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Stability of the ferromagnetic state with respect to a single spin flip:
Variational calculations for the U co Hubbard model on the square lattice
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We generalize a variational wave function for the U oo Hubbard model recently proposed by
Shastry etal. [Phys. Rcv. 8 41, 2375 (1990)l to study thc stability of the ferromagnetic state
with respect to a single spin Rip, and for the square lattice Snd an instability above a hole density
8 0.41. The form of our wave function is consistent with the picture suggested by Roth [J.
Phys. Chem. Solids 2$, 1549 (1967); Phys. Rcv. 184, 451 (1969); 186, 42$ (1969)l that the

flipped spin binds an electron of opposite spin. We also obtain good upper bounds on the energy
of spin-eave excitations for 8&0.41. Our values for the efFective spin-wave stiN'ness are smaller

but generally in agreement with those of Shastry et al.

The U co Hubbard model was originally introduced as
a theory of itinerant ferromagnetism ' and has recently en-

joyed renewed interest as a limiting case of related Hub-
bard models of relevance to the theory of high-T, super-
conductivity. However, progress on this difficult model
has been slow and only a small number of analytical re-
sults, and exact numerical calculations' ' are avail-
able. The earliest rigorous result by Nagaoka, s and in-
dependently Thouless, 7 showed that the ground state of
one hole in the U ~ Hubbard model on a bipartite lat-
tice is the ferromagnetic state (also called Nagaoka
state). This theorem breaks down with even two holes and
certainly says nothing about a finite density of holes in the
thermodynamic limit. More recently Shastry, Krishna-
murthy, and Anderson set a rigorous upper bound to the
ground-state energy of a finite density of holes with one
spin Sipped. Their results show that for sufficiently large
ho)e density the Nagaoka state is unstable with respect to
a single spin Sip. Moreover, at low hole density the posi-
tive excitation energy of their Sipped spin state is closely
reproduced by Barbieri, Riera, and Young'2 who obtained
the exact ground state for up to four holes and one flipped
spin on an 8 x 8 lattice. An essential step in the latter cal-
culation was ari average over boundary conditions that
minimizes the effects of shell closure in the hole distribu-
tion on a finite lattice.

The purpose of this Rapid Communication is to intro-
duce a generalization of the Shastry et al. trial wave func-
tion in a simplified language which admits a systematic
sequence of improvements. With this generalization we
decrease the critical hole density above which the Nagao-
ka state is unstable on the square lattice from the Shastry
etal. value 6 0.49 to 0.41. We propose a second trial
wave function for the calculation of the spin-wave excita-
tions and again improve on the results of Shastry et al. In
both of our wave functions correlations are introduced in
the real-space neighborhood of the Sipped spin. We con-
clude by suggesting further re6nements of our wave func-
tions.

In the usual language of the dynamics of the electrons,
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Here a,, creates a hole at site i in an otherwise all spin-up
background and obeys fermionic anticommutation rela-
tions, s is one of the four nearest neighbors to the origin
r 0, N, is the number of lattice sites which we take to
infinity, and T, is the operator which translates all the
holes by —s,

,T-+ex (psikagtai, ) . (s)
k

the U ~ Hubbard Hamiltonian is given by

H —g (et~I +H.c.), (1)
&&g),e

where ct ct (1-e;,—~; ), c; annihilates an electron
of spin cr at site i, &ij ) are nearest-neighbor pairs, and H.c.
stands for Hermitian conjugate. We measure all energies
in units where the hopping matrix element is unity.
Clearly H in (1) commutes with the z component of the
total spin s, and the total crystal momentum p, and so can
bc transformed into blocks where both s, and p have
definite values. Concentrating on that spin sector with

only one flipped spin, one realizes that H can be
equivalently written in a language of the dynamics of
holes (spinless fermions) in the presence of a Sipped spin
(which is always translated to the origin). Namely,
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On the square lattice e(k) —2(cosk, +cosk„). The
presence of the flipped spin has been entirely incorporated
in Hq. terms in Ho which hop a hole onto the origin are
replaced by effective hops of length two that result when
the flipped spin is restored to the origin (requiring a
translation of the whole system).

In our language, the Shastry etai. wave function (un-
normalized) takes on the following form:

I ys& -ap I F+». (6)

Here I F+1& is the ground state of Hp with one extra hole
at the Fermi surface, i.e.,

IF&- II al 10&, I++1&-ai, lr&,
k &kg

(7)

where k (kF indicates that k is below a hole Fermi sur-
face and I 0& is the vacuum state, i.e., all sites occupied by
spin-up electrons. This wave function gives the upper
bound, 3

where sF e(kF), and

ep- - g e(k),
s s k+kF

is the ground-state energy per site of Ho. The quantity EF
in (9) also represents the energy of the fully spin-aligned
(ferromagnetic) state. The minimum of bs occurs at
p (x,m) for all b.

Our generalization of (6) is

I yr& apatt gf~, I F+1&, (io)
F

where f, are variational parameters and apa J ensures that
no hole is at the origin. Since I yr& is unnormalized, we
are required to minimize

&yr I (H —EF) I yr&
(1 i)

By straightforward algebra, the numerator in (11) is
given by
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In deriving (12), we have used the identity

e(k) -—+exp(is k).

Similarly, the denominator in (11) is given by
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where
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exactly 8 0.41.) An examination of the amplitudes f,
shows that the region of hole depletion near the flipped
spin is strongly localized. The ground-state f, values for

0.41 are given in Table I. We note that these ampli-
tudes decay rapidly away from the origin and have an in-

teresting angular variation. Since a localized deficit of
one hole is equivalent to an excess of one spin-aligned
electron near the flipped spin, our results bear out the
Green's-function calculation of Roth. s s

Next we address the question of spin-wave excitations
(Goldstone modes) for densities where the Nagaoka state
is stable. For this we consider the following wave function
which explicitly contains particle-hole excitations:

I wsw& apah gp+ Z g, ,a,a,
Minimizing (11) is equivalent to finding the ground state
of an effective Hamiltonian operating on the real-space
components f,:

H -N '"mN '" (i6)

As a technical point, we note that the two-dimensional
(2D) integral (13) can be done by integrating over k first
and doing the remaining 1D integral by Gaussian Tchev-
yshev integration with at least 20 points. We restrict our
cluster size to the 61 lattice sites closest to and including
the origin, so that M and N are 61x61 matrices. The en-
ergy expectation hT is well converged with this cluster
size.

Figure 1 compares hT with the old bound hg. Again,
we find that d, r is minimized for p (x,x). The new in-
stability point, above which h,T(0, occurs at 8 0.41.
(The ferromagnetic state is actually slightly unstable at
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FIG. l. The energy expectations of I ys& (dashed line) and
I yr& (solid line), as a function of hole density.
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TABLE I. Thc ground-state f, values for b 0.41. The posi-
tions of the values in the table correspond to lattice sites with
the underlined position as the origin. The probability of a hole
being annihilated in this 25-site region of the 61-site cluster is
94%.
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FIG. 2. Spin-wave dispersion, saw(p) (solid squares) and the

top of the gap (open squares) along the (1,1) direction for (a)
b 0.34 and (b) iI 0.41. In (a) wc compare with the Shastry
et al. calculation of ssw(p) (dashed line) and the top of the gap
(dotted line). The solid lines connecting our points are only
guides for the eye.

Here, gc and g„„are variational parameters. The wave
function proposed by Shastry etal for . calculating the
spin-wave excitations corresponds to setting gc 0, g, ,„

0 whenever r2se0, and not insisting that ri is localized
near the origin.

We proceed to evaluate &w using (11)with l yaw& re-
placing l yr) and obtain expressions similar to (12) and
(15). To reduce computational time, the low-energy ei-
genvalues of the effective Hamiltonian can be obtained
(using a Lanczos algorithm) by calculating H, tt N 'M
rather than (16). Both give the same energy spectrum, al-
though their eigenvectors differ. We are then able to con-
sider cluster sizes up to 21 sites about the origin.

We find, consistent with previous work, 3 that the

FIG. 3. The convergence of spin-wave stiN'ness D with cluster
size for iI 0.2 (open circles) and ii 0.41 (solid circles). Ail
clusters are chosen with sites closest to the origin and inversion
symmetry.
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in units where the lattice constant is unity. We obtain D

0.08

0.06-
M
q&

C
0.04-

(f)
(I)

0.02-

I

0.00;;
CL

(I)

—0.02
0.0 0.1

I ~

0.2 0.3
Hole Density 6

0.5

F&G. 4 The spin-wave stiN'ness D as a function of hole densi-
ty ti calculated with a 21-sitc cluster (solid circles). The two
open circles are stiN'nesses calculated by Shastry et al.

spectrum has a spin-wave branch esw(p) separated from a
continuum of states by a gap. Figure 2 depicts our results
for esw(p) and the top of the gap for crystal momenta
along the (1,1) direction with b 0.34 and 0.41. For
8 0.34 a comparison with the calculation of Shastry
et al. is possible and we find lower energies for esw(p), al-
though we are qualitatively in agreement. However, our
calculation of the top of the gap does not show the same
qualitative agreement; in particular, we find that the gap
persists to the zone boundary, whereas the Shastry etal
calculation shows that it vanishes at an intermediate value
of p. Our form of l ysw) only contains local correlations
in the vicinity of the Hipped spin, but the continuum states
are not expected to be localized. Therefore, we do not ex-
pect our calculation of the gap to be conclusive and in fact
find slow convergence with cluster size implying that our
maximum cluster size of 21 sites is too restrictive. This
question may be better addressed by relaxing the con-
straint that r~ be localized in (17) although keeping (as
Shastry et al do) r2 loc. alized.

Of particular interest is the behavior of esw(p) for
small p, as a function of 8', especially near the critical den-
sity 8 0.41. The spin-wave stifFness D is defined by
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by numerical differentiation using four p points: (q, q)
with q 0.05, 0.10, 0.15, and 0.20. The convergence of D
with cluster size is plotted in Fig. 3 for b 0.2 and 0.41.
Although D is not completely converged with 21 sites it
does give a good upper bound. Figure 4 shows the varia-
tion of D with b. We see that our values of D for b 0.1

and 0.2 lie below those obtained by Shastry eral. Note
that D becomes marginally negative at b 0.41, consistent
with the fact that the Nagaoka state is unstable at exactly
b' 0.41. The picture that emerges from this calculation is
that, for 0&8&0.41, the itinerant holes give a small

I

amount of rigidity to the aligned spins resulting in the sta-
bility of the Nagaoka state.

In conclusion, by adding real-space correlations in the
vicinity of the flipped spin to the wave functions proposed
by Shastry et al. , we have obtained a new critical density,
b 0.41, above which the Nagaoka state is unstable and
improved on the upper bound of the spin-wave excitation
energy and stiffness for 0&8&0.41. Further improve-
ments on both of these results can be obtained by
refinements of (10) and (17) in a perturbative manner,
namely,

and

I yr& rsoaj Zf~r+ Z fr~rrrrrrr&rtrrrrrr I++ I)
rl, r2, r3

aoao go+ Z gr, r,ar, rrr, + Z gr, rrr, r~rrr, rtrrrrrrrtr~ I ~)

(19)

(20)

because of the substantial increase in computational eNort posed by these wave functions, calculations involving them are
not being contemplated.
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