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We have performed an extensive set of first-principles self-consistent-field (SCF) pseudopotential
total-energy and force calculations for Si(001)-(2X2) and -(2X 1) surfaces to arrive at an optimized
model for the 2 X 1 surface. We started with the symmetric dimer model proposed by Abraham and
Batra (AB) based on the Stillinger-Weber potential as well as the Yin-Cohen (YC) asymmetric dimer
model to carry out the optimization procedure. We confirm the short dimer bond length obtained
by YC, unlike in the AB model. However, a symmetric dimer model with a substantial (0.45 A)in-
ward relaxation of the top layer is found to be lower in energy than the AB model and is highly
competitive with a slightly modified YC model. This supports the use of the symmetric model by
Pandey in the construction of the extended defect model and also in the recent spin-unrestricted
model calculations. From the 2X2 cell calculations we conclude that in the small-buckling limit,
some energy gain is possible, provided that the dimers are tilted in opposite directions. We also es-
tablish that there is no barrier associated with the surface dimer formation but twisting of the di-
mers is energetically unfavorable. A detailed account of the Hellmann-Feynman forces is given for

various structures.

I. INTRODUCTION

There is currently a great deal of interest! in under-
standing the growth of metals like Ga on Si(001). The
driving force behind this is the potential for optoelectron-
ic devices based on GaAs/Si(001) epitaxy.’ An essential
prerequisite for a proper understanding of the growth® of
materials on Si(001) is the correct atomic information
about the substrate itself. Only when the atomic struc-
ture of the substrate is firmly known can one speak about
its modification upon adsorption of foreign species. For
example, it is believed* that upon adsorption of some
metals, the surface reconstruction is lifted and the metal
symmetric dimers appear in the overlayer. However, it
still remains an open question as to whether the Si dimers
of the 2 X 1 reconstructed Si(001) substrate itself are sym-
metric or asymmetric. A large number of studies have
been devoted to the 2X1 Si(001) surface and have been
reviewed” in several articles.

It is by now generally accepted that the Si atoms on the
(001) surface dimerize along the [110] direction, thereby
doubling the repeat length along this direction. The pair-
ing of atoms reduces the number of dangling bonds and
hence the system achieves a lower-energy configuration.
Starting with this basic dimerization notion, many de-
tailed models have been obtained by improving the
theoretical comparison with the low-energy electron
diffraction (LEED),®”'° photoemission,!' ~!3 ion scatter-
ing,'* by doing empirical modeling,'® and total-energy
minimization,'® ! as well as electronic-structure calcula-
tions using cluster models. "2 Although a (2X1)
reconstruction is the strongest feature in most LEED
studies,®~'° higher-order periodicities have also been con-
sidered.”>~2® However, in the present work we shall
mainly focus on the (2X 1) reconstruction and give a de-
tailed structural model by fully optimizing the atomic
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coordinates of the top four layers of Si(001).

As mentioned above, one of the nagging issues for the
2 X1 reconstruction model of Si(001) has been the actual
configuration of the surface dimers. In an early pioneer-
ing total-energy calculation by Yin and Cohen'® (YC), the
dimers were found to be asymmetric as well as buckled.
These models contained a nice feature, namely they pro-
duced a surface with semiconducting properties in agree-
ment with the experimental findings.”” Within the one-
electron picture, the validity of the highly buckled dimer
model for Si(001)-(2X 1) was questioned in a conference
presentation paper by Pandey®’ in 1984. He went on to
propose?® a m-bonded defect model based on symmetric
dimers to explain various observed periodicities. Shortly
thereafter, Abraham and Batra?® (AB) presented the re-
sults of their molecular-dynamic computer simulations
using Stillinger-Weber?® empirical Si-Si potential. This
potential led to a symmetric dimer reconstruction with
some areas of the surface which were devoid of dimers al-
together. Recent scanning tunneling microscopy*° (STM)
experiments have revealed symmetric dimers at least in
the regions away from the extended defects.

