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Shallow donor impurities in GaAs-Gat „Al As quantum-well structures:
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We present a variational method to compute donor eigenstates in a GaAs-Ga& Al, As quantum
well. The effective-mass approximation is used, and the envelope function is expanded in the com-
plete set of the states of the quantum well at k~~=0, including the continuum states. The conver-
gence is good; the contribution of the continuum is very small, except for odd states in narrow wells,
where there are no bound subband states of the required symmetry in the quantum well. The results
obtained for all impurity positions and for various values of the well thickness show a much larger
effect of the dielectric-constant mismatch than previously anticipated, such effect being larger for
off-center impurity positions. The far-infrared absorption coefficient is computed for both polariza-
tions of the radiation, with the spatial impurity distribution taken into account. Good agreement is
found with available experimental data.

I. INTRODUCTION

In the last decade semiconductor heterostructures have
received a great deal of attention because of their intrin-
sic physical interest and their technological applications
in electronic devices. The most often employed semicon-
ductors are of the III-V compound type, as in the GaAs-
Ga& Al As system, which is the most thoroughly stud-
ied and the one of the greatest technological promise. In
a GaAs-Ga~, A1„As quantum well (QW) the difference
in the band gap of the two semiconductors acts as an ad-
ditional square-well potential which confines the carriers
(both electrons and holes) in the inside layer. Many phys-
ical properties of the carriers depend strongly on spatial
confinement; in the limit of narrow QW's, carriers behave
very much as a two-dimensional (2D) electron (or hole)
gas. A good example of the transition between a 3D-like
character of the electronic properties and a 2D-like one,
depending on the thickness of the well, is given by the
states of shallow impurities. This problem has been stud-
ied by means of the effective-mass (EM) approximation
by a large number of authors: among others Bastard, '

Mailhiot et al. , ' Priester, et al. , Greene and Bajaj,
Lane and Greene and Chang for the donor states, and
Masselink et al. for the acceptor states. The extension
of the EM approximation to heterostructures requires ap-
propriate boundary conditions at the interfaces; these in-
volve only the envelope functions provided that constitu-
ent materials are chemically similar, as in the GaAs-
Ga& Al As system.

The purpose of this paper is to study the far-infrared
absorption in an isolated GaAs-Ga& „Al As QW doped
with shallow donor impurities in the central layer. The
wave functions and the eigenvalues of the donor states
are obtained by solving the EM equation by means of the

variational method; there is no analytical solution in
closed form of this equation because of the simultaneous
presence of two potentials with different symmetries: the
spherically symmetric Coulomb potential and the
square-well potential. We propose a variational treat-
ment similar to that of Ref. 3, based on expanding the im-
purity eigenfunctions in the eigenstates of the QW
without impurities at k~~

=0. We also include the contin-
uum states of the QW in order to verify the convergence
on a complete basis set. This is done by means of a large
box surrounding the system, which causes all the states to
be discrete. Part of these states (say up to an energy
A, „) are explicitly considered in the Hamiltonian ma-
trix, whereas the other states (with energy higher than
A,„) are treated in second-order perturbation theory to
test the convergence of the results and to give an estimate
of the error. Our method is very consistent to treat nar-
row and moderately large QW's, but we have also verified
the 3D limit: the bulk donor spectrum is achieved with
high accuracy for very large QW's.

A distinct advantage of our method is the exact treat-
ment of the difference in the values of the dielectric con-
stants in the two materials. In most of the previous pa-
pers this effect was neglected on the assumption of its ir-
relevance. Where comparisons were made different ex-
pansion sets were considered, so that a real assessment of
the role of the dielectric-constant mismatch is not avail-
able. We find that this effect is considerable, and it in-
creases with decreasing the well width and displacing the
impurity to off-center positions (a typical value of 10% of
the binding energy is obtained).

The simplicity of the method allows extensions to more
complicated cases. We are presently studying the prob-
lem of shallow donors in a magnetic field along the QW
axis and that of shallow acceptors (including the mixing
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of heavy and light holes); moreover, we belive that the
method could be applied to the problem of excitons in
QW's.

