teraction to nonequilibrium phonon effects. ' Howev-
er, in most cases a spatial transport is not considered.

In paper II it has been shown that the heated and dis-
placed Maxwellian (HDM) model is a good approxima-
tion for high electron-electron scattering rates. Within
this approach we now investigate a two-component sys-
tem with more-detailed scattering terms than retained in
a relaxation-time approximation. These scattering terms
depend in a nontrivial way on the hydrodynamic vari-
ables and differ with respect to momentum and energy re-
laxation.

In this paper we investigate the approach of an
electron-hole plasma to its stationary state addressing the
question, on which length and time scales an effective
one-component approximation should be valid. Further
on we examine the influence of the more-detailed scatter-
ing terms on the profiles of the hydrodynamic variables of
our system.
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Here v is the respective carrier velocity, n, the carrier
density, e„ the background dielectric function, q, the car-
rier charge, and m, the effective carrier mass.

For simplicity we assume parabolic bands. The gen-
eration term g, is due to the photons of the laser. A

The semiconductor sample we investigate is an
Al„Gai „As slab, constrained in one dimension (the z
direction) and having large extensions in both lateral
directions. At the boundaries, surface recombination is
taken into account. The material properties of the slab
are homogeneous. A laser beam is oriented perpendicu-
larly to the slab and enters the crystal at z =0. The light
is absorbed generating carriers at a rate g, independent of
the lateral directions and with excess energies determined
by the laser frequency. Density and temperature gra-
dients then induce transport effects. Various scattering
mechanisms lead to momentum and energy relaxation of
the carriers.

We assume that the phonons reinain in their equilibri-
um state and thus act as a heat bath. Then, for the dy-
namics of our system we only have to consider the elec-
trons and holes. The kinetic description of an electron-
hole plasma consists of two Boltzmann equations coupled
by electron-hole scattering and by the Poisson equation
for the electric field, E. In the slab geometry, spatial in-
homogeneities occur only in the z direction. Therefore
we get one-dimensional (with respect to spatial variables)
Boltzmann equations for the distribution functions f,
and ft„respectively, and a one-dimensional Poisson
equation for E, :

a a tl E, af (z, v t)+v,—f (z, v, t)+ ' ' f (z, v, t)
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recombination may occur either in the bulk or at the sur-
face. The quotient between slab width and surface
recombination velocity (a hydrodynamical characteriza-
tion of the surface quality} sets a time scale: If this time
is smaller than the bulk lifetime of the carriers, the bulk
recombination is negligible in comparison to the surface
recombination. This condition is fullfilled in our case be-
cause of high surface recombination velocities' in
(Al)GaAs and small layer width. The scattering term
[second one on the right-hand side of Eq. (l)] consists of
three terms: carrier-lattice scattering, electron-hole
scattering, and electron-electron, or hole-hole scattering,
respectively. In the case of high carrier-carrier scattering
rates compared to carrier-lattice scattering rates we can
approximate the two distribution functions f, by heated
and displaced Maxwellians:
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Here e, is the unit vector in z direction. These Maxwelli-
ans are parametrized by their first three moments, the
carrier density n„ the drift velocity v„and the tempera-
ture T, :
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where we use the following abbreviations:

Inserting Eq. (3) into the Boltzmann equation (I) and
constructing the three moments [analogous to Eq. (4)] we
obtain six hydrodynamic equations for n„nh, v„vh, T„
and Th. If the electric forces are strong enough they will

induce local charge neutrality, which means equal densi-
ties of electrons and holes and —due to charge
conservation —equal drift velocities. We eliminate the
electric field and get the following equations for an ambi-
polar electron-hole plasma:

E,„, is the excess energy, AcoL the photon energy, a ' the
absorption length, and P(t) the laser power density.

To solve Eq. (5) we need initial and boundary condi-
tions for the four hydrodynamic variables. The initial
conditions depend on the scenario and will be discussed
in Sec. IV. Two boundary conditions are given by the
surface recombination velocities which are the values of
the drift velocities at the two surfaces. Close to the boun-
daries the hydrodynamic drift velocity is not the true
mean velocity of the carriers (in gas dynamics, the
difFerence between a kinetic and a hydrodynamic calcula-
tion specifies the so-called Knudsen layer), but rather the
recombination velocity. ' In the stationary case (see pa-
per II) the remaining boundary condition is an algebraic
relation between carrier temperature and density at the
zero point of the drift velocity. In our time-dependent
case we have two differential relations between each 8,
and n. We refer to Appendix A for a more detailed dis-
cussion.