One main objection against the symmetric dimer model
has been that within the one-electron picture it leads to a
metallic surface. This is in disagreement with the experi-
mental data.?’” A way out of this difficulty has been pro-
posed by invoking the spin degree of freedom in the
cluster-model calculations.?>3! In 1982, Redondo and
Goddard?? found a correlated singlet of the symmetric di-
mer configuration to be the ground state of the system.
More recently, Artacho and Yndurain®' found that an
antiferromagnetic  spin  arrangement within the
symmetric-dimer-model arrangement lowers the total en-
ergy and opens up a gap in the surface-state bands. It
therefore becomes essential to reevaluate the atomic
structure of the Si(001)-(2X 1) surface.
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In what follows, we present optimized structural mod-
els based on total-energy and force calculations. We es-
tablish that there is no barrier associated with the surface
dimer formation. There may be some barrier to buckling
but the depths of local minima for a highly buckled
asymmetric model and symmetric model are shown to be
comparable. The electron and hole Fermi surfaces for
our optimized symmetric dimer model are also sketched.
The calculations are based on a state-of-the-art self-
consistent-field pseudopotential method.’>** These cal-
culations are spin restricted in nature. However, for a
nonmagnetic material such as Si one does not expect’*
bond lengths to depend much on the spin polarization.
We also give an account of Hellmann-Feynman forces as
utilized here in reaching the optimized configurations.
We hope that the detailed atomic coordinates presented
here shall be useful to those carrying out adsorption and
growth studies on Si.

II. METHODOLOGY AND COMPUTATIONAL
DETAILS

We performed SCF pseudopotential calculations®>*3

within the framework of the Hohenberg-Kohn-Sham
local-density-functional theory applied in momentum
space.”> We used nonlocal, norm-conserving ionic pseu-
dopotentials given by Bachelet et al.*® and Ceperly-Alder
exchange and correlation potential’’ as parametrized by
Perdew and Zunger.*® The calculations were done for the
Si(001) surface using a repeating-slab geometry. The vac-
uum spacing between slabs is taken to be 14 a.u. The sil-
icon substrate with the (001)-(2 X 1) reconstructed surface
is simulated by a slab consisting of 8 Si atomic layers
(containing 16 Si atoms and 4 saturating H atoms in the
slab unit cell). We chose Si atoms dimerization direction
([110)) along the x axis. Only the top surface is allowed
to reconstruct; the dangling bonds on the bottom surface
were saturated by hydrogen atoms. There is some ques-
tion® as to whether the dimers also suffer some twisting
motion (along the y direction). To resolve this issue and
also to study dimers tilted in the opposite directions we
performed a number of calculations with a 2 X2 unit cell
which has twice the area of the conventional 2 X 1 surface
cell. This represents a major computational effort since it
contains 40 atoms (32 Si atoms and 8 saturating H atoms)
per unit cell coupled with the fact that a large number of
structures are to be explored. We also check the sensi-
tivity of our results to the input calculational parameters.

To arrive at optimized structures we started with the
atomic positions of the Si atoms as given in a symmetric
dimer-bond model proposed by Abraham and Batra.?®
We also did several calculations starting with the ideal
structure as well as with the Yin-Cohen!® asymmetric di-
mer model. For each structure, we computed Hellmann-
Feynman forces on all atoms and used these as a guide to
generate the next structure. Total-energy value dictated
if the structure was more optimum because some moves
led to a redistribution of forces without significantly
affecting the total energy.

For the majority of the calculations, the electronic
states were represented by ~ 730 plane waves for a 2X 1
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cell and ~ 1470 plane waves for a 2 X2 cell corresponding
to an energy cutoff of 5.5 Ry. During the self-consistency
iterations the charge density was sampled at 15 and 9 k
points, respectively, for the two cells placed uniformly in
the surface Brillouin zone. This calculational parameter
set (to be referred to as set S1) is adequate for optimizing
atomic coordinates but may not lead to absolutely con-
verged forces or formation enthalpies. This conclusion
was arrived at by systematically increasing the energy
cutoff to 7.5 Ry and 32 k points in the 2X1 cell. The
final optimized structures were obtained with this extend-
ed set. We used a strict self-consistent field (SCF) conver-
gence criterion (rms deviation in potential ~1077) be-
cause of the demands>® of the calculations of the forces.

