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Reanalysis of a stacked triangular Ising antