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Calculation of parameters in model Hamiltonians

O. Gunnarsson
Max Pla-nck Insitut fu rF'estkorperforschung,

Postfach 800665, D 70-00 Stuttgart 80, Federal Republic of Germany

(Received 21 April 1989)

The ab initio calculation of parameters of the Anderson model is illustrated within the frame-
work of a simple, exactly solvable, model of a 3d compound. It is shown how the latter model can
be mapped onto a simpler model, by projecting out degrees of freedom, and by including these de-

grees of freedom implicitly as a renormalization of parameters. For the model studied this ap-
proach is shown to be exact in the limit when the projected degrees of freedom correspond to very
delocalized electrons.

I. INTRODUCTION

The local-spin-density (LSD) approximation of the
density-functional (DF) formalism' has been found to
give a rather good description of many weakly or
moderately strongly correlated systems. For strongly
correlated systems the LSD approximation gives, howev-

er, in many situations qualitatively incorrect results. In
these situations one could, in principle, introduce a com-
plete one-electron set ~i ) and calculate the matrix ele-
ments of the Hamiltonian. For strongly correlated sys-
tems, however, this approach leads to a many-body prob-
lern which normally cannot be solved with sufficient ac-
curacy with currently available methods. Alternatively,
one can instead introduce a model Hamiltonian, where
one keeps the states and interactions believed to be most
important for the physics of the problem. Other interac-
tions, which are often not small, are assumed to be in-

cluded implicitly as a renormalization of the parameters
in the model Hamiltonian.

An example is the Anderson-impurity model, where
one includes a localized level, a set of extended levels, the
hopping matrix elements between these two sets of levels,
and the Coulomb interaction between electrons in the lo-
calized level. One could try to "derive" the Anderson
model from the full Hamiltonian by projecting out the
degrees of freedom not included explicitly in the Ander-
son model ~ If these degrees of freedom correspond to
very delocalized electrons (large hopping integrals), this
approach would result in an operator which, to a good
approximation, is equal to the Coulomb interaction in the
Anderson model, but with a renormalized value for the
coefficient (Coulomb integral).

Because of the complexity of the full Harniltonian,
such an approach would, however, be extremely compli-
cated for a real system. It would furthermore result in in-

teractions not included explicitly in the Anderson model.
These would then have to be transformed away, leading
to further renormalizations of the parameters. It is there-
fore customary to follow a different approach, where the
parameters are related to atomic data, calculations in

the Hartree-Fock (HF) approximation, 5 or in more re-

cent work the LSD approximation. ' In this approach

we ask simple questions within the model Hamiltonian
framework, directly related to the parameters, and then
answer the same question in the LSD approximation for
the full system including the degrees of freedom projected
out in the model Hamiltonian. For instance, to calculate
the position of a localized level or Coulomb integrals, we

set the hopping matrix elements equal to zero. In the
Anderson model the localized electrons are then decou-
pled, and they are described by the Hamiltonian

U
H=e3d gn +— g n n

mcr (mar)Wt, 'm'0')

E(n) =e3d+ n(n —1)—.
U

(2)

It then immediately follows that

E,d =E (1) E(0), —

U =E (2)+E (0)—2E (1) .

(3)

(4)

We have left out an uninteresting constant E(0) in Eqs.
(1) and (2). We now perform an LSD calculation in
which the hopping matrix elements to the localized level
have been suppressed. In this way we avoid including
these hopping matrix elements implicitly in the calcula-
tion of U, since this would lead to double counting. We
can also easily specify the occupancy of the localized lev-
el and obtain the energy as a function of the occupancy.
We can then deduce c3d and U from the LSD results for
the energy differences in Eqs. (3) and (4). In this way the
response of the delocalized electrons to a change of the
number of localized electrons is included in the calcula-
tion of c.3d and U, which are therefore renormalized or
"screened" quantities. In some LSD calculations of pa-
rameters, the hopping parameters are not set equal to
zero. It is then necessary to remove the hopping contri-
bution to the renormalization. This is normally done by

where c3d is the energy of the localized level, U is the
Coulomb integral, m is the azimuthal quantum number,
and 0. is the spin. For this Hamiltonian we can easily
find the energy as a function of the occupation number
n =y( )(n
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performing a mean field calculation for the model Hamil-
tonian, and then identifying this solution with the LSD
results. This approach, however, raises questions about
the identification of the mean field and LSD approxima-
tions.

The approach described above cannot be justified
rigorously for realistic systems, because of the complexity
of these systems. It is therefore interesting to study a
simple model which can be solved exactly and then apply
the approach described above. Within this model we can
then see exactly what approximations are introduced in
the above-mentioned approach, in what limit these ap-
proximations become exact, and how good they are quan-
titatively in intermediate cases.

In Sec. II we present a simple cluster model of a 3d
compound. This model is solved analytically in the spin-
less limit in Sec. III and numerically in the spin-
degenerate case in Sec. IV. Some of these issues have
been discussed earlier in the context of another exactly
solvable model, which includes coupling to plasmons. '

II. MODEL

Pbl a3 P3+a4 P4

g, &
=a4$3 a—

(6)

With an electron in level 2 we instead have the solutions

levels. We are interested in the case when the hopping V
between level 3 and level 4 is a very large quantity. The
antibonding combination of 3 and 4 is then much higher
in energy than the bonding combination. We therefore
want to project out the antibonding state, which removes
the dynamics of states 3 and 4. This leaves us with the
localized level 2 and the extended state 1, which corre-
sponds to the Anderson model in the limit when the con-
duction band is replaced by one single level. Within the
framework of our simple model, this corresponds to the
mapping of the real system onto the Anderson model (the
Anderson model with one conduction state).

We perform this mapping in a way which is rather
closely related to the LSD calculation of parameters. We
introduce bonding an antibonding solutions for the sys-
tem t ~3), ~4) J in the presence of an electron in level 1 or
level 2, respectively. With an electron in level 1 we have
the solutions

We consider the simple cluster model

4
H= g g e, n, +(tp, $2 +V/3 g4 +H. c. )

cr i =1

53 Q3 +a 4 /4 =(cosP )
—g» + (

sing�

)g, &

/gal tt4$3 a3$4:(cosP)it, &

—(sing)1(bj

(8)

(9)

+Uddn2)nil+ Ult y tt] tt3 '+Ud y tt2 n4

(5)

which could be seen as a simple example of a 3d com-
pound, say NiO. Level 1 represents a ligand orbital (0 2p
for NiO) and level 2 a 3d orbital (Ni 3d for NiO), for
which we have included the 3d Coulomb interaction Udd.
These two orbitals are coupled by a hopping integral t.
The 3d orbital interacts with a 4s orbital 4 (Ni 4s) via the
Coulomb interaction U,d, and the 4s orbital is coupled
via the hopping integral V to some other extended orbital
3 (say 0 3s). Finally, there is a Coulomb interaction Ut&

between orbitals 1 and 3. These terms are illustrated
schematically in Fig. 1. The system has four electrons for
the spin-degenerate case and two electrons in the spinless
case which will be discussed in Sec. III. Half the elec-
trons are in levels 1 and 2 and the rest in levels 3 and 4.
We want to simplify the model to a Hamiltonian where
only the 3d and ligand level 1 are included, which corre-
sponds to an Anderson model with only one conduction
state. We consider, however, the case where the interac-
tion U,d (and perhaps U~I) is so large that it cannot sim-

ply be neglected. In Sec. III we will discuss how this can
be done analytically for a spinless model of type (5) in the
appropriate limit, and in Sec. IV we will numerically per-
form calculations for the full model with spin.

~i =~i+~bieff

~2 ~2 ~b2
eff

(10)

The effective hopping matrix element is in such an ap-
proach assumed to be the unrenormalized parameter t.

To obtain the exact solution of the model (5), we define
a complete basis set of orthogonal many-electrons states

I 1 ) =l(tyt, i0), (12)

where sing is of the order 1/V. We have used the nota-
tions cosp and sing to indicate that, e.g., g» and fbi are
rather similar. The states Eqs. (6)—(9) have the energies

eb» e, » cb2, and c.,2, respectively. In an LSD type of cal-
culation we would obtain the energies c» and c.b2 and in-

troduce effective level positions for the reduced two-level
problem,

III. SPINLESS CASK

In this section we study the case when all spins have
been suppressed in the model. The aim is to project out
states 3 and 4, and to be left with a model containing only
states 1 and 2 but with renormalized energies for these FIG. 1. Schematic illustration of the levels in model (5).
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(13)

(14) This leads to the resolvent operator

(15)

Z C1 Kb)

t cosf

t—cosP

z Ez Et, z t sing

t sin—P z —e, —s„

t sing

t co—sP
(16)

t sing t cos—P z —ez —E,z

The poles of this operator determine the exact eigenval-
ues and eigenvectors of the problem.

We not focus on the upper left 2X2 corner of (16),
which corresponds to the two-level problem involving
levels 1 and 2. We can now fold the lower right corner
into the upper left corner, using a projection operator
(Lowdin folding' ) technique. The elements in the upper
left corner are then replaced by more complicated opera-
tors, and we have to study the 2 X 2 matrix

(z H)—
For instance, the 11 element takes the form

H11 =81+Cb1

t sin P(z —e, —s, i)

(z —s, —E„)(z ez—s—z) , t —cos P

(17)

(18)

Equation (17) still gives exact eigenvalues, and we have
mapped the 4X4 problem onto a 2X2 problem exactly.
The price we have to pay for this reduction is, however,
that the quantities H are in general energy dependent.
We now focus on the low-lying states, assuming that Vis
larger than the other energies in the problem. For the
two low-lying states we then have

z —c1—c.„=z—c.z
—c,&=2 V .