III. RESULTS AND DISCUSSION

Before delving into the results of our calculations, it is
worthwhile to briefly describe various dimerization mod-
els*® in the interest of establishing a common terminolo-
gy. In Fig. 1 (see inset) we have shown a side view of the
Si(001) surface in the x-z plane. Here x [110] is the di-
merization direction and z is normal to the surface along
the [001] direction. Four planes of atoms are shown and
are labeled 1-8. Atoms 1 and 2 have two dangling bonds
each for an ideal bulk truncated structure. A simple di-
mer model is obtained by only moving the surface atoms
(atoms labeled 1 and 2 in Fig. 1) by equal and opposite
amounts (Ax) along the x direction. A displacement
Ax =0.75 A places atoms 1 and 2 at their ideal bulk bond
length (2.35 A). A relaxed simple dimer model is one
where other layers of atoms are allowed to rearrange to
minimize the total energy. A model of this type was first
obtained by Appelbaum and Hamann!® using the Keating

dip (A)

3.84 3.35 284 2.34 1.84
20 " T " T T T

04
-20 .

-40

Energy (mRy)

I 027502
00 ® ® 008] 0%
L ® ® 031 0%
-120 ! R ! .
000 0.25 0.50 075 1.00
Ax(A)

FIG. 1. Total energy of a simple symmetric dimer model for
Si(001)-(2X 1) as a function displacement (Ax) of surface atoms
as well as the dimer bond length (d,,). Total energy of the ideal
bulk truncated surface is taken to be zero. Also shown are the
forces F, and F, (in units of 10% N) on surface atoms. The in-
set shows a side view of Si(001). Atoms labeled 1-8 specify the
top four layers and their coordinates are given in Table 1.
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potential. An asymmetric dimer model is one where the
surface atoms move by unequal amounts. In particular, if
the surface atoms have unequal z displacements then the
dimer is asymmetric as well as buckled. Models of this
type were first proposed by Chadi'”!® and Yin and
Cohen' and have been quite successful in explaining
many observations. Finally, if one permits a motion of
the dimer along the +y [110] direction one obtains a
twisted dimer model. Such a model was proposed by
Yang, Jona, and Marcus’® based on a LEED analysis. A
subsequent LEED study by Holland, Duke, and Paton'®
indicates that one can get a similarly good fit without in-
voking the y twist.

We started with the calculational set S1 and only
moved the two surface atoms in a 2X 1 unit cell to exam-
ine if there is any barrier to the dimer formation. This is
what we have called a simple symmetric dimer model
above. Results presented in Fig. 1 readily establish quali-
tatively that there is no barrier associated with the simple
dimer formation. The energy decreases monotonically as
the surface atoms 1 and 2 are moved towards each other
by an amount Ax <0.75 A. Note that as Ax increases
the dimer bond length, d,, decreases. The minimum is
found around Ax=0.75 A leading to a dimer bond
length, d |, ~2.34 A. The net lowering of energy is ~0.6
eV per surface atom when all the other atoms are held
rigidly in their ideal bulk truncated positions. The ener-
gy rises very sharply when we compress the dimer atoms
together by more than 0.2 A beyond the optimum bond
length. The shape of the well around the minimum is
seen to be nonsymmetric.

It is instructive to examine the forces acting on the sur-
face dimer atoms as a function of Ax. Thus in Fig. 1 we
have also shown the calculated Hellmann-Feynman
forces F, and F, (in units of 10~ N~0.25 Ry/a.u.) act-
ing on the dimer atoms. Since the parameter set S1 is
used, only the qualitative aspects are significant. The x
components of the forces were always equal and opposite
and z components were always directed inwards. Atoms
did not experience any forces along the y direction. Near
(metastable) equilibrium we observe that while the x com-
ponents of the forces have indeed become small, the di-
mer atoms are experiencing strong z forces demanding an
inward relaxation. Such relaxations shall be carried out
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during the complete optimization to be discussed below.
Incidentally, we note that forces of magnitude in the
range (0.02-0.08)X 10~ % N are to be considered small
for the calculational parameters at hand (these being the
residual F, forces acting on atoms around the minimum
of the total-energy curve). Thus during the complete op-
timization we shall strive to obtain forces on all atoms to
be <0.05X 107 ¥ N.

