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Grain-size efFects in ferroelectric switching
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A model of ferroelectric switching that describes crystals composed of a large number of relative-

ly small grains is presented. It is shown that, if the grain boundaries stop or significantly affect
domain-wall growth, then the observed switching current transients will deviate from those predict-
ed by the infinite-grain model of Ishibashi and Takagi. The model accounts for constant nucleation
rate throughout the switching period and for constant domain-wall velocity. It is shown that at
some time dependent only on the size of the grains and the domain-wall velocity, the switching-
current transient changes from its small-time infinite-grain behavior to an exponential decay. The
results are applied to two-dimensional Ising-model simulations.

I. INTRODUCTION

This paper is an extension of the previous work of Ishi-
bashi and Takagi' (also see E. Fatuzzo, and M. Av-
rami ). In that paper they presented a model of ferroelec-
tric switching which occurs by means of nucleation and
growth of opposite-polarity domains. The purpose of this
paper is to examine the consequences of one of the as-
sumptions that they made —that domains can grow
without bound —and to present a model of switching for
ferroelectrics whose grain boundaries stop domain-wall
motion. Unlike the infinite-grain model of Ishibashi and
Takagi, this new finite-grain model allows the possibility
of indirectly obtaining microscopic parameters from bulk
measurements. This theory should be relevant for the
switching of thin-film ferroelectrics such as sol gel depos-
ited lead zirconate titanate (PZT) in which the grain size
is on the order of 1000 A."

Since all of the models assume that polarization rever-
sal is due to formation and growth opposite polarity nu-
clei, in Sec. II we provide a review of classical nucleation
theory. Section III provides a review of the results of the
infinite crystal (Ishibashi) model. The finite-size grain
model is presented in Sec. IV. Current transients gen-
erated by two-dimensional Ising simulations are analyzed
using the above models in Sec. V.

II. CLASSICAL NUCLEATION THEORY (CNT)

We will assume that the ferroelectric is being switched
by means of nucleation and growth of domains, and so we
provide a brief review of classical nucleation theory. See
J. D. Gunton et al. for a more complete review of the
theory of Becker and Doring. '

Let the system initially be in the "up" state, and apply
a switching field in the "down" direction. If the field is
sufficiently large it will be energetically favorable for each
unit cell to be in the down state, regardless of the state of
the surrounding ferroelectric. In this case the system is
unstable and will switch immediately after the field is ap-
plied. The current transient will have the form of an ex-
ponential decay, as each unit cell changes to the down

A =U —TS

=2I r ' —2hCdr (2)

where I is the free energy per unit area. The critical nu-,
cleus size occurs when the free energy reaches a max-
imum:

(d —1)I
dCd

Domains smaller than this will tend to shrink, and those
larger will tend to grow. At low temperatures and for
small fields the rate at which domains of this size are
formed will be proportional to the formation free energy:

R ~ exp( —A, /kT),
d —1

2I d —1

d dhCd

This relationship has been verified in Ising simulations.

state without regard to the state of its neighbors. On the
other hand, if the field is small, interactions with sur-
rounding unswitched cells make it energetically unfavor-
able for a cell to switch. Immediately after the field is ap-
plied the ferroelectric will reach metastable equilibrium,
and it will not switch to the down state until nuclei over-
come a free energy barrier and begin to grow.

For the following assume that the system is isotropic
and d dimensional. If the volume of a hyperspherical
domain is V, define its radius by Cd r =—V, where
Cd=2, m', 4m/3 for d=1,2, 3, respectively. The surface
area of the domain is given by ydCdr ', where the pa-
rameter y is a measure of the roughness of the surface.
The energy associated with the creation of a domain of
volume Vis given by

U=2[(ydCdr" ')Us hCdr"],

where h is the applied field and U& is the energy per unit
area due to the surface. Assuming that the entropy asso-
ciated with the domain is proportional to its surface area
the free energy of the domain is

