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Density of bound states in a vortex core
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The local density of states as derived from Kramer and Pesch's theory of bound states in a vor-

tex core is compared with recent scanning-tunneling experiments. EH'ects of impurities and finite

flux-line distance are approximately taken into account. In the isolated vortex regime one finds

qualitative, but not quantitative, agreement with all experimental data reported so far. The re-

sults depend sensitively on impurity content. A nonmonotonic behavior of the density of states as

a function of the distance from the flux-line center is predicted. The unexpected properties of the

density of states are discussed in terms of the directionependent single-particle excitations

bound to the core.

Recent progress in low-temperature scanning-tunneling
inicroscope (STM) technique has offered a possibility to
study the local density of states in spatially inhomogene-
ous superconductors. In these experiments the tunneling
conductance o(V, r) dl/dV can be measured with high
spatial resolution. At sufficiently low temperatures this

quantity directly reflects the behavior of the density of
states N(E, r). The most prominent inhomogeneous sys-
tem is, of course, the vortex state of type-II superconduc-
tors, which has been dealt with in two experimental stud-
ies reported recently. '2 The measurements'2 have been
performed on the material NbSe2 which is an anisotropic,
weak-coupling, extreme type-II superconductor. The
main result reported in the first paper of Hess et al. ' was a
pronounced peak of ts(V, r) at V 0 with the STM tip po-
sitioned at the flux-line center r 0. In its spatial depen-
dence ts(V, r) showed a peak at r 0 if dl/dV was taken
at constant voltage V 0. In the second paper by Hess et
al. , 2 new data on the voltage and position dependence of
cr(V,r) were presented. In the isolated vortex regime
essentially two new effects were reported, a nonmonotonic
behavior of cr(V,r) as a function of V (fiat maximum at
V-0.4 mV) for a radial distance r 90 A, and a
broadening of the peak at r 0 with increasing voltage V.

If such effects are assumed to lie within the realm of
standard BCS theory, then they can only occur in super-
conductors of sufficient purity (they will sensitively de-

pend on impurity degree) and will be connected with the
low-lying bound states localized inside the vortex core.
In fact, numerically solving the Bogoliubov equations for
the bound states, Shore et al. s were able to qualitatively
reproduce the observed peak of o at zero bias. These au-
thors also predicted a nonmonotonic behavior of N(E, r)
which has probably been observed experimentally in Ref.
2 (the first of the two new effects mentioned above). The
zero-bias peak has also been inferred from phenomenolog-
ical considerations and from the behavior of the single-
particle excitations of the quasiclassical theory.

In this Rapid Communication a study of bound-state
effects based on Kramer and Pesch's solution of the
quasiclassical equations is presented. The infiuence of im-

purities and of a finite vortex distance is approximately
taken into account. We find that all (isolated vortex)

effects reported by Hess et al. ' can be reproduced with

rather low numerical effort. In particular, it turns out
that the observed broadening of the peak of cr at r 0 with

increasing voltage should actually be interpreted as a shift
of the peak to a distance r )0. On the other hand, there
are considerable quantitative differences between theory
and experiment. We discuss some of the possible reasons
for this disagreement.

As is well known, the quasiclassical theory and the Bo-
goliubov equations are physically equivalent except for ex-
tremely low temperatures T/T, & T,/EF. In the quasi-
classical (Green's functions) method the quasiparticle
states may be labeled by two parameters, say 8 and p,
characterizing the direction of the wave vector kF. These
parameters are defined as follows. If the vortex axis lies
parallel to the z direction, then tr/2 —8 is the angle be-
tween kF and the z axis and p is the azimuth angle (for an
isolated vortex the p dependence is in a sense spurious
since states belonging to different p are related to each
other by a rotation).

Kramer and Pesch'ss9 bound-state solution of the
quasiclassical equations makes use of the assumptions' "
E/h acs«1 and r~/g ac&&sc s8o, where r& is the shortest
distance of the (straight) quasiparticle path from the
vortex axis. Recently, the steps leading to the final equa-
tions of Kramer and Pesch have been reviewed in detail.
Analytical results for the direction-dependent density of
states N(E, 8, &,r) have been worked outs using the model
order parameter

~acsr/&i, «&i
,~acs, r ) gi

and assuming negligible vector potential a-0. In the
considered version of the Kramer-Pesch theory, weak in-

teractions between (almost isolated) flux lines are taken
into account. To study the eH'ect of impurities in a rough
approximation a small imaginary number —EB has to be
added' '3 to the energy E. In the present system of
units, where energies are measured in units of xkgT„
this imaginary part is just given by the impurity parame-
ter h 0.882(acs/I.

The present results for the local density of states
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FIG. 1. Energy dependence of the local density of states at
three different distances r from the center of an isolated vortex.
Parameters corresponding approximately to NbSe2 have been
chosen (see text), in particular iy 0.07.