To arrive at an optimized structural model we started
with the AB (Ref. 28) model in a 2X1 unit cell and
moved the atoms in the direction of forces to obtain a
lower-energy structure. After performing about 20
structural calculations with the set S1 we arrived at the
model described in Table I. For comparison, we have
also given the original YC and AB models. The dimer
bond length obtained by us is in good agreement with a
short dimer bond lcngth of 225 A predicted by YC many
years earlier. This is to be contrasted with the AB model
which essentially gets a normal bulk single-bond length
(2.35 A). The subsurface relaxations obtained by us are
also qualitatively similar to those obtained by YC. A
point of departure is that our dimers are symmetric and
nonbuckled, in agreement with the AB model. Another
essential ingredient of our model is that the back bonds
between the first and second layer atoms are considerably
strengthened (all bond lengths are 2.29 A). A small
amount of buckling (~0.03 A) raised the total energy
suggestive of a barrier to buckling. A further comparison
of the original YC and the present symmetric dimer mod-
el is given in Fig. 2.

To keep ourselves from being trapped in a local
minimum, we performed a number of calculations start-
ing with an ideal structure but in a 2 X2 unit cell. These
calculations used the set S1 and serve as a check on the
convergence of our results. The final coordinates differed
from those obtained from a 2X1 cell calculation by
<£0.01 a.u. Another important reason for doing the
2X2 calculations was to examine some relative orienta-
tions of the dimers. We found that whenever we attempt-
ed to twist the dimers by making any y displacements
with respect to the ideal y positions, serious Fy forces
developed opposing that move. For example, displacing
one dimer by giving its atoms a +0.1 a.u. displacement
led to the development of large ~0.1X 108 N restoring

TABLE 1. Ideal bulk truncated atomic positions (in A) for the top four surface layers of the Si(001)
2X1 lattice and the relative displacements required for the Yin-Cohen (Ref. 19) (YC), Abraham-Batra
(Ref. 28) (AB), and the present optimized model. The coordinates x,y,z refer to the [110], [110], and

[001] directions, respectively (see inset in Fig. 1).

No y displacements (Ay =0) are present for these

models. These calculations were performed with the parameter set S1.

Ideal lattice YC model AB model Optimized

N X y z Ax Az Ax Az Ax Az

1 —1.92 0.0 0.0 0.57 —0.16 0.72 —0.10 0.83 —0.45
2 1.92 0.0 0.0 —1.04 —0.47 —0.72 —0.10 —0.83 —0.45
3 —1.92 1.92 —1.36 0.09 —0.05 0.11 0.02 0.09 —0.09
4 1.92 1.92 —1.36 —0.12 0.02 —0.11 0.02 —0.09 —0.09
5 0.0 1.92 —2.72 —0.01 —0.19 0.0 —0.09 0.0 —0.20
6 3.84 1.92 —2.72 —0.03 0.13 0.0 0.09 0.0 0.04
7 0.0 0.0 —4.08 0.06 —0.14 0.0 —0.05 0.0 —0.10
8 3.84 0.0 —4.08 —0.06 0.10 0.0 0.05 0.0 0.04
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FIG. 2. Atomic displacements (in A) from the ideal bulk po-
sitions to generate (a) the original YC model of Si(001)-(2X1)
and (b) the present optimized model.

forces. More importantly, the energy increased by 1
mRy per atom, which led to the conclusion that the di-
mers are not twisted, contrary to the assertion of one of
the LEED-derived models.’

Another aspect we explored in the 2X2 cell was the
stability of dimers to small buckling in the opposite direc-
tions. In a 2X 1 cell all dimers by construction must have
the same tilt. In a 2X2 cell, we found that even some
small buckling can be tolerated provided adjacent dimers
are tilted in the opposite directions. For example, our
calculations showed that in the 2X2 cell a buckling of
0.15 a.u. lowers the energy by 0.02 mRy per atom provid-
ed the two dimers in the unit cell are oppositely tilted.*
Although this energy change is below the accuracy we
are willing to claim, the resultant forces on the atoms
were also suggestive that this may be an acceptable
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configuration. This so called p-(2X2) model, discussed
by Chadi,?* has a different periodicity than the 2 X 1 mod-
el and shall not be pursued here.