41 490 1990 The American Physical Society



41 GRAIN-SIZE Ear.ACTS IN FERROELECTRIC S%ITCHING 491

III. MODEL I:INFINITE-GRAIN MODEL (IGM)

Four parameters are required to describe the polariza-
tion reversal. The probability of nucleation per unit
volume per unit time is given by R, the initial radius of a
nucleus by r„ the domain-wall velocity by v, and the
dimensionality of growth by d. In addition, crystals are
divided into two categories —category-I crystals do not
contain latent nuclei and the nucleation rate R is a con-
stant, while category-II crystals contain latent nuclei and
no new nuclei form after the field is applied. In this pa-
per, only category-I crystals will be studied.

In both the infinite- and finite-grain models it is as-
sumed that domains grow with uniform wall velocity.
This is clearly an approximation —the critical radius of a
nucleus is defined to be the radius at which it is as likely
to shrink as grow. One expects that the wall velocity is a
function of, among other things, the size of the domain.
The velocity should approach a fixed value as the domain
becomes appreciably larger than the size of the nucleus.
This is illustrated in Sec. V.

Three-dimensional growth occurs when the nuclei are
spheres of radius r, . The domains grow isotropically,
and the volume of a domain formed at time tf is given by
S(t, tf)=(4ml3)[r, +v(t tf)] . If—the ferroelectric un-

der study is a thin film, this implies that the nuclei form
in the bulk of the material, away from the surfaces, and
that before the surfaces stop the growth of a significant
number of domains the film has essentially switched.
Two-dimensional growth occurs when the ferroelectric is
highly anisotropic. The nuclei form either in the bulk or
at a surface, followed by rapid growth across the crystal.
If this is the case, the nuclei can be considered cylinders
of radius r„and the axes of all nuclei are assumed to be
parallel. Therefore the crystal can be viewed as a sheet,
and the area of a domain formed at time tf is given by
S(t, tf)=n. [r, +v(t —tf)] In this case R is the nu-

cleation probability per unit area. The crossover from
three-dimensional to two-dimensional growth occurs
when vto = 8', where to is the time at which half the crys-
tal has switched, and 8' is the film thickness. Similarly,
one-dimensional growth occurs if domains grow rapidly
from one surface to the other and the film is anisotropic
with respect to the two directions parallel to the film.
Domains can be assumed to form and grow on a line,
with "volume" given by S(t, tf)=2[r, +v(t tf )]', and—
R representing nucleation rate per unit length. The
volume for all three cases can be written as

S(t, tf ) =Cd [r, + v (t —tf )]",

where Cd =2,~,4m/3 for d =1,2, 3, respectively.
The objective is to calculate q (t), the probability that a

given point P in the crystal is not inside a switched
domain. The fraction of switched volume to total volume
is given by Q(t)=1 —q(t), and the switching current is
then found by

dQ (t) dq (t)
dt ' dt

where P, is the spontaneous polarization per unit volume.

CdR
Xexp

v (d+1) [( + t )d+ 4+1]

If the size of a nucleus is negligibly small on the scale
of the system, as is usually the case, then the current
transient is of the form

i (t) =2P, Ot "exp — t
0

d+1 (10)

where 8=CdRU". The values of 0 and d can be obtained
by fitting the above equation to the experimental current
transients —however, the nucleation rate or the wall ve-
locity cannot be extracted separately from measurements
of 8. As will be shown in the next section, this can be
overcome by considering the switching of finite-size
grains.

This model has been applied to actual data with vary-
ing degrees of success. For example, Dimmler et al. ap-
plied the model to thin-film KNO3 and found that the ap-
parent dimensionality of domain growth seemed to de-
pend on the film thickness. For a brief review of addi-
tional literature, and for techniques of applying the mod-
el and interpreting the results, see Ishibashi and Takagi.