The remaining part of this paper is organized as fol-
lows. In Sec. II we present our approach to the problem
of shallow donor impurities in a QW (the treatment of the
continuum states by second-order perturbation theory is
described in the Appendix). In Sec. III we present results
for both ground and excited states; we also compare our
results with those of previous theoretical analyses. In
Sec. IV we compute the ir absorption for various impuri-

ty distributions, for both polarizations of the incident ra-
diation [parallel (ll) and perpendicular (l} to the QW
axis], and compare the results with currently available ex-

perimental data. Section V is devoted to the conclusions.

II. METHOD OF CALCULATION

The system we consider is a single QW grown in the
[001] direction, which we take as the quantization axis,

I

and with composition x (0.43, ' such that both the well
and the barrier materials have a direct gap at the I point
of the Brillouin zone. The well extends from —L/2 to
L/2. If the doping density is not too high we can consid-
er an isolated impurity, located at the point zp inside the
well.

%e describe the system by means of the EM Hamil-
tonian

A kH= + Vt)w(z)+ V; p(r),
2m

where k = —i V and the effective mass m ' is that ap-
propriate to the well (m

&
) and to the barrier (m z) ma-

terial for lzl &L/2 and lzl &L/2, respectively. Vow(z) is
the square-well potential, which vanishes inside the well
and equals Vp in the barriers. The impurity potential
V

p
is the screened Coulomb potential satisfying

Maxwell boundary conditions at both interfaces. Sum-
rning a series of image charges we obtain

( I+P)e2 +gp"
n=1 Rn

for z & L /2, — (2a}

V; (r)=. — + gP" +
Rp „) R„+ R„

(I+P)e 1 + + „1
e, Ro

for z &L/2,

(2b}

(2c)

zp+nL for even n
+ —zp+nL for odd n .

(3a)

(3b)

The EM equation for the envelope function F(r),

HF(r)=EF(r), (4)

is explicitly obtained from Eqs. (1)—(3). The current-
conserving boundary conditions for F(r} at the interface
between materials I and II, at z =L /2, are

(5)

1 BE'(r)
m I

1 BE"(r)
II =L/2

the corresponding conditions are imposed also at the oth-
er interface at z = L/2. Conditions —(5) are equivalent
to the usual boundary conditions for the wave function
only if the Bloch functions of the conduction band at the
point k =Q are taken to be equal in both materials:

u,'0(r) =u,'0(r), (6)

where P=(e, —e2}i(e,+e2), e, and e2 being the static
dielectric constants inside and outside the well, respec-
tively; Ro=[p +(z —zo) ]' and R„+—=[p +(z
—z„+—) ]'/ are the distances from the image charges, lo-
cated in the two barriers at

a condition which is well satisfied in the system we are
presently considering.

In our formalism we do not include the effect of the
nonparabolicity of the conduction band in bulk GaAs.
This effect has been considered in the donor problem by
Chaudhuri and Bajaj" by means of an energy-dependent
isotropic effective mass. A more refined treatment of the
conduction-band dispersion in bulk GaAs and in a QW
has also been considered, ' ' including cubic anisotropy.
Using the band parameters given in Refs. 12 and 13, we
have estimated the correction to the binding energy of a
donor in a QW; we find an increase in the binding energy
by less than 4/o for L &100 A, and by about 8% for
L =50 A. The same type of estimate would be meaning-
less for smaller values of L, because the fitting procedure
which gives the band parameters in GaAs loses its validi-

ty and nonparabolicity effects in the barriers should also
be considered. Io this paper we choose to concentrate on
a method for solving the donor problem and will stress
the importance of considering the different effective
masses and dielectric constants in the two materials.

Also neglected are the corrections to the binding ener-

gy of the donor states due to central cell effect, dynamical
polaronic effect, and coupling between the I minimum of
the conduction band and the secondary minima near the
X points of the Brillouin zone: all these corrections are
much smaller than the ones mentioned above.

Since the EM equation (4) with the boundary condi-
tions (5) has no analytical solution, we adopt a variational
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where the completeness of the f„z at a fixed k~~ (in partic-
II

ular we have chosen k~~=0) has been exploited: n runs
over the discrete and the continuous spectrum, and the
functions f„o are those of the zone center QW states, and
satisfy the boundary conditions (5). Axial symmetry re-
quires us to choose the functions g„(r~~) in the form
e' p h„(p), where m is the z component of the orbital
angular momentum of the particular state considered.
The whole problem is now reduced to the choice of a
suitable expansion set for h„(p), which is well behaved
and tends to a constant for p (&a '. Since, for L ~0 and
Vo= ao, our problem reduces to the two-dimensional hy-
drogen problem, where the long-range behavior of h„ is

exp( —np), we adopt, for any fixed value of m, the follow-
ing expansion:

F(r)=QC„e' p ~e ' f„o(z), (9)

where the a are fixed a priori so as to cover the physical
range, and the C„. are treated as variational parameters,
which are determined by solving the generalized eigenval-
ue problem

&nj IHlnj''&C„=E&nj ln'j'&C, J' ~ (10)

We remark that the boundary conditions (5) for F(r)
are automatically satisfied. The matrix elements appear-

I

approach and must choose a convenient basis set for the
linear expansion. Since the values of the well thickness
we are interested in are of the same order of magnitude as
the effective Bohr radius of a donor in bulk GaAs
(a*=99 A), the separation in energy between the sub-
bands of the QW is about 1 order of magnitude greater
than the binding energy of a donor in the same system, as
deduced from experimental as well as theoretical esti-
mates. Therefore we find it convenient to expand the en-
velope function F(r) of Eq. (4) in the eigenstates of the
EM Hamiltonian of the impurity-free QW,

1(„g (r)=exp(ik[[ r[[)f„g (z) ."II "II

The envelope function is then put in the form

(8)

ing in Eq. (10) can easily be computed. The contributions
from the kinetic and the square-well terms of H are
straightforward, because the f„o are eigenstates of the
QW effective-mass equation without impurities. The con-
tribution from the impurity potential may be reduced to a
one-dimensional integral on an auxiliary variable s, by us-
ing in summations (2) the well-known transformation

1 —]z —zo Is
e ' Jo(ps)ds,[p2+(zz)2]1/2o

in terms of the Bessel function Jo. This transformation
allows us to perform analytically the sum of the image
charges in Eq. (2) and the p and z integrals in the matrix
elements of V;: only the integral in the auxiliary vari-
able s is computed numerically.

To achieve convergence in expansion (9) no more than
ten exponentials are required for the ground and excited
states. The sum over the subband index n has a conver-
gence rate which depends on the well thickness. In gen-
eral the contribution of the continuum states must be
considered, particularly in the case of narrow QW's,
where there is only one electron bound state at kII=O,
and therefore it would be impossible to discuss the con-
vergence rate without considering the continuum states.
They are properly introduced placing the QW in a large
box ( Vb,„=O for lzl & Lo/2 and Vb,„=~ for lzl & Lo/2),
which has the purpose of maintaining the discreteness of
the basis set. The width Lo is chosen sufficiently large to
have a negligible ( &0.1%) eff'ect on the binding energies
of impurities. We have found that this is fully accom-
plished, for all the values of the well thickness considered
here, by choosing Lo-8a *.

The lowest states of the continuum, say up to an ener-

gy A,„, are included explicitly in the basis set, in order
to improve the convergence of the results. The other
states are used to give an estimate, by means of perturba-
tion theory, of the error involved in truncating the sum
over n, in expansion (9), at the energy A,„. The details
of the calculation are presented in the Appendix. For the
ground state, for which the slowest convergence rate is
expected, the correction to the binding energy caused by
the states of the continuum with energy higher than A,„
is estimated to be

AE(A, „)= 1

6m.

e a 2

ejL

' 1/2

2m )

A,„—'+ ln
a /2m ~]

(A,„) (12)

where a is a suitable average value of the exponents aJ0
used in Eq. (9). For L-50 A we estimate the relative
correction to be b,E(A,„)/ED=0. 1(A,„/I Ry')
where 1 Ry* =5.8 meV is the effective Rydberg in bulk
GaAs. This correction decreases rapidly for increasing
A,„and is found to be negligible for all the values of the
well thickness considered here.

The total contribution of the states of the continuum,
i.e., the states with energy greater than Vo, is very small
(0.7% for the ground state, for L =30 A) when at least

I

one discrete bound state of the required symmetry under
specular reflection z —+ —z exists at k~~

=0 in the QW
without impurities. For the even states of an on-center
donor impurity this is always the case, whereas it is not
for the odd states when the QW is sufficiently narrow
(L &50 A for x=0.3). In the latter situation, however,
most of the contribution originates from the lowest con-
tinuum states (obtained with the procedure described
above), and an expression for the contribution of the re-
gion of the continuum higher than A,„similar to Eq.



4] SHALLOW DONOR IMPURITIES IN GaAs-Ga, Al„As. . . 5099

(12) can still be proved.
The impurity states are classified according to the sym-

metry of the EM Hamiltonian (1); this is the point group
D „& for on-center impurities and reduces to C„,for im-

purities elsewhere. The irreducible representations of
these groups are classified by A =

~
m ~, which is denoted

by X if m =0 and H if m =+1,+2, . . . . There are two
types of representations X, characterized by the parity
(+ or —) under a cT, operation (the reflection with
respect to a plane containing the QW axis), for both on-
and off-center impurities. The representations X do not
have a corresponding bulk state for hydrogenlike sys-
tems, because for such systems the envelope function is
always even under o.„, and therefore there are no such
donor states belonging to X in a QW structure; in the
following we use the symbol X to denote the representa-
tions of the X+ type. In addition, the irreducible repre-
sentations of the point group D„h are classified by the
parity with respect to the 0 h operation (the reflection
z~ —z), which we indicate by the subscript g or u for
even and odd states, respectively. The complete
classification of a donor state is then given by XA

h

where %=1,2, 3, . . . distinguishes the states with the
same symmetry.

In the two-dimensional limit (very thin GaAs slab and
infinitely high potential barriers) the exact solution of the
problem' is recovered with our expansion procedure. In
the opposite limit we have verified that the bulk donor
spectrum in GaAs is achieved with better than l%%uo accu-
racy when L is very large with respect to a ".

A first description of this method with preliminary re-
sults was presented at the Third International Conference
on Shallow Impurities in Semiconductors (Linkoping,
Sweden, 1988).'

The extension of the method to the acceptor states has
been carried out, and it has been found that the states of
the QW in the continuuin must always be considered, be-
cause the effective masses are larger, and because the four
components of the envelope function require the use of
states of both parities, even for on-center impurities.

p —r
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agrees with that already pointed out by many authors, '

but our numerical values give consistently larger binding
energies, as expected from the improved accuracy of the
variational procedure. Since we use the eigenstates of the
QW at k~~=0 as basis functions, we cannot apply our
method to verify the limit value L =0 for finite values of
the barrier height Vo. Anyway, our method works for
large as well as small values of L, down to one mono-
layer; as the convergence indicates, we expect for a11 the
energy levels presented in this work a degree of accuracy
higher than 1/o. As we mentioned before, the two-
dimensional energy spectrum is exactly achieved with our
trial functions in the case of infinitely high barriers, i.e.,
for Vo=(x).

To test the effect of taking into account the different
effective masses and dielectric constants of the two
media, we show in Fig. 3 the ground-state energies (rela-

FIG. 1. Energies of the ground and lowest excited states of
symmetry Xg (

~
m

~

=0, even parity under a z ~—z reflection), as
a function of the well thickness L, for an on-center impurity and
for x =0.3. The energies are referred to the bottom of the first
subband in the QW.

