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Quantum renormalizations in the spin-1 Heisenberg antiferromagnet on the square lattice
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The renormalized parameters, characterizing the static and dynamic low-temperature properties
of the spin-1 Heisenberg antiferromagnet on the square lattice, are estimated by expansions
around the Ising limit. The calculations include the renormalization of the perpendicular suscep-
tibility (g&) and the frequency moments of the inelastic light scattering spectra from spin-pair ex-
citations. The results are used to assess the quantitative accuracy of the spin-wave calculations of
Oguchi for g~ and the two-magnon calculation of Parkinson for the light scattering spectra.
They are found to be in agreement with experiments on K2NiF4.

Recent experiments on light scattering' and neutron
scattering from "high-T, " materials have provided dra-
matic evidence for enhanced quantum fluctuations at low-
temperatures in two-dimensional magnetic systems. The
statics and dynamics of the neutron scattering experi-
ments have been interpreted in terms of a "renormal-
ized classical theory" for two-dimensional Heisenberg an-
tiferromagnets (2D HAFM). Quantum renormalization
of the various parameters entering such a description, for
the spin- 2 Heisenberg antiferromagnet appropriate to the
Cu02 materials, have been calculated in a controlled and
systematic manner by expansions around the Ising limit.
The shape of the light scattering spectra from spin-pair
excitations have also been shown to be in agreement with
those of S 2 2D HAFM once quantum renormaliza-
tions are taken into account.

Similar experiments were performed many years ago '

on K2NiF4 and were interpreted without considering any
quantum renormalizations. ' Since K2NiF4 is a 2D
HAFM with S 1, one expects quantum fluctuations to
be weaker in this case but not absent. The purpose of this
paper is to present a systematic calculation of the renor-
malized parameters for the S 1 case and compare them
with the light and neutron scattering experiments. We
find that the primary effect of quantum fluctuations is to
renormalize the spin-wave spectrum to higher energies.
Furthermore, similar to the S 2 case, the long-wave-
length and short-wavelength dispersion relations are re-
normalized roughly proportionately. Since the exchange
constant deduced from the light scattering and neutron
scattering experiments depend on precisely these renor-
malizations, it is not surprising that the unrenormalized
theory works well with an effective value for the exchange
constant.

For the basic thermodynamic parameters of the spin-
one model, we estimate its ground-state energy Ep, the
sublattice magnetization M+, and the perpendicular sus-
ceptibility g&. M and Ep have been studied previously

l

by series expansion" and finite-size diagonalization'
studies. Since it is g& which deviates the most from the
order 1/S spin-wave value' in the case of S —,', we ex-
pect it to set the accuracy of the spin-wave estimates for
the S 1 case also. We find that our estimate
(g&J 0.095 + 0.002) differs from the spin-wave theory
(g&J 0.0905) by less than 5%.

In addition, we calculate the first two frequency mo-
ments of the light scattering spectra from spin-pair excita-
tions. The first moment (pl) gives a measure of the peak
position and can be used to extract the exchange constant
J from the experiments. The second cumulant' (M2)
gives a measure of the width of the peak. In particular,
the ratio (R) of M2 to p~ gives us the peak width relative
to its position in a parameter-free manner and thus is a
characteristic of 2D HAFM with nearest-neighbor ex-
changes. We find that for K2NiF4 the values for the ex-
change constant J deduced from light scattering and neu-
tron scattering experiments agree to within a percent.
The ratio R, which is much more uncertain in theory,
agrees with experiments within 20%.

The spin-one Heisenberg-Ising Hamiltonian is given by

J g S;S'+J .g (S,"S"+SfSI)+H g S,",
(i,j & &i,j ) l

while the susceptibility is defined through the ground-
state energy per spin, E(H), via the relation

E(H) Ec— ZH +— (3)

The expansion in powers of x( J„„/J) are developed by
the method of Singh, Gelfand, and Huse. ' The expan-
sions are (quoting six significant digits)

where the sum &i,j & runs over all nearest-neighbor pairs of
spins, and 0 is a uniform perpendicular field. The sublat-
tice magnetization is defined by the relation

M+ ~(S')

M+ 1 —0.081 6326x —0.026959 1x —0.0136997x —0.008 80047x —0.006 255 20x ' + .