IV. MODEL 2: FINITE-GRAIN MODEL (FGM)

This model is used to describe thin-film ferroelectrics
which often consist of a very large number of small
grains. The basic assumption of this model is that
domains which form and grow inside a given grain can-
not cross grain boundaries. The problem is solved for
both two- and three-dimensional growth, but only for
category-I crystals.

Two simplifications have been made in order to avoid
making the calculation unnecessarily complicated. First,
the grains are assumed to be identical hypercubes of size
I. . Second, in order to avoid complicated boundary con-
ditions on the integrals, the grains are assumed to have
periodic boundary conditions. This implies that every
point in the grain is equivalent to every other point, and
that the surfaces do not affect the nucleation rate as they
would if free surfaces were considered. This effect will be
included in later work.

Let V=I." be the number of possible nucleation sites
in a single grain, and R be the probability that a nucleus
will form at a given nucleation site per time step. Divide
the time t into N increments of size ht, NAt=t. For
now, set Et=1. The probability that exactly n nuclei
form during a given time step is the probability that n nu-
clei form and ( V n) do not, mult—iplied by the number of

For category-I crystals Ishibashi and Takagi obtained the
result

lnq(t)= —R I S(~,0)d~
0

CdR
[( + t )d+1 d+1]

v(d+1)
The current for category-I crystals is then given by

i(t) =2P, CdR(r, +vt)
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ways of distributing n nuclei on V nucleation sites,

W„= R "(1—R )
( V —n )!n!

Define VD(N, Nf ) to be the volume of a domain which
forms at time step Nf,

Cd [r, + U(N N—f )] if N & Nf +N,
VD(N, Nf) —

V f N)N +N (12)

(13)

where N, is approximately the time required for one
domain to grow to include the whole grain,

1 V
T

U Cd

VD(N, m )
q(N)= P V

(14)

The ensemble average (q(N}) is the value of q(N) aver-
aged over the probabilities 8'„:

Let n be the number of nuclei which form in a given
grain during time step m. Imagine placing each domain
at random in the grain one at a time, completely without
regard to the location of previously placed domains.
Then the probability that a given point in the grain is not
inside a switched domain at time step N is given by

(q(N) ) = g W„ 1—
n) =0

VD(N, 1)

V

V VD(N, 2)
W„ 1—

n2 =0

V VD(N~N)
W„ 1—

n~ =0 V

m=1 n =0

N V

w„
VD(N, m )

V
(15}

The problem must be solved for two different time ranges, N (N, and N )N, . For the lower time range no domain has
had time to grow and cover the entire grain, and the answer should reduce to the IGM, while for the upper time range
we expect the answer to reduce to an exponential decay. For the lower time range,

V

(q(N)) = g (1—R)' g
0 (V n)!n !—

m

R[ V —VD(N, m )]
V(1 —R)

(1—R)' 1+
1 —R

m =1

VD(N, m )1—
V

v'

m=1

VD(N, m )
1 —R

V

N
= g [1—RVD(N, m)] .

m=1
(16)

This reduces to Eq. (8), the result obtained for the IGM. Following the same procedure for the upper time range, ob-
tain

m=N —X +1
S

VD(N, m )
1 —R

V

v

N
' V

v(x —x, }
' VD(N„m }=(1—R) ' g 1 —R

m=1 V

=e (q(N, )) .

It is fairly easy to set up and solve differential equations from the above. For the lower time range,
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N+1
&q(N+1)& —(q(N))= g [1 R—V (N+l, tri)] —g [1—RV (N, trt)]

m=1 m=1

= g [1—RV (N, rrt)] —g [1—RV (N, m)]
m=0 m =1

N= —R VD(N, O) g [I—R Vu(N, m )]
m=1

and for the upper time range,

With the identification (q(N) ) ~q(t),
R—C&(r, +ut) q(t) if t &t,d =q

dt RVq(—t) if t &t, ,

(q(N+1) }—(q(N) }=(1—R V)(q(N) }—(q(N)) = —RV(q(N)) .