To second order in 1/V we can then set

(19)

11 1 b1 (20)

where the correction terms are of the type
-(U,z

—Utt) t /V . The diagonal elements of the re-
duced problem are then identical to the results for the
effective level positions determined above [Eqs. (10 and
(11)]. These levels have first order corrections -in 1/V,
due to the screening by levels 3 and 4 projected out of the
problem. In addition, the hopping matrix element t cosP
has a second-order renormalization, normally neglected
in the determination of hopping parameters. The renor-
malization is simply the overlap between the bonding
solutions

I
b 1 & and lb2 &, when an electron is in level 1 or

2, respectively.
The above approximation is analogous to the adiabatic

approximation for an electron-nuclear system. We as-

sume that the electrons in the system [ I3 &, I4 & } can fol-
low the electrons in the system [ I

1 &, I2 & } perfectly. This
is true to leading order in 1/V, while to higher order
there are "nonadiabatic" effects leading to excitations
into the antibonding level, and a corresponding reduction
of the hopping to the bonding level. Such effects are
neglected in the determination of effective parameters.
This approach therefore relies on the assumption that the
system has two quite different types of electrons, one set
of localized electrons and another set of electrons which
can effectively follow the motion of the electrons in the
first set.

IV. SPIN-DEGENERATE CASE

In the spin-degenerate case we have to consider a
16X16 matrix to obtain the exact solution. This is com-
plicated to treat analytically, and we rely on a numerical
solution. In Table I we show exact results for the
ground-state energy Eo, the occupancy n3& of level 2, and
the susceptibility

y= —8 Ec(H)/BH

In the calculation of g we assume a coupling—H (n z& nz
&

) t—o the magnetic field H.
We furthermore calculate renormalized parameters in

the same spirit as has been done for realistic systems and
as was already done for the spinless case. Thus we set
t =0 and calculate the ground-state energy E(n )azs a
function of the occupancy nz of the localized level 2. The
values of E~z and Uzz are deduced from Eqs. (3) and (4).
We then solve the spin-degenerate two-level problem
with these renormalized parameters. The results are
shown in Table I under the column headed "Renormal-
ized. " As expected from the discussion in Sec. III, the
agreement between the approximate and exact results is
very good when V is larger than all other energies in the
problem. However, even for V as small as 1 the approxi-
mate results are surprisingly good.

For large values of V the readjustment of the electrons
in the space [I3&, I4&} to the electrons in the space
[I 1 &, I2& } is very small, since the energy cost of such an
adjustment is very large compared with the reduction in
the interaction energy due to the Coulomb interaction
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TABLE I. The ground-state energy Eo, the occupancy n3d of the 3d level, and the susceptibility
y= —8 Eo(H)/BH of the spin-degenerate model (5). We have used the parameters c,

&
=c2 E3 c4 0,

t =1, Udd=4, U,d=2, and Un=0.

V Ueff Eo
Renormalized Exact

71 3d x
Renormalized Exact Renormalized Exact

1.0 1.17 3.18
1.5 1.39 3.21
2.0 1.53 3.29
3.0 1.68 3.44
4.0 1.75 3.55
6.0 1.83 3.68

10.0 1.90 3.80
20.0 1.95 3.90

—3.05
—3.97
—4.92
—6.87
—8.85

—12.83
—20.81
—40.80

—2.95
—3.90
—4.88
—6.85
—8.84

—12.82
—20.81
—40.80

0.380
0.339
0.317
0.292
0.280
0.268
0.259
0.252

0.364
0.326
0.307
0.287
0.277
0.267
0.258
0.252

0.314
0.266
0.240
0.214
0.202
0.190
0.181
0.174

0.312
0.262
0.237
0.213
0.201
0.190
0.181
0.174

U,d. Therefore U' is close to its unrenormalized value
U =4, and e2 is close to the value U,d (n4 ), where ( n4 )
is the occupancy of level 4. As V is reduced the adjust-
ments in the space I ~3), ~4) 1 are larger, and the energy
cost for adding one or two electrons to the "3d level"
(level 2) is lower. Thus the values of ez and U' are re-
duced.

The photoemission spectrum was obtained by calculat-
ing the final states with one electron less than the ground
state, and by taking matrix elements between these states
and the ground state of an electron annihilation operator.
The results are shown in Table II. The two-level model
gives a quite accurate description of the two lowest peaks
for V = 10. For V =2 the description is, as expected, less
accurate, in particular for the weak second peak. In all
cases the two-level model entirely misses a number of
very weak peaks at larger energies. These peaks corre-
spond to degrees of freedom suppressed in the two-level
model. In the two-level model we have assumed that the
electrons in the states projected out can adjust perfectly
to any change in the localized electrons. In reality, there
is a certain probability that this adjustment does not take
place. The system then ends up in a final state with a
higher energy, which is reflected in the high-lying low-
weight satellites. As V increases, and the mobility of the
electrons projected out of the problem increases, the
weight of these satellites is reduced. If we nevertheless

are interested in these satellites, we clearly have to use
the full four-level model.