I I

0
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III. RESULTS AND DISCUSSION

We have performed calculations for QW's of various
well thicknesses L, with the impurity located at different
positions inside the well. For the band mismatch we used
the value Vo =0.655E, ' where hE = 1.247x eV. ' The
electron effective mass was taken to be m *, =0.067m, in
the well and mz =(0.067+0.083x)m, in the barriers
the dielectric constants were taken to be e, =12.53 in the
well and @2=12.53—2.73x in the barriers. ' The best
choice for the exponents aj in Eq. (9) was found to be a
geometrical progression with ratio 1.6, centered around
the value +=1.5/a*; when ten exponents are used the
ratio between the extreme values of the a is —110.J

In Fig. 1 we present the energies (relative to the
minimum of the first subband, at ki =0) of the lowest Xg
states, for an on-center impurity in QW's of various
thicknesses and of composition x =0.3. The lowest Hg
states are presented in Fig. 2. The general behavior

I

~~
I
I

I
I

I

I

I I I I I I I I I I I I I I I I I I I I I I I I

100 200

well thickness (Ilf.)

300

FIG. 2. Energies of the lowest excited states of symmetry
II~ ( ~m~ = 1, even parity under a z~ —z reflection), as a func-
tion of the well thickness L, for an on-center impurity and for
x=0.3. The energies are referred to the bottom of the first sub-

band in the QW.
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, I

14

I I
1

I I I I 1 j I S ~ [ I I l I I I I I I TABLE I. Composition dependence of the ground-state
binding energy of an on-center donor impurity in a GaAs-
Ga, Al As QW. In the first two columns we specify the Al
concentration in the barriers and the well thickness. For each
case we present the result obtained by using the approximation
e2=e& for the dielectric constant in the barriers (Eo) and. that
obtained by using the proper value of e2 (E), the absolute and
the relative difference between the two results (AE =E—Eo
and hE/Eo).

100 200

well thickness (A)

300

I I I I I I j I I I I I I I I I I I I I I I I

x

0.3
0.3
0.3
0.3

L
(A)

30
50
75

100

Eo (~2=~l)
(meV)

15.54
14.38
13.20
12.26

E (e2&~i)
(meV)

16.87
15.41
13.99
12.9j

hE
(me V)

1.33
1.03
0.79
0.65

hE /Eo

8.6%%uo

7.2%
6.0%
5.3%

FIG. 3. Energy of the ground state 1Xg (corresponding to the
1s bulk state), as a function of the well thickness L, for an on-
center impurity and for x =0.3 (solid line). With the solid line
we show the results obtained by using the proper values of the
dielectric constants and effective masses in the well and barriers
materials. With dashed lines we show the analogous results
when approximations in the parameters e2, m2 are used: long-
dashed for e2=ei, short-dashed for m& =m i, and dot-dashed
for both approximations. The energy is referred to the bottom
of the first subband in the QW.

tive to the minimum of the first subband) obtained by us-

ing different approximations for the mismatch of the
dielectric constant e and of the effective mass m' at the
interfaces between the two materials. We consider four
cases corresponding to the use of various sets of parame-
ters: in particular, we show the effect of the choices,
often employed in the literature, of Ep E', and (or)

m2 =m*, . The difference between the approximations
E'2= E'& m 2

=m *, , and the full calculation depend on the
well thickness L; the use of the appropriate parameters
increases the binding energy considerably, and this effect
is more relevant the lower the value of L (-6% at
L —100 A, -20% at the minimum of the curve).

In particular, we remark that the correction intro-
duced by the appropriate use of different values of the
dielectric constants decreases slowly for increasing well

thickness L, in spite of the fact that the probability p of
finding the electron in the barriers becomes negligibly
small. This is due to the effect of the image charges: in
fact, if we represent the confinement effect by the
enhancement factor A (L), such that the binding energy
of an on-center donor impurity is Eo = A (L) Ry', an es-

timate of the first-order correction gives

(13)

where the expression within the large parentheses is dom-
inated by the second term, which describes the interac-
tion of the electron inside the well (with probability 1 —p)
with the first image charges in the barriers. We observe
that the relative correction is proportional to
he/e, =0.22x, the proportionality factor being about a
constant of order unity over a large range of values of the
well thickness L. Numerical results supporting this
description can be found in Table I, where we compare

0.4
04
0.4
04

30
50
75

100

16.14
14.69
13.39
12.40

18.01
16.10
14.47
13.28

1.87
1.41
1.08
0.88

11.6%
9.6%
8.1%
7.1 %%uo

the correction hE/Eo in QW's of different well
thicknesses, for two values of the Al concentration in the
barriers: x =0.3 and 0.4.