III. SCATTERING RATES

For the HDM model the electron-electron and hole-
hole scattering terms vanish, so that only two types of
scattering mechanisms remain, electron-hole scattering
and carrier-lattice scattering. They drive the hydro-
dynamic variables to their respective equilibrium values.
For electron-hole scattering this equilibrium is the state
with both carrier temperatures being equal; the drift ve-
locities are always the same in the ambipolar approach.
The equilibrium of carrier-lattice scattering is reached if
the common drift velocity vanishes and the carriers have
lattice temperature.

The lattice scattering mechanisms can be divided into
two categories, interaction with static disorder (impuri-
ties, alloy) and interaction with dynamic disorder (pho-
nons). The scattering with a static defect is elastic, while
the phonon scattering mechanisms contribute to momen-
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turn relaxation as well as to energy relaxation. From in-
teraction with phonons we only have to take into account
the acoustic-deformation-potential scattering and the po-
lar optic scattering. Piezoelectric scattering is negligi-
ble, ' the optical-deformation-potential scattering is van-
ishing for parabolic bands, and the excess energy we use
is so low that intervalley scattering does not play any
role. We assume that the static defects are reduced to the
technologically possible minimum: no dislocations and
impurities being of low density and partially compensat-
ed. Thus we only need to consider alloy scattering and
ionized impurity scattering, while neutral-impurity and
space-charge scattering are negligible.

According to Eq. (g) we calculate the first (v= 1) and
second (v=2) moment of the scattering term. The de-
tailed calculation is given in Appendix B. We introduce
scattering times ~,' by
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FIG. 1. Total momentum {a) and energy {b) relaxation time
in Al„Gal „As as a function of the carrier temperature. Hy-
drodynamic parameters: n =10' cm ', U=10' cm/s. Doping:
ND =7X10' cm, N~ =3X10' cm '. Lattice temperature:
TL = 10 K. Material parameters as in Refs. S, 22, and 23.

8L is expressed analogously to Eq. (6) with carrier tem-
perature T, replaced by lattice temperature TL.

The total scattering times depend on the hydrodynam-
ic variables and material parameters. In Fig. 1 the
dependence on the carrier temperature and the aluminum
fraction is plotted. The momentum relaxation time
shows a sensitive dependence on the aluminum fraction
x. This fact is due to alloy scattering, which is the dom-
inating momentum relaxation mechanism for higher
values of x. A strong temperature dependence can be
seen for the energy relaxation times. At lower tempera-
tures the carriers cannot emit optical phonons because of
energy conservation. Thus the scattering time rises until
the acoustic-deformation-potential scattering dominates.

A weak dependence on the aluminum fraction is due to
the varying effective mass. Comparing the values of
momentum and energy relaxation times we recognize in
some temperature regions a difference of several decades
according to the high aluminum concentration. This fact
will be important for the discussion in Sec. V.

We treat electron-hole scattering similarly to carrier-
lattice scattering and obtain (see Appendix B):
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Due to the two-particle nature of electron-hole scatter-
ing, the scattering time depends strongly on carrier densi-
ty.

IV. ROLE OF ELECTRON-HOLE
SCATTERING

The scenario we investigate now is the transition of our
system into its stationary state after the laser [used in the
continuous-wave (cw) mode] is switched on at a time
t =0. The values of the hydrodynamic variables at this
time de6ne our initial conditions. In the beginning the
cold equilibrium carriers, due to the background doping,
dominate over the newly generated hot carriers. Thus
the mean internal energy per carrier (described in terms
of a temperature) is low. But with increasing number of
carriers the temperature is also increasing, predominantly
in the generation region. Due to their small mass com-
pared to the hole mass, the electrons get the main part of
the excess energy, and thus a higher temperature. On the
one hand, the temperature is increasing outside the gen-
eration region because of the onset of transport, on the
other hand the scattering with the phonons reduces the
temperature again. At later times we see that electron
and hole temperatures are nearly identical, at least out-
side the generation region, but still far from equilibrium
with the lattice. The reason for this is the electron-hole
scattering. It becomes stronger with increasing carrier
density until it is the dominant scattering mechanism and
rapidly reduces the difference between electron and hole
temperatures (see Fig. 2).