FIG. 2. Density of states at three different distances r as in
Fig. 1. The same set of parameters as in Fig. 1 has been chosen,
except for 8 0.001.

N(E, r) have been obtained by integrating the quantity
N(E, ip, tp, r) with respect to 9 and tp. Then, the local tun-

neling conductance o(V,r), which is defined as the convo-
lution of N(E, r) and the derivative of the Fermi distribu-
tion function, te could be computed. Both N(E, r) and
cr(V,r) have been normalized with respect to their
normal-state values. The following parameters appropri-
ate for NbSe2 have been chosen: b' 0.07 (which brings
the thermally broadened Meissner state density of states
in agreement with experimental dataz and is consistent
with previous estimates' in the literature) and gt
[-100A according to Ref. 16, this choice is rather arbi-

trary in view of the fact that the actual vortex structure
will differ noticeably from the ideal (bulk) one]. The an-
isotropy of the material will be neglected as was done in
Ref. 6; gtK:s denotes the coherence length parallel to the
layers of NbSe2

We now proceed to a discussion of the numerical re-
sults. Only the positivewnergy part of N(E, r), which is a
symmetric function of E, will be displayed in the following
figures [a similar remark applies to e(V,r)]. Figure 1

shows N(E, r) for three different radial distances r. For
r 0 we recover the zero energy peak and for r &0 the
structure (maximum at E &0) predicted in Ref. 6. [Qf
course, in the present quasiclassical approach the rapid,
irrelevant oscillations of N(E) on a scale h$~EF, visible
in Fig. 3 of Ref. 6, are absent. ] In contrast to Ref. 6 the
maxima of N(E) at E & 0 are rather fiat. This is a conse-
quence of increased impurity content in the present calcu-
lations; the value of b used in Fig. 1 (b 0.07) is large
enough to yield a considerable suppression of the maxima
of N(E) although it still corresponds to a very clean su-
perconductor. To illustrate the sensitivity of the results on
impurity content, corresponding data for an extremely
pure (b 0.001) superconductor are shown in Fig. 2.

A calculation of the tunneling conductance tr (normal-
ized by its normal-state value) at r 0 yields, for
T/T, 0.2, a zero-bias peak of 2.9, which is higher by a

factor of 2.0 than the experimental one. 2 The clean limit
result for the same parameters, except 8 0, is 4.7. Thus,
cr still sensibly depends on impurity degree for T/T, 0.2
(and below). Calculations for various values of 8 and gt
have been performed in an attempt to fit the observedz
peak with respect to both its height and width. However,
the theoretical peaks were always too sharp, agreement
could only be obtained by using considerably enhanced
temperatures (T/T, -0.5). In the clean limit the present
zero-bias peak is similar to the one reported by Shore et
al. On the other hand, Fig. 3 shows theoretical and ex-
perimental2 data on the (nonmonotonic) voltage depen-
dence of tF(V,r) for r 90 A. Here, in contrast to the
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FIG. 3. Theoretical tunneling conductance (solid curve) at a
distance of 90 A from the vortex center. Parameters corre-
sponding approximately to NbSes have been used (see text).
Also shown are experimental results by Hcss et al. (Ref. 2).
The experimental data had to be scaled by a factor of 1.2 in or-
der to achieve overall agreement.
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zero-bias peak, satisfactory agreement has been achieved.
Motivated by the broadening of the r 0 peak for

nonzero bias reported by Hess et al. (the second of the
two new efl'ects mentioned above) the space dependence of
N(E, r) has been calculated for several fixed energy
values. According to the numerical results, shown in Fig.
4, at nonzero energy E the peak position is shifted from
r 0 to a radial distance r approximately proportional to
E. Again, decreasing impurity content leads to a more
pronounced peak (see the dashed line in Fig. 4). Such a
nonmonotonic variation should be visible if the tunneling
conductance is measured at suf5ciently low temperature.
In the experiments by Hess et al. 2 this spatial structure
has not yet been resolved as a consequence of thermal

broadening. On the other hand, it provides a natural ex-
planation for the broadening of the zero-distance peak ob-
served2 by these authors. (The situation is analogous to
the broadening of the zero-bias peak illustrated in Figs. 3
and 4 of Ref. 6).

Recently, the quasiclassical equations have been solved
on a hexagonal vortex lattice for real energies. This nu-

merical calculation, which is based on a previous solu-
tion'3 for imaginary energies, holds for arbitrary induc-
tions and energies in the clean limit. It yields the local,
direction-dependent density of states N(E, kF, r), i.e., the
local density of states for the single-particle excitations
characterized by wave vector kF and energy E. For small
E reasonable agreement with Kramer and Pesch's theory
has been found. The properties of these single-particle ex-
citations have already been useds to predict some general
features (including the zero-bias peak) of N(E, r).