(18)

(19)

(20)

t =—
U

' 1/d
C

Cd L
(21)

Note that for t t, the differential equation is independent of the dimensionality of domain growth. The solutions for
the two equations are required to match at t = t„obtaining

expI [C&R/u—(d+1)][(r,+ut) +' r, +']I —if t &t,

q(t, )exp[ —RV(t t, )] if—t &t, .(t)= (22)

The key result of this paper can be summarized as fol-
lows. If growing domain walls cannot cross grain boun-
daries then at some time determined only by the grain
size and the wall velocity (and possibly the size of the nu-
clei) the dependence of the switching current transients
on time will change from t'(t)-t "exp(Pt +') to
i(t)-exp(P't ).

Define t ax to be the same at which the current tran-
sient described by the IGM reaches a maximum,

1

' 1/(d+1)
@AU

CdR
(23)max

and define V,„ to be the size a domain would reach if it
formed at time t=0 and grew without obstruction to
time t =t,„:

d/(d+1)

CRd
(24)

If t, &)t,„ then the crystal has switched before one
domain has had time to cover a given grain —the wall ve-
locity is low enough and the nucleation rate great enough
for the effect of the grain boundaries to be negligible.
This is equivalent to saying that, at time t=t,„, the
grains are much larger than the largest possible domains,
V)& V,„, and the switching of each grain is due to a
large number of domains. If this is the case, the FGM
reduces to the IGM.

On the other hand, if t, ((t ax then the wall velocity is
large enough and the nucleation rate low enough for the
polarization reversal of each grain to be due to a single
domain, and in this case the dimensionality of domain
growth predicted by the IGM will be much lower than
that predicted by the FGM.

V. ISING-MODEL SIMULATIONS

The two-dimensional Ising model was chosen to simu-
late ferroelectric switching for a number of reasons.
First, it is the simplest model which exhibits nucleation
and growth phenomena. Second, it is trivial to impose
periodic boundary conditions which ensures that the nu-
clei form in the bulk of the system and not at the sur-
faces. Third, we can ensure two-dimensional, isotropic
growth by imposing isotropic coupling constants. Final-
ly, by keeping track of the growth of individual domains,
a direct measure of the domain-wall velocity can be ob-
tained. This can be used to verify the value obtained by
fitting the current transients to the FGM.

The systems to be studied consist of a large number of
grains, each grain consisting of L XL psuedospins. Since
the grains are assumed to be noninteracting the Hamil-
tonian of each grain can be written separately:

L
H= g [—J(S; S; +, +S; S;+i ) pFS; ], —(25)

i j =1

where S; =+1, E is the applied electric field, and p is the
maximum polarization of a unit cell. Periodic boundary
conditions are imposed by setting S; L+1=S;1,

SL +1 j =S1 j. During a given simulation each grain is al-
lowed to reach equilibrium in the spin-up state, after
which the switching field is applied.

Four grain sizes were used: The systems consisted of
2000 20X20 grains, 1000 30X30 grains, 400 50X50
grains, and 20 200X200 grains. The values of E =J/kT
and h =pE/kT were chosen so that the polarization re-
versal of a 20X 20 grain was almost always due to a single
domain, while that of a 200X200 grain was due to
several. After some trial and error, it was found that
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q(t)=exp( 5t" ')—,

Cd RUd

d+1

(26)

(27)

The physical interpretation of 5 is not clear since the
effects of the wall velocity cannot be separated from the
effects of the nucleation rate. Since a two-dimensional
system is being modeled the FGM becomes

q(t)= '
exp( (~Ru'—j3)t') if t & t,

exp( (nRu l—3)t, )exp[ Rl. (t —t, )] if t—~ t, ,

(28)

K=0.7 (corresponding to T=0.63T, ) and h = —0.26
gave good results. Figure 1 shows the polarization curves
resulting from these simulations. Note that as the grain
size increases, the polarization for each grain approaches
that of the ensemble average.