This temperature difference as a measure for nonequili-
brium between the carrier species is the subject we will
investigate now in more detail. As we see in Fig. 3 the
maximum of this nonequilibrium measure shifts to later
times for increasing distance from the generation region.
This is due to the transport of the electron-hole plasma.
The absolute height of the maximum is decreasing be-
cause carrier-lattice scattering reduces both carrier tem-
peratures. The most important fact is that the tempera-
ture difference at the latest point in time is nearly 2 or-
ders of magnitude smaller than at its overall maximum
value.

To investigate the role of the electron-hole scattering
we vary the laser power. Higher power means higher
generation rates. This leads to an enlarged number of
carriers and thus to a higher electron-hole scattering rate.
In Fig. 4 we see that the temperature difference is de-
creasing with increasing laser power, as expected. But it
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FIG. 4. Spatial behavior of the nonequilibrium under
different laser powers at t = 1.5 ns. Parameters as in Fig. 2.
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FIG. 2. Spatial and temporal evolution of electron (a) and
hole (b) temperature. Slab width I.=3 pm. s, =sL =10' cm/s.
x =32%. Other parameters as in Fig. 1. Laser excess energy

E,„,=125 meV. Laser power PL =20 Wmm

V. EFFECTIVE ONE-COMPONENT SYSTEM
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In Sec. IV we have studied the electron-hole nonequili-
brium. In the effective one-component approach, elec-
trons and holes are assumed to have the same density,
drift and temperature. From Eq. (5) we get

is not possible to reduce the difference to arbitrarily small
values by continuously increasing the power, because in
the case of very high densities, the screening of the car-
riers reduces the efficiency of electron-hole scattering.
We also recognize in Fig. 4 that the temperature
difference in the generation region is higher than in the
rest of the slab because the laser permanently creates new
nonequilibrium. But the temperature difference in the
generation region is still small compared to the maximum
values at the beginning of the excitation, as shown in Fig.
3.
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FIG. 3. Temporal behavior of the temperature nonequilibri-
um at different positions. Parameters as in Fig. 2.

To examine the validity of the one-component approxi-
mation we consider the transition into the stationary
state as shown in Fig. 5. The hydrodynamic variables of
the one- and of the two-component systems have a
different time behavior, especially in the beginning of the
excitation, but in the stationary state they are quite simi-
lar. We have chosen a point outside the generation re-
gion and far away from the boundaries of the slab. As
described in the last section we also recognize the equali-
ty of the electron and hole temperatures as soon as the
density is high enough to ensure dominating electron-
hole scattering. What is remarkable is that velocity and
temperature reach their stationary values earlier than the
density, because the time scale for the density dynamics,
given by generation and transport, is longer than the time
scales for the other variables, which are directly governed
by the relaxation times.

As previously shown (see I and II) a striking feature in
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overshoot. Under the same conditions two distinct re-
gions of different density and temperature gradients can
be seen in Fig. 6, reAecting the temperature dependence
of the relaxation ratio, an effect which becomes smaller
with decreasing aluminum fraction. With a constant ra-
tio (equal to 1 in papers I and II) only a single region re-
sults. Close to the left boundary we recognize a third
small region of differing density gradient, especially for
the 20% curve, which is due to the carrier capture of the
surface.

VI. CONCLUSIONS

We have investigated the transport of an ambipolar
electron-hole plasma within the HDM approximation.
The spatial and temporal behavior of this system after
switching on a laser allows us to draw two conclusions:
First of all, the one-component approximation is valid for
stationary problems. It is supported by higher carrier
densities because of the infiuence of the electron-hole
scattering. A measure of validity of this approximation is
the difference between electron and hole temperatures.
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FIG. 5. Temporal evolution of the hydrodynamic variables

of an electron-hole plasma and an effective one-component sys-
tem at z =2 pm. Parameters as in Fig. 2.