The case of off-center impurities is exemplified in Table
II, where the ground-state binding energy of a donor im-
purity in a QW of thickness L =100 A and composition
x=0.3 is presented for four values of the impurity posi-
tion zo. The calculation is carried out using appropriate
values for the parameters m z and e2, but the approxima-
tion @2=A& is also shown, and the magnitudes of the abso-
lute and relative corrections are indicated. We note that
the absolute value of the correction introduced by P in

Eq. (2) is nearly constant, whereas the relative correction
increases as the impurity position approaches an inter-
face. We conclude that in the calculation of donor states
in GaAs-Ga, „Al„As QW's the usual approximations
@2=A& and m2 =m

&
are not justified if one considers

high values of the Al concentration (x -0.3) and narrow
QW's (L (80 A), which are the most relevant cases for
spatial confinement.

To our knowledge there is only one paper, by Mailhiot
et al. , which takes into account the different dielectric
constants of GaAs and Ga] A1 As. In that paper seven

ZO
0

(A)

0
20
40
50

Eo (@2=el)
(meV)

12.26
11.19
8.98
7.97

E (~,&~,)

(meV)

12.91
11.83
9.62
8.60

AE
(meV)

0.65
0.64
0.64
0.63

hE/Eo

5.3%
5.7%
7.1%
7.9%

TABLE II. Impurity position dependence of the ground-state
binding energy of a donor impurity in a GaAs-Gao, AID, As QW

0
of thickness L =100 A. In the first column we specify the im-

purity position. For each case we present the result obtained by
using the approximation E'2= E'1 for the dielectric constant in the
barriers (Eo) and that obtained by using the proper value of
e2 (E), the absolute and the relative difference between the two
results (hE =E —Eo and hE/Eo).
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FIG. 4. Energy of the lowest state of symmetry X„(corre-
sponding to the 2po bulk state), as a function of the well thick-
ness L, for an on-center impurity and for x=0.3 (solid line).
The energy is referred to the bottom of the second subband in
the QW (odd under z~ —z reflection), or, for narrow wells
(L (50 A), to the onset of the continuum (i.e., to Vo). The
dashed line shows the results of the same calculation when the
approximations @2=A& and m 2

=m
&

are used.

modified Gaussian functions are used and only the
ground state and a few excited states of the s symmetry
are considered. Our results for the binding energy of the
ground state compare well with those of Ref. 2 only for
L & 200 A, ~hereas our result is larger by about 1.6 meV
for L -60 A and the difference is still greater for smaller
values of L. This difference is difficult to explain (we note
that the same parameters have been used in the cornpar-
ison); we believe that our variational approach is much
more suitable for the symmetry of the problem, particu-
larly in the case of narrow wells.

Our results for the binding energy of the ground state
for @2=A& are in agreement with those of Ref. 7, when we
use the same parameters as in that reference and we put
only one subband in the expansion set. We can compare
our results for ez=e, also with those of Priester et al. by
considering only the first subband and by searching nu-
merically the minimum in the diagonal of the Hamiltoni-
an matrix: this is equivalent to optimizing the variation-
al parameter A. in the simple tria1 function
exp( —Ap)f, & o(z). By using the same parameters as

'
ll

theirs we find the same results, the binding energy being
smaller than that reported in Fig. 3 due to the
oversimplified variational treatment.

We note that often in the literature the neglect of the
dielectric-constant mismatch was justified a posteriori on
the basis of a comparison of the results, obtained by using
different methods and different parameters, with those of
Ref. 2. In our opinion the present results will serve to
clarify this misunderstanding and give a complete assess-
ment of the effect of the dielectric-constant mismatch,
which turns out to be much larger than previously as-
surned.