Current transients were then generated from the aver-
age polarization curves i(N)=P(N —1)—P(N). As Fig.
3(a) illustrates, the critical nucleus consists of about 11
spins for the above values of K and h, and so we set r, =0
when Atting the current transients to both models, since
r, &(L even for the smallest grains used in the simula-
tions. With this approximation the IGM has only two in-
dependent parameters, and reduces to

where

L
u &m.

(29)

In this case the FGM also has only two independent pa-
rameters, R and U. It should be pointed out that in sys-
tems where the dimensionality of domain growth is not
known a priori the FGM will have one more parameter
than the IGM.

As Fig. 2 illustrates, the IGM does well describing the
current transients of the two systems with the largest
grains. The model predicts the dimensionality of growth
greater than 2 for both large-grain systems due to the fact
that the wall velocity depends on the size of domain.
However, the IGM does very poorly at predicting d for
the two small-grain systems. In addition, since 5 de-
creases with increasing grain size, it might be inferred (in-

correctly) that either the wall velocity or the nucleation
rate has decreased. The IGM predicts nothing about ei-
ther the wall velocity or nucleation rate for any of the
systems, and requires different values of d and 5 for each
system.

On the other hand, with the FGM the same values for
R and U 6t all four current transients reasonably well

given the relatively small systems used for the simula-
tions. Using R =9.3X10 and v =0.24 it is found that
V~»=2100, and so, following the arguments of the
preceding section, the polarization reversal of the 400
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FIG. 1. Polarization curves for the four different systems.
The solid lines are the ensemble average of all the grains in each
system, while the dotted lines are polarization curves for single
grains chosen at random. The unit of time is Monte Carlo steps
per spin (MCS/spin).
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FIG. 2. Current transients generated from the polarization
curves of the preceding figure. The dashed lines, and the values
of d and y, are the best fit to the IGM for each grain size. The
solid line is the fit to the FGM, using R =9.3X10 and
v =0.24 for all four grain sizes. These values of R and v yield
6=5.6X10-'.
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domain-wall velocity is found using this value in Eq. (28).
Similarly, a value for R can be found by looking at the
slope of the semilog plot of i (t) versus t for t & t, —the
nucleation rate R is given by this slope divided by I.".

The most accurate method of determining the wall ve-
locity of Ising domains is to keep track of the growth of
individual domains. A second simulation was performed
to do this and to study the entropy and energy of the
domains as they nucleated and grew. Figure 3(a), a plot
of wall velocity versus domain radius, illustrates that
while the wall velocity is zero at r =r„ for large domains
it does approach a constant. The value of U obtained in
this manner is roughly 20%%uo greater than that obtained by
fitting the current transients to the FGM —this is be-
cause the model assumed that the wall velocity is in-
dependent of the size of the domain. Figure 3(b) was in-
cluded to show that the peak of the free energy occurs at
approximately the size of the critical nucleus, as assumed
by classical nucleation theory. The entropy was found
from measurements of the energy Auctuations of the
domains.

VI. SUMMARY

FIG. 3. The results of an independent simulation to generate
data on the growth of Ising domains. The velocity and radius
were determined by the equation 6 VD =2u +e.VD and
r =Q VD /m, where VD is the number of spins in the domain and
6VD is the average growth of the domain. Part 3(b) shows that
the peak of the free energy occurs at r„as expected by classical
nucleation theory.

We have presented a new model of ferroelectric switch-
ing which specifically accounts for the presence of grain
boundaries. We have shown that the infinite-grain model
of Ishibashi and Takagi can lead to incorrect assumptions
about the dimensionality of domain growth if a ferroelec-
tric is in fact composed of a large number of small grains.

The two models were applied to Ising-model simula-
tions. Current transients for four different grain sizes
were accurately fit by the FGM using the same values for
R and U for all grain sizes.
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