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Rigorous bounds on the susceptibilities of the Hubbard model
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Rigorous bounds on the susceptibilities of the single-band Hubbard model which hold in all di-
mensions are presented. In the attractive model the spin susceptibility is bounded above by
(4 i U i ) where U((0} is the on-site interaction potential. In the half-filled repulsive model on
a bipartite lattice the charge and the on-site pairing susceptibilities are bounded above by U
The present result implies that the susceptibilities never diverge in the above-mentioned cir-
cumstances and also the absence of corresponding long-range order.

The single-band Hubbard model is an important model
in the solid-state theory as the model is thought to involve
the essential features of interacting electrons in solids. It
is widely believed that the model simulates many interest-
ing phenomena such as ferromagnetism, antiferromagne-
tism, and metal-insulator transition in appropriate cir-
cumstances. ' Quite recently the possibility of supercon-
ductivity in this model has attracted intense interest. In
spite of its apparent simplicity and long and intense effort
for its understanding, much is left to be clarified except
for the oneMimensional case where the exact solution was
obtained by Lich and Wu. s According to the exact solu-
tion the half-filled repulsive model has a gap in the one-
particle excitation spectrum and the charge susceptibility
vanishes at zero temperature. In the attractive model
electrons form singlet bound states which lead to a gap in
the excitation spectrum 3' and the vanishing spin suscepti-
bility at T 0.5 In two or three dimensions, on the other
hand, the ground state of the half-filled repulsive model is
widely believed to have the antiferromagnetic long-range
order (AFLRO). s The existence of an energy gap is ex-
pected in this case as well as in the attractive model. No
rigorous result, however, on the existence of AFLRO or
energy gap or on the susceptibilities at zero temperature
has been known so far.

In this paper we report rigorous upper bounds for some
susceptibilities which hold in all dimensions. The first re-
sult assures that the spin susceptibility is bounded by
(4[U i ) ' in the attractive model where U((0) is the
on-site interaction potential. The second result states that
the on-site pairing and the charge susceptibilities are
bounded by U ' in the half-filled repulsive (U & 0) mod-
el on a bipartite lattice. As is well known, the Fermi-
liquid theory predicts finite spin and charge susceptibili-
ties at T 0 where T denotes temperature. On the other
hand an exponential decrease of susceptibilities with tem-
perature is expected from the existence of an energy gap.
Unfortunately, obtained bounds, which are independent of
T, are too loose to say anything on the interesting question
whether the model simulates a Fermi liquid or not. Ob-
tained bounds, however, lead to the conclusion that no
phase transition leading to corresponding long-range or-
der occurs in above-mentioned circumstances.

Quite recently Lieb proved theorems on the spin state of

the ground state of the Hubbard model which hold in all
dimensions. According to his result the attractive model
with an even number of electrons has a singlet ground
state as well as the half-filled repulsive model on a bipar-
tite lattice with the same number of sites in each sublat-
tice. Our result and method are closely related with Lich,
although his argument is confined to the ground state and
ours is concerned with finite-temperature properties.

We consider the following Hamiltonian on a finite lat-
tice A with i A i sites

tattCevCtta+U g n~fnii Q g tt~vn~v y

e eP6h N6h a ash

Za P(Sn, S'-a) (2)

with Sa iAi 't2+, S;e 'a' and (A,B) denotes the
Duhamel two-point function

(A,8) ~ dx(ee'~Ae t'H'8}
4 0

The thermal average is a grand canonical one, i.e., &A}
'Tr(e s A), :"~Tr(e s ), where the trace opera-

tion is done over the Fock space of electrons on the finite
lattice A. First we consider the attractive model.

Theorem I. Assume U is negative and tt, p (no
external magnetic field). No extra assumptions are neces-
sary. Then we can bound the spin susceptibility as

Z& = (4 I U I ) (3)

Remark 1. Inequality (3) implies the absence of diver-
gence of the spin susceptibility. Using the Falk-Bruch in-
equality and (3) we obtain an upper bound to the corre-

(I)
where C, (C, ) is the annihilation (creation) operator of
an electron with spin tr at the lattice site a and
n, Ct C, . The hopping matrix elements t,tt are as-
sumed to be real and satisfy t,tt ttt, . We consider the
thermal average over the grand canonical ensemble in the
following and the chemical potentials p, are included in
H. The spin operators are represented by fermion opera-
tors as S; (n, t-.tt i)/2, S,+ CttC, i, and S, Cti
&C,t. The density and the on-site pairing operators are
given by n, n, t+n, i and p, CttCti, respectively.
The spin susceptibility with the wave vector q is given by
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lation function (S~S' s) as

' 'coth(pC 't'
( U (

't') (4)

and

p(pq, p —q) ~ U (6)

P(Dna, bn q) ~ U (5)

where C~ is any function of q which has only to satisfy
C~~ &(S~, [H,S'-q])&. ' If we assume the translational
and inversion symmetry of the Hamiltonian, we can
adopt, for example, Cs (2 ( A ( ) ' Zg ( 2Eg Es-q—Et,~s ), where Eq gpt, tte'" '~

A. s a result
(SnS' z) remains bounded when (A (

~ and therefore
there is no magnetic long-range order at any temperature.
For the uniform spin correlation function we have

lims 0(SsS'-q) ~ (4P ( U ( )
Next we consider the repulsive model on a bipartite lat-

tice.
Theorem 2. Assume U is positive and tt U/2. The

lattice A is assumed to be bipartite, i.e., t ~&0 only for
pairs of a and p belonging to different sublattices (A and
8). Then the charge and the on-site pairing susceptibili-
ties satisfy the following inequalities:

where bns nz-&ns& and nz(ps) is the Fourier transform
of n (p ) with wave vector tI.