The formation enthalpies obtained in our calculations
place a simple dimer model (using the set S1) at about 0.6
eV per atom lower energy than the ideal structure. We
did not fully optimize the dimer bond in a simple dimer
model because this is an intermediate metastable struc-
ture. The completely optimized structure generated by
us is €, (=1.17) eV per atom lower in energy than the
ideal structure. The major lowering in energy here arises
due to strong inward relaxation (~0.45 A) of all surface
atoms which strengthens all back bonds. For compar-
ison, we also recomputed the total energy of the original
YC model in our slab geometry using the atomic dis-
placements given by YC for the top four Si layers. Ac-
cording to our calculations, the YC model has 1.11 eV
per atom lower energy (more stable) than the ideal struc-
ture. It is only slightly less stable (0.06 eV/atom) than
the symmetric dimer model obtained by us. The AB
model is fairly unstable (0.34 eV/atom) with respect to
the present symmetric dimer model.

In computing formation enthalpies, we have used the
energy of the ideal Si(001) surface (which tends to con-
verge slowly) as a reference. As the energy cutoff is sys-
tematically increased from 5.5 to 6.5 and finally to 7.5 Ry
(with 32 k points in the Brillouin zone), €, becomes 1.17,
1.03, and 0.93 eV/atom, respectively. The reason is that
the total energy of the ideal surface is preferentially
lowered upon increasing the cutoff due to slow conver-
gence. This changes the reference energy, making our
symmetric dimer model less stable in the absolute sense,
with only a minor effect on the relative stability. The
value 1.03 eV obtained by us at 6.5 Ry cutoff is in agree-
ment with the value obtained by Pandey.”> A compar-
ison of this with the value of 0.85 eV quoted by YC led to
the suggestion®® that the highly buckled YC model is en-
ergetically unfavorable. Such a conclusion is probably
not warranted, since, as shall be seen below, a slightly
modified YC model can yield stability values similar to
ours if identical calculational parameters and supercell
geometries are used.

In Table II we compare the resultant forces on atoms
in the original YC and our optimized model both calcu-

TABLE II. Forces on the top four layer atoms (in units of 10™8 N) for the Si(001) 2 X 1 lattice for the
original YC model and the present optimized model. No y forces (F, =0) are present for these models.
The last two columns give residual forces on optimized atoms computed using the 2X2 cell. The pa-

rameter set S1 is used for calculations.

YC model Optimized Optimized (2X2)
N F, F, F, F, F, F,
1 0.084 —0.105 —0.014 —0.033 —0.031 —0.025
2 —0.054 —0.049 0.014 —0.033 0.031 —0.025
3 0.049 0.019 0.021 —0.008 0.018 —0.028
4 —0.047 —0.020 —0.021 —0.008 —0.018 —0.028
5 —0.027 0.010 0.0 0.002 0.0 —0.030
6 —0.006 —0.003 0.0 0.027 0.0 0.018
7 —0.151 0.091 0.0 —0.019 0.0 —0.048
8 0.069 —0.053 0.0 —0.026 0.0 —0.011
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TABLE III. Atomic coordinates (in a.u.) for the top four surface layers for the Si(001)-(2X 1) sym-
metric dimer model and a slightly modified YC (Ref. 19) asymmetric buckled dimer model obtained in
the present optimization. All calculations were done using 7.5 Ry energy cutoff and 32 k points in the

Brillouin zone.

Symmetric dimer model

(Modified) YC Asymmetric model

N x y z x y z

1 —2.10 0.0 —0.84 —2.50 0.0 —0.35
2 2.10 0.0 —0.84 1.60 0.0 —0.95
3 —3.45 3.63 —2.73 —3.45 3.63 —2.65
4 3.45 3.63 —2.73 3.41 3.63 —2.52
5 0.0 3.63 —5.48 —0.01 3.63 —5.48
6 7.26 3.63 —5.01 7.21 3.63 —4.89
7 0.0 0.0 —7.89 0.0 0.0 —7.89
8 7.26 0.0 —7.63 7.26 0.0 —7.63

lated in our slab geometry using the parameter set S1.
The forces on atoms obtained from calculations in the
2X2 cell are also given in the last two columns. As ex-
plained earlier, the optimization was carried out until all
forces on all atoms dropped below 0.05X 10" % N. For
our model, we have reached a point where we can lower
forces on some atoms at the expense of increasing forces
on some other atoms with a £0.02 mRy/atom change in
total energy. For example, reducing the dimer bond
length by 0.01 a.u. and at the same time moving the di-
mers outwards by 0.005 a.u. causes x components of the
forces to increase on atoms 1 and 2 from 0.014 X108 to
0.032X107* N. This is accompanied by a reduction in
the z components of the forces on these atoms from
0.033X107% to 0.020X10™® N. The x components of
the forces also increase on atoms 3 and 4 from
0.021X107% to 0.042X 107 % N but the total energy is
only raised by 0.09 mRy/atom. This change is just about
at the limit of the accuracy of the calculations, which is
estimated to be +0.1 mRy/atom.