In Fig. 4 we present the energy (referred to the
minimum of the lowest odd subband, at k~~=0) of the
lowest X„state for an on-center impurity in a QW with

0x=0.3, for different values of L. The values for L (50 A
are obtained by using in expansion (9) only the states of
the continuum, since no bound odd parity states exist
without the impurity, and the energy is referred to the
onset of the continuum, i.e., to Vo. In the limit L ((a*
the energy tends to the same value as the Zpo state in
bulk Gao 7Alo 3As, whereas in the opposite limit (not con-
sidered in Fig. 4) the energy tends to the value of the 2po
state in bulk GaAs. The dashed line shows the results ob-
tained with the approximation E'2=E'] and m 2

=m *, .
The binding energy of the lowest odd state was previ-

ously calculated for L ) 50 A using various approxima-
tions for the trial function ' our approach, however,
considers the contribution of all odd subbands, whose in-
teraction depends on the well thickness, and therefore al-
lows a description of the impurity states at all well
thicknesses. We note that although this state is resonant
with the continuum of the first (even) subband, the decay
is forbidden by parity.

IV. INFRARED ABSORPTION

The above results allow for a computation of the far-
infrared absorption by donor impurities in a QW. Gen-
eral considerations, with a discussion of the line broaden-
ing produced by the distribution of the impurities inside
the well, are given by Greene and Lane, who considered
the absorption of x polarized radiation. We now consider
also the case of z polarized radiation, for which the
relevant quantity is the matrix element of z between the
envelope functions.

In Fig. 5(a), we present the square of the dipole matrix
element between the states 1X and 2X for radiation polar-
ized in the z direction, for all positions of the impurity in-
side a QW of thickness L =400 A. For comparison, the
corresponding curve for the transition 1X~III (optically
active in the case of x polarized radiation) is shown in
Fig. 5(b), using the same units as in Fig. 5(a). In the case
of the 1X~2X transition, the matrix element is zero at
z0=0: for an on-center impurity both states have X
symmetry and parity forces the matrix element to vanish.
Away from the center the matrix element remains still
small, being about an order of magnitude smaller than
that of the transition 1X~1H for x polarization, which
is parity allowed for all impurity positions. The reason
for this great difference is that, although there are as
many as nine discrete subbands in this large QW, the
main contribution to the envelope functions of both
states involved in the transition is given by the first sub-
band, for which the matrix element of z vanishes by pari-
ty. In Fig. 5(a) a maximum is reached near the interface,
at zo ——130 A, in contrast with the curve for x polariza-
tion, in Fig. 5(b), which is monotonically increasing. The
decrease of the z matrix element and the increase of the x
matrix element, when the impurity approaches an inter-
face, is an effect of the confinement of the electron inside
the well: when the impurity is near the interface, the dis-
tance being of the order of the effective Bohr radius a*,
the envelope function is somewhat compressed along the
z direction and the matrix element of z is therefore re-
duced, whereas the matrix element of x is enhanced. In
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the case of x polarization, the dependence of the squared
matrix element of x on the impurity position, Fig. 5(b),
agrees with that reported by Greene and Lane.

Given an impurity distribution in the well, the absorp-
tion coefficient can be computed, for different polariza-
tions, for all transitions between the impurity states. In
order to compare with the experiment of Jarosik et al. '

we have computed the absorption coefficient versus pho-
ton energy for a GaAs-Ga& „Al,As QW with

0

L =210 A, x=0.31, and an impurity distribution (a
Gaussian about the center with half-width= 1 /6L) close
to the declared one. In Fig. 6 we show the calculated line

shape due to the 1X~n H transitions with x polarization.
A phenomenological width I =0.7 meV has been intro-
duced by replacing the 5 function 5(Ef, —A'co) with a
Lorentzian line shape in the computation of the absorp-
tion coefficient. We note a main peak centered at 7.5
meV, corresponding to the transition 1X~1H. The
asymmetry of the peak depends on the different broaden-
ing mechanisms at each side: the large impurity distribu-
tion in the well gives rise to the long tail on the low-

energy side, whereas the structures on the high-energy
side are due to transitions from the ground state 1X to
higher excited states NH. The experimental results are
not sufficiently accurate to enable us to compare the line
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FIG. 6. Computed line shape of the absorption coefficient for
0

x-polarized radiation, in a QW with L =210 A and x=0.31.
The doping distribution is taken to be a Gaussian about the
center of half-width = —'L, in agreement with Ref. 21.