the stationary state beyond isothermal diffusion is the
possible occurrence of reverse diffusion: In addition to a
density gradient, a high temperature gradient may also
induce a current. If the generation does not supply this
current with enough carriers, the current produces a den-
sity gradient with the same sign as the current. Related
to this density gradient is a velocity overshoot. We ex-
amine now the inAuence of a difference between momen-
tum and energy relaxation times. Therefore we vary the
aluminum fraction. It effect on the alloy scattering and
thus on the momentum relaxation allows us to vary the
ratio of those relaxation times. The stationary profiles
shown in Fig. 6 demonstrate that the reverse diffusion
and thus the velocity overshoot are most pronounced if
momentum and energy relaxation times are of the same
order of magnitude (r'"=r' '), this being the case for low
aluminum fractions, as we see in Fig. 1. For higher
aluminum concentrations, the momentum relaxation is
much faster than the energy relaxation (v'"«r' '). In
this case the effect of the temperature gradient, i.e., the
particle current, is counterbalanced by the pronounced
momentum relaxation, leading to a reduced velocity
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FIG. 6. Stationary state of the effective one-component sys-
tem in Al Ga~ As with various aluminum fractions. Slab
width L =10 pm. Laser excess energy E,„,=250 meV. Other
parameters as in Fig. 2.
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The spatial variance of this measure is small compared to
the temporal variance during the approach to the station-
ary state. Secondly, the reverse diffusion as an effect of
nonisothermal diffusion is most pronounced if momen-
tum and energy relaxation times are of the same order of
magnitude.

APPENDIX A

As we mentioned in Sec. II the boundary conditions
are not obvious. For a practicable handling of Eq. (5) we
introduce the new variables j=nu (particle current densi-
ty) and b, = n 8, instead of U and 8, . The
transformed equation system reads

(o)—n+ j=G"',
B~ Bz

'2—j+ (b, +bi, —)n8 . 5 2/3 j n
n Bz

+~ j+n (b, +bi, )=J"',2 8 . 8
n Bz az

'b+~—'b = n-5~3(J~»+G~ ~-3n ~b G~ ~}.c
n gZ

c 3 c c c

At the point with vanishing j the equations for the b, are
ordinary differential equations and can be solved with the
known initial conditions. The thereby-calculated values
for the b, are used as boundary conditions for the areas
left and right of this point. The surface recombination
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velocities at the left (z =0) and right (z =L) margin of
the sample form the boundary conditions for the n and j
equations:

J
o =so and

n —no
j

z=L SI
n —no

'

APPENDIX B
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The matrix elements of the interaction Hamiltonian are
taken from Ref. 20. According to Eq. (8) the moments of
the scattering term are calculated. For the acoustic-
deforrnation-potential scattering this calculation is per-
formed in Ref. 21. The scattering times for the different
mechanisms introduced in Eq. (9) are given by the follow-

ing formulas.

The scattering term can be interpreted as a balance of
transition between various electronic states. Such a state
is characterized by spin S and wave vector k. The latter
is in our case proportional to the velocity v so that we
can use this variable as before. For the carrier-lattice
scattering we get

' coll

= g [ W(k'(v'), S'~k(v},S)f(v')
k', s'

—W(k(v), S—+k'(v'), S')f(v)] .

%e neglect a filling of the final states, which is consistent
with a HDM model. The transition probabilities are
given by Fermi's golden rule (for elastic scattering
co =0):
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Alloy scattering:

1

(1)
+alloy

1

(2)
+alloy

=3
2

' 3/2 ' 1/2
x(1—x) g z( k )&zz 1 P m. P —1 P

p' "
» p'

Impurity scattering:

exp

zzz &
exp — f ' [Pgcosh(P() —sinh(Pg)]dg,

'V2 "10

B op B op 2 e n 1

1

~(2)
+imp

We have used the following abbreviations:
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As defined in Ref. 20, E„ is the acoustic-deformation-potential parameter, po the crystal density, ul, the longitudinal
sound velocity, kate, the energy of the longitudinal optical phonons, N„ the number of atoms in the crystal, bE, the
alloy scattering potential, and N~ the density of ionized impurities. The numerical values are taken from Refs. 5, 22,
and 23.

We treat electron-hole scattering in the same way. The balance for two-particle scattering is

' coll
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I I
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with the transition probability

Analogous to the calculations in case of carrier-lattice scattering we get the scattering time
T
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with the screening length A,D as defined above.
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