A small buckling of the dimer atoms by +0.05 a.u.
raised the energy by only 0.03 mRy/atom. At that point
forces on atoms suggested that a further tilt is in fact
desirable. As soon as we increased the tilt to +0.1 a.u.
the energy increased by 0.5 mRy/atom. Since a large
buckling contained in the YC model has a local minimum
(comparable to our symmetric dimer model) we conclude
that there is probably a barrier associated with buckling.
The atomic coordinates optimized by us may have a noise
of <+0.05 a.u.

The forces on atoms in the original YC model as com-
puted in our slab geometry (see Table II) indicate that the
surface atoms are under the influence of large x- and z-
directed forces. When we actually attempted to move the
atoms, the forces developed to suggest further buckling.
Other significant forces are to be found on the fourth lay-
er atoms. However, this is not alarming because YC im-
pose an artificial inversion symmetry in their supercell
geometry. Our slab consists of 8 Si layers with saturating
H atoms on the bottom surface.

Finally, in Table III we give the actual atomic coordi-
nates for the symmetric dimer model obtained as a result
of our optimization using the extended parameter set.
Values differ only slightly from those given in Table I.

Also given are the atomic positions for the strongly buck-
led YC type of model optimized in our supercell
geometry using identical parameters. The symmetric and
modified YC models are found to be 0.93 and 0.92
eV/atom, respectively, more stable than the ideal struc-
ture. The value quoted by YC is 0.85 eV/atom. The
small deviation may well arise from different calculation-
al parameters and minor differences in atomic positions.
The important point is that the symmetric dimer model is
only 0.01 eV/atom more stable than the asymmetric
buckled model when calculations are done under identi-
cal conditions. Thus the two models have local-energy
minima of nearly equal depth which seems to be borne
out by the STM results.>° Our atomic coordinates should
facilitate any future optimization efforts and should also
make it easier for others to use the optimized symmetric
dimer model in adsorption and growth studies on Si.
With that in mind, the coordinates are given in atomic
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FIG. 3. The constant energy contour E = E, shown by solid
dots, in one quadrant of the surface Brillouin zone for our
Si(001)-(2X 1) symmetric dimer model. The enclosed electron
(hatched) and hole pockets are denoted by e and A, respectively.
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units (as opposed to angstroms) since many calculations
SO require.

As noted in the Introduction, a symmetric dimer mod-
el leads to a metallic surface. It is therefore instructive to
sketch the “Fermi surface.” The computed constant-
energy contour (E=Ef) in one quadrant of the surface
Brillouin zone is displayed in Fig. 3 by solid dots. A fine
mesh in k space was employed for these calculations.
The metallicity in the present model is due to the Fermi
line crossing two (dangling-bond) bands. The hole pock-
et, denoted by A, shows states in band 1 which are unoc-
cupied at T=0 K. Actually, these states are enclosed by
a closed contour if the Fermi line in the second quadrant
(not shown) is translated by a reciprocal lattice vector.
There are two such hole pockets in zone 1 centered
around (0.41 A™!,+0.24 A™"). The shaded region in Fig.
3 indicates states which are occupied in (dangling-bond)
band 2 at T=0 K. The electron pocket also forms a
closed contour around J' if pieces from other quadrants
are translated by appropriate reciprocal lattice vectors.
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Only one such closed contour belongs to a unit cell.
There are two electrons per 2 X1 unit cell which are just
enough to completely fill the states in one Brillouin zone.
Hence the number of electron states per unit cell in band
2 is equal to the number of hole states in band 1. The
symmetric dimer model is then an example of a “compen-
sated” metal.

It is concluded that a symmetric dimer model recon-
struction for the Si(001)-(2X 1) surface is highly competi-
tive with a strongly buckled YC type of model. There is
probably a barrier associated with buckling but no bar-
rier is present for symmetric dimerization of the Si(001)
surface.
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