2E /J —4 —0.571 428x —0.050459 7x —0.014476 2x —0.006 562 38x —0.003 586 90x ' +
(4)

(5)
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and

yg~J ~
8

—0.142857x+0.144643x —0.149916x +0.150672x —0.153095x +0.153437x —0.154932x + . . (6)

The series are analyzed in a manner analogous to the
S & case. The subtleties of the expansion techniques
and the details of the analysis will be discussed else-
where. 's We estimate, at the Heisenberg point (x 1),

Eo/J —2.327 ~ 0.001,
M+ 0.81 +' 0.01,

and

I

However, the second cumulant (M2) defined by

(M2) p2
—p)2 (i6)

4(M2) /J ~ 2.61224x —1.38267x

cannot be properly estimated this way as p2 nearly equals
p~. Hence, we construct the series expansion for (M2)
and extrapolate that to get M2. We obtain

g~J 0.095 +' 0.002 . (9)
+2.10093x +0.29585x + (i7)

where E;„,and E are the incident and scattered electric
field intensities and o;j is a unit vector connecting spin
sites i and j. In the absence of any resonant scattering one
expects only the nearest-neighbor terms in the sum to be
significant. 7"0 This leads to scattering in the B~s
geometry only. 7 The scattering Hamiltonian for this
geometry is

Here the sum runs over all sites of the lattice, A is an un-
determined constant that gives the overall magnitude of
the Raman cross section, and x and y are unit vectors
along the x and y directions. The scattered intensity at
T 0 is given by

I(+) Z ~( (Ea Eo) l 1&0 I H~ I k) )', (12)

where (k) represent the eigenstates of the Heisenberg
Hamiltonian and Ek are the corresponding energies. ( 0)
represents the ground state. The frequency moments can
be expressed in terms of the ground-state expectation
values of multiple spin operators

Ir (Oi Hg 0),

pi (OiHgtH, Hgl [0)/IT,

p2
—(0 ) [H,Hg 1

'
( 0)/IT

Series expansions for these moments are

(i3)

2pi/J 14+Ox+0.530612x —0.141 138x

+0.0338370x +0.0171678x + - . .

4p2/J 196+Ox+ 17.4694x —5.334 53x

+3.32992x +0.626767x +.. . (is)

Since the terms in the series for p& and p2 decrease rapidly
in magnitude, they can be estimated quite accurately.

We now discuss the calculation of the light scattering
spectra. Light scattering from spin-pair excitations in an
insulating antiferromagnet can be described by an
effective Hamiltonian 'e

(io)

By adding up terms in the series as well as using Pade
approximants we estimate

and

p /J 7.22+'0.02, p2/Jz 53.0~0.3,

R =M2/p) 0.12 ~ 0.03 .

(i8)

Notice that because the series for M2 does not decrease
rapidly in magnitude, the uncertainties in R are large.

Let us now compare these results with the two-magnon
calculation of Parkinson ' and the experiments on
K2NiF4. The first moment derived from Parkinson's for-
mula is p~ 6.63J. This should be corrected for the renor-
malization of the spin-wave spectrum, due to quantum
fluctuations. Oguchi's'3 order 1/S calculation provides a
k-independent multiplicative renormalization of the spin-
wave spectrum by an amount Z, 1.08. Taking this into
account, the two-magnon spectra should have a first mo-
ment of 7.16J. This differs from Eq. (18) by less than a
percent, suggesting that the renormalization is indeed k
independent. Hence, the earlier agreement between the
values for the exchange constants for K2NiF4 deduced
from neutron scattering and light scattering experiments
using unrenormalized theory remains valid with the renor-
malized parameters as well. From Fig. 1 in Ref. 8 we ob-
tain p~ =515 cm ', leading to J=71 cm ' for K2NiF4.

The ratio R, which is not affected by the renormaliza-
tion of the spin-wave dispersion, equals 0.09 in the two-
magnon calculation, whereas it is 0.12+0.03 for the
series estimate. Because the line is very narrow for the
S 1 case (compared to S —,

' ) the uncertainty in the
width computed from the expression p2

—
p~ is large.

Even though the series is not accurate enough, it appears
that the ratio R is underestimated in the two-magnon cal-
culation on the order of 30%. Let us remember that the
latter calculation has a sharp cutoff for spin-pair excita-
tions at energy 8J. There is no such sharp cutoff in a fully
quantum-mechanical system, as the excitation of a pair of
spins about the Heisenberg ground state involves a mix-
ture of 2,4,6, . . . magnon states. The experiments on
K2NiF4 have a line shape in excellent agreement with
Parkinson's calculations and the ratio R roughly equals
0.1 for Fig. 1 of Ref. 8. This suggests that the two-
magnon part of the spectra is accurately described by
Parkinson's calculation. The difference between the two
theoretical results arises from scattering beyond the clas-
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sical cutoff energy primarily due to the admixture of
four-masnon states in the spin-pair excitation spectrum.
This scattering is weak enough to leave the first moment
unaffected, but because the line is quite narrow, contrib-
utes significantly to the second cumulant. This explains
why the experimental cumulant, obtained by truncating
the spectra at an energy around 8J, is also lower than the
series estimate. In fact, since the width of the experimen-
tal line shape is about a tenth of its peak position, roughly
1% integrated intensity around twice the peak position can
easily account for a 30% difference. Such a weak scatter-
ing, especially if spread over a certain energy range, may
be difficult to distinguish from the background. It may,
nevertheless, prove useful to redo the experiments at
higher energies to see if there is some observable scatter-
ing there.

We now compare the role of quantum fluctuations in

the spin-2 and spin-1 systems. In both cases the spin-

wave spectrum appears to be renormalized upwards in a
wave-vector-independent manner. The order 1/S spin-
wave calculation for the susceptibility differs from the
series estimates by less than a few percent for the S 1

case, whereas for S —,
' there is about a 15% difference.

As for the spin-pair excitation spectra, the width relative
to the peak position is enhanced due to quantum fluctua-
tions in both cases, mostly due to the admixture of
higher-magnon states. The change is about 30% for S 1,
and about a factor of 2 for S 2 . It is worth noting that
in Parkinson's calculations ' the spin-half case stands sep-
arate from all higher spins. This is because the line shape,
which changes gradually as a function of the parameter S
for large S, is altered substantially between S 1 and
S 2. For S 2, the peak position is greatly shifted
from the classical cutoff value, and the asymmetry of the
line shape changes sign. (The half width at half max-

imum, which increases gradually as S is reduced from
infinity to one, begins to decrease between S 1 and
S 2 . Also, the third cumulant, which is negative for
S~ 1, becomes positive for S —,

' .) This may be an indi-

cation that even the purely two-magnon line shape is less
reliable in the spin-wave calculation for S

An additional feature of the Raman scattering in

La2Cu04 is the observed peaks in A ig and 82~ geometries.
This was explained by assuming that light could overturn
diagonal next-neighbor (DNN) pairs of spins in addition
to the nearest-neighbor ones. It was shown that such a
DNN term did not give rise to any scattering in the classi-
cal limit. With quantum fluctuations it gave rise to
scattering in A ig and 82g geometries. However, it did not
affect the Bi~ cross section at all. These ~ould remain
true for a spin-1 system as well. The amplitude for such a
DNN spin-pair excitation was found to be comparable to
the nearest-neighbor one in La2Cu04. However, in the
case of K2NiF4, there is no reason to expect a significant

amplitude for DNN spin-pair excitations. This is because
in K2NiF4 there are no optically active states of the sys-
tem near the incident laser energies. Hence, one expects
the amplitude for a given spin-pair excitation to be pro-
portional, within an order of magnitude, to the corre-
sponding exchange constants in the Hamiltonian. Since
the electronic overlaps for nearest neighbors are orders of
magnitude larger than further-neighbor ones in K2NiF4,
the nearest-neighbor spin-pair excitations should dom-
inate the scattering process, and the selection rules giving
negligible scattering in His and Bzg geometries would
continue to hold.

Before we conclude, we would like to make a few re-
marks comparing the present calculational technique with
the others. While the Ising expansions do not provide full
information on the spectral line shape (as compared with
the spin-wave calculation) they represent systematic and
controlled calculations of the parameters of the model.
The series obtained are convergent and hence the accura-
cy can be improved by going to higher orders. Thus, they
can be used to judge the quantitative validity of other un-
controlled (such as spin wave) calculations or to fit pa-
rameters in a renormalization-group-type theory (such as
the Chakravarty, Halperin, and Nelson theory for 2D
HAFM). Furthermore, unlike 1D, where finite-size stud-
ies are very effective, it is unlikely that in higher dimen-
sions one can study a system of comparable size by exact
diagonalization methods. The series presented in this pa-
per include contributions from spin-spin correlations with

spins distant ten sites apart along any axis. In contrast,
exact diagonalization even for a 4 & 4 system represents a
major achievement. " The method of series expansions
works by dividing the larger problem into many small

pieces. '

Our calculations presented here illustrate the role of
quantum fluctuations in the S 1 system in two dimen-
sions. The primary effect of these fluctuations is to renor-
malize the spin-wave spectrum, in a manner roughly in-

dependent of wave vector. Other properties such as the
perpendicular susceptibility and frequency moments of
the inelastic light scattering spectra are also renormalized.
The spin-wave calculations are quantitatively accurate to
a few percent when corrections of order 1/S are taken into
account. A recent reanalysis of the correlation length
data from the neutron scattering experiments' is found to
be in excellent agreement with the spin-wave theory, but
the data is probably not accurate enough to disentangle
5% effects. It would be interesting to see if light scatter-
ing is observable beyond the classical cutoff frequency.

I am very grateful to S. Chakravarty, D. Cox, P. A.
Fleury, K. B. Lyons, P. E. Sulewski, M. E. Schluter, and
C. M. Varma for discussions. I am especially indebted to
P. A. Fleury for encouraging me to do these calculations.
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