The nonmonotonic behavior of N(E, r) shown in Figs. 2
and 4 may also be understood in terms of these excita-
tions. For a really isolated vortex in a perfectly clean su-
perconductor the spatial region of nonzero N(E, kF, r),
i.e., the spatial region accessible to a quasiparticle, is

local DOS for fixed energy E
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FIG. 4. Local density of states as a function of r for three
different values of E. The distance where a maximum occurs is

approximately given by 1.5E/An( s. For the solid curves, param-
eters corresponding approximately to NbSe2 (see text) have
been used. The dashed curve refers to a clean superconductor
with b 0.001 (and E/hncs 0.6).

given by a straight line of direction kF/kF (its motion is
further restricted by Andreev reflection at the order-
parameter potential wall). A convenient second parame-
ter to characterize the quasiparticle path is its shortest
distance r~ from the vortex axis. Theory s predicts
E c ) fir(r~) ), where c is 8 dependent but not far from
one, and

~
tfr(r~) ) denotes the smallest value of ( tfr~

along a straight line of direction kF/kp (this direction is
characterized by the angles 8, th introduced above). Intu-
titively speaking, a quasiparticle prefers a path where its
energy is approximately equal to the minimal "gap"

~ y(r &) ~
it sees on its way. Along this path the density of

states has its maximum at the point nearest to the vortex
axis. Summing up all rotationally equivalent contribu-
tions, i.e., performing the integration with respect to th,

one obtains a state which must be characterized by its an-
gular momentum (as in Bogoliubov's theory) rather than
its linear momentum. Obviously, this th-integrated density
of states N(E, 8,r) will be zero for r & r, where

E c ) tfr(r ) ), and maximal near r, i.e., it shows pre-

cisely the behavior displayed in Fig. 4. Integration with

respect to 8 will not lead to qualitative changes because of
the weak dependence of the energy levels on 8. The ener-

gy dependence of N(E, I), shown in Fig. I, may be dis-
cussed in a similar way.

Finally, we discuss possible reasons for the considerable
quantitative disagreement found in our comparison of
theory and experiment. In view of a recent, fairly success-
ful, comparison of Kramer and Pesch's theorysa with
more extended numerical calculations, s it seems unlikely
that the approximations entering this theory constitute the
main reason for the observed discrepancies.

There are two other possible reasons for this disagree-
ment, besides experimental limitations of a more technical
nature, such as uncertainty in the tip temperature. First,
a vortex investigated by a STM is modified by surface
effects. Where the vortex cuts the surface its core will
blow up somehow, which implies a more or less serious
modification of its excitation spectrum. Second, the tun-
neling current is actually not a simple average with
respect to all quasiparticle directions but rather a weight-
ed average, where excitations with directions parallel to
the vortex axis (perpendicular to the surface) play the
most important part. ' These quasiparticles, with 8- rr/2,

are loosely coupled to the bulk order parameter far from
the core and should be more similar to normal-conducting
excitations than those perpendicular to the vortex axis.
For example, for 8 x/2 and r 0 the (local) solution of
the quasiclassical equations yields N(E, r) I for arbi-
trary energy E, a contribution which tends to broaden the
zero-bias peak. It should be pointed out that these states
with 8 close to fr/2 have not been properly taken into ac-
count in previous theoretical studies including both the
Bogoliubov and the quasiclassical formalism. They are
also difficult to calculate numerically. Their neglect
leads to a very small error in the usual (isotropic aver-
aged) density of states but may be crucial if the tunneling
current in the STM experiments is dominated by electrons

lying within a cone of very small width. In addition, the
question arises whether the isotropic Eilenberger theory
used in the present paper is still a good approximation for
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such a situation. A specification of this cone width as well

as further theoretical study is required to settle this point.
If more vortices enter a sample with increasing magnet-

ic field, the sharp energy levels of an isolated vortex be-
come bands of finite width. This broadening of the energy
levels (but not the quasiparticle tunneling occurring at
higher inductions) can be treated, for large flux-line dis-
tance, by means of the present theory. 5 9 However, .for the
above-chosen impurity parameter corresponding to
NbSc2, the calculations show that the broadening of the
levels is dominated by mean-free-path effects and no
significant changes arise as a consequence of (small) vor-
tex interaction. Qn the other hand, more extended calcu-
lations are rcquircd in order to explain Hess et al. 's data2
on the density of states in the core region at 8 1 T as

well as the interesting features they found at the boundary
of the Wigner-Seitz cell of a dense vortex lattice.

In conclusion, we found that Kramer and Pesch's
bound-state solution of the quasiclassical equations is able
to qualitatively explain all observed peculiarities of the
density of states in a vortex core. The occurrence of such
effects has been shown to depend sensitively on a
sufficiently low impurity content. While our results yield
further evidence that these phenomena may well be ex-
plained by standard BCS theory, a quantitative explana-
tion has not yet been achieved and requires further experi-
mental and theoretical progress.

Many very helpful discussions with L. Kramer, W.
Pesch, and D. R'ainer are gratefully acknowledged.
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