shape; however, the observed position of the peak, '

E =7.3 meV, coincides with the calculated one within
the given experimenta1 error.
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FIG. 5. (a) Computed value of
~
(1X~z~2X) ~', the square of

the relevant matrix element for the 12~22 transition (with z-

polarized radiation), as a function of the impurity position zo,
0

for L =400 A and for x=0.3. (b) Computed value of
~ ( 1X~x

~
1H ) ~' for the 1X~1H transition (with x polarized radi-

ation), as a function of the impurity position zo. The QW pa-
rameters are the same as in (a).

In this paper we present a variational method to com-
pute the states of a donor impurity in a GaAs-
Ga1 Al As quantum well. The method is based on the
expansion of the envelope function in the subband states
of the QW without impurities, which insures that the
boundary conditions are satisfied. The convergence of
the method is verified by introducing in the expansion set
also the states of the continuum. Although their contri-
bution to the donor states is in general small, it is found
that they are needed in the computation of odd states in
narrow QW's.

We consider the corrections due to the different values
of the effective masses and of the dielectric constants in
the well and in the barriers. The latter correction in par. -

ticular is found to be quite sizable for high values of the
Al concentration (x -0.3) and for narrow well

0
thicknesses (L ~80 A). The correction is found to de-
crease slowly with increasing values of L, because of the
long-range Coulomb interaction between the electronic
charge in the well and the image charges in the barriers.
We conclude that the usual approximation E'2=6'1 is not
justified even in this case of materials with very similar
dielectric constants.

The ground and the lowest excited states of each sym-
metry are obtained for various values of the QW and im-

purity parameters (well thickness L, Al concentration x,
and impurity position within the well zo). These results
allow for the computation of the far-infrared absorption
in n-type GaAs-Ga1 Al As quantum wells; this is car-
ried out for both polarizations of the incident rediation
(parallel and perpendicular to the QW axis). The position
of the absorption peak is in good agreement with avail-
able experimental data.
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APPENDIX

ly. The eigenfunctions of Ho include approximate donor
states, as obtained by solving the eigenvalue problem in
Eq. (10), and the eigenstates of the QW without impuri-
ties /At, with A & A,„. The perturbation Hamiltonian is

H, =H 00 —P H 2+ ~,+ 2V, P, .

Let us consider the ground state of an on-center donor
in a QW and the zeroth-order approximation of the en-
velope function Fo, with energy Eo. By application of
standard second-order perturbation theory to include the
correction to the energy due to the states of energy
higher than A~», we obtain

I(A, k, IH, IF, ) I'
E =ED+ f dAg (A)g, (A5}

max E —(A+th' k /2m*)

Our purpose here is to compute the contribution of the
states of the continuum which were not explicitly con-
sidered in the Hamiltonian matrix in Eq. (10). For this
calculation it is better to consider the basis set in the al-
ternative form (7):

where g(A) o-A ' is the one-dimensional density of
states. In order to compute the matrix elements of H, ,

we make the following approximations:

t)'t„k =exp(ik~( r~))f~k (z),
II II

(A 1)
C cos( koz }exp( —ap ) for z

I
& L /2,

0 for Iz &L/2 . (A6)

where the continuous index A is used instead of the
discrete one n The fu. nctions PAi, are eigenfunctions of

II

. (2m *A)' t
f~& (z)=D exp i z forA» V, , (A7)

A k
Hqw=— + Vqw )

2m
(A2)

with eigenvalues A+Pi k~~/2m'. In order to apply per-
turbation theory we take as zeroth-order Hamiltonian

Ho =P ]HP ] +P2 Hgw P2 (A3)

where P~ and P2 are projection operators onto the sub-
space of the ll Ak with A & A,„and A )A,, „, respective-

where ko-n/L, a-I/a*, and C, D are normalization
constants; in the calculation we suppose that

A ko

2' 2m
(A8)

By performing the integral in Eq. (A5) we obtain the re-
sult reported in the text as Eq. (12).
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