V. DISCUSSION

We have studies a simple model of a transition metal
compound. By projecting out degrees of freedom, we ob-
tained a model similar to the Anderson model, but with
more complicated operators. These operators can be re-
placed by the normal operators describing the level posi-
tions and Coulomb interaction, if the suppressed degrees
of freedom correspond to very delocalized electrons. The
coefficients of these operators are, however, renorrnalized
by the degrees of freedom projected out. In our example
the renormalization is of the order l/V, where V is the
hopping matrix element between the levels projected out
of the problem. We demonstrated how these renormal-
ized parameters can be obtained by studying the response
of the delocalized electrons to changes in the number of
localized electrons. This is an analogy to the approach
used for calculating the parameters of real system using
the LSD approximation.

In our calculation in Sec. III, the hopping matrix t has
a second-order renormalization in I/V, i.e., the renor-
malization is of higher order than for the level positions.
The situation need not, however, remain this simple for
more complicated models. An example is a model where
the localized level expands spatially when its occupancy

TABLE II. The photoemission spectrum from level 2 ("3d"). Results are shown for
E ] 62 F3 E4 0 Udd 4 U d 2 Urf 0, t = 1, and V =2 and V = 10. Results are shown for the
peak positions and peak weights according to the exact calculation and according to the two-level mod-
el with renormalized parameters.

V=10
Energy Weight

Renormalized Exact Renormalized Exact
Energy Weight

Renormalized Exact Renormalized Exact

0.4259
2.9428

0.4095
2.7995
4.5801
7.1616
8.6287

11.6849

0.1526
0.0057

0.141 8
0.002 6
0.008 7
0.00004
0.000 17
0.000001

0.3799
3.1387

0.3787
3.1338

20.3957
23.2170
40.4083
43.3046

0.1256
0.0038

0.124 8
0.003 7
0.00049
0.00001
0.000 000 6
0.000 000 01
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is increased. This greatly increases the hopping matrix
elements, and it is an example of how the Coulomb in-
teraction between the localized electrons can renormalize
the hopping matrix elements. In general, this effect can-
not, however, be completely described just as a renormal-
ization of the parameters in the Anderson model, but it
requires a slight generalization of the model by introduc-
ing hopping matrix elements which depend on the occu-
pancy of the localized level. The renormalization of the
hopping matrix elements due to the Coulomb interaction
between localized and delocalized electrons has also been
discussed. ' In this case it is found that there is an
energy-dependent renormalization, which is particularly
efficient for thermodynamic properties.

It is relatively easy to study the renormalization result-
ing from the suppression of degrees of freedom in simple
models of the type discussed here. For a model giving a
realistic description of a real system, this approach, how-
ever, becomes very complicated. In addition, this ap-
proach in general leaves us with interactions not included
in the model we want to obtain. To take these interac-
tions into account by a further renormalization of the pa-
rameters is not straightforward. It is therefore often
difficult to tell exactly what renormalizations should be
included, in particular for the hopping matrix elements.
Apart from the configuration dependence already men-
tioned, it has therefore normally been assumed that there
are no renormalization effects for the hopping parame-
ters, beyond what has been included implicitly through
the LSD exchange-correlation potential. It is for the mo-
ment not very clear to what extent this is justified. Most

calculations ' ' ' of hopping parameters suggest that
this approach is reasonable, although few attempts have
been made to estimate the errors involved. In calcula-
tions for Ce compounds, it has, however, been found that
this approach overestimates the hopping matrix ele-
ments. ' Whether this overestimate is due to the LSD
approximation or the neglect of renormalization effects
is, however, not known.

When using a simple model Hamiltonian of the type al-
ready discussed, we single out "important" Coulomb in-
teractions between "localized" levels and keep these in-
teractions in the model. We observe that even if the basis
set is complete, this approach is not invariant under uni-
tary transformations among the basis functions. To ob-
tain meaningful results, we therefore need a sensible
definition of the localized orbital. This is a less serious
problem if the localized orbital really is very localized, as
in the case of the 4f orbital in Ce compounds or the 3d
orbital in many transition element compounds, since the
calculated value of the Coulomb integral should then be
relatively insensitive to the precise definition of the local-
ized orbital. On the other hand, in Laz Cu04 it is found
that about 30%%uo of the oxygen 2p orbital is located out-
side the oxygen Wigner-Seitz sphere. In a case like this
the definition of the proper localized orbital is much
more ambigous.
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