Remarks 2. Under the above assumptions the unitary
transformation C (Ct )~ rt, Ct (ri,C ), where t1, 1

for a 6 A and —1 for a 6 8, does not change the Hamil-
tonian. ' As n, is transformed to 1 n-, , (n, ) —,

' is de-
duced, i.e., the system is half-filled.

Remarks 9. According to (5) and (6) the charge and
the on-site pairing susceptibility do not diverge at a Snite
temperature. Also by using the Falk-Bruch inequality we
can prove the absence of corresponding long-range order
at any temperature. We conclude, therefore, no phase
transition leading to charge-density wave or on-site Coop-
er pairing occurs in the half-filled repulsive model on a bi-
partite lattice.

1'roof of Theorem 1. Proof follows straightforwardly
that of the Gaussian domination in the quantum spin sys-
tems. ' Define for a set of real numbers [h },

:-([h,}) Tr exp Kt+K~ —
—,'P~U( g (n, t

—n, ~
—h, ) (7)

~here

K —p g t ttCt Ctt +p g [tt, —(U/2)]n, .
«PEA «f A

We leave p dependent on o. Using the Trotter formula
we rewrite as =([h }) lim„a„, where

a„Tr exp(Kt/n)exp(Kt/n) g exp — g (n, t n, t
—h )

«Gh 2~ «6h

The operator identity exp( —A 2) (4n) '/2f exp(1k')exp( —k 2/4)dk leads to

tu n

a„(4tr) " " 2 d" kexp —g g(k;/4+is;k„h, ) P„tP„t,
i 1 a

where p„ is the trace of a product of n(
~
A

~
+ 1) operators as

P„Tr Q exp(K /n)+exp(is„k;n, ),
i~1 «

C

e„(p [ U ) /2n) 't and Tr denotes the trace operation over the Fock space of o-spin electrons on the lattice A. Here we
have made use of the fact that K and n, operate as the identity operator in the Fock space of —cr-spin electrons and are
represented by real matrices since t p is real. Applying Schwarz inequality to (8) and the operator identity in the re-
versed way and noting the Fock spaces for up and down spins are identical, we have ) a (

~ b„tb„~, where

b„Tr exp(K /n)exp(K' /n) Q exp — g (n t nJ)—U
«EA 271 «gh

and K'is given by replacing p with p. — im K as

K' —P g t pCt Ctt +P g [tt — —(U/2))n
«PGA «6A

Taking the limit n~ oo we obtain

=-( [h )}' ~=- t(,

where

Tr exp K +K'—~
—

2 P ) U ( g (n~t —n, ~)
«6A

For tt, t tt ~ p, we have "([h })~:-for any real {h }.
Expanding =([h })up to second order in [h } and extend-
ing the result to complex [h~} using the relation (A,B)
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(B,A), we have

(10)

If we choose )'I iAi ' e 's' we obtain inequality
(3), @ED.

Proof of Theorem 2. We make use of a unitary trans-
formation which transforms the repulsive model to an at-
tractive one, i.e., C, t(Ctt) tI, Crt(tI, C, t), while the
spin-up operators are not altered. 3's Then the Hamiltoni-
an (1) is transformed to H where

i,sC,~Cp U—g nt nt
cr eP6h each

ZI(&t U)nt ptnt& Xpte6A e6 A

If U)0 and p t p, t U/2, H is the attractive model
with the chemical potential U/2-, for which Theorem I
holds. As n is transformed to I+2S; the charge suscep-
tibility P(Dna, bn-c) is transformed to 4P(Ss,S' c) of H
and we obtain inequality (5). On the other hand, the pair-

ing operator p is transformed to q S+. The rotational
invariance of 0 in the spin space and Theorem 1 immedi-
ately leads to inequality (6), QED.

Remarks 4. It is obvious that the proofs for Theorems
1 and 2 can be generalized to the cases where the on-site
interaction potential U varies with site on the lattice. In
those cases inequality (10) is modified and we cannot
necessarily express the result in a compact form with a
single wave vector q.

Remarks S. Putting A, -=O and p @+e 8 [e
1(-1)for o f(i) 1 in inequality (9) we can immedi-

ately prove ((g,S;)2) ~((J,Sn, )2)/4 for U & 0, i.e., the
spin fluctuation is suppressed compared to the charge fluc-
tuation in the attractive model. Also the one-site relation
(S;,S;)((Sn„8n,)/4 holds for U & 0. Inequalities in
the opposite direction hold in the half-filled repulsive mod-
el on a bipartite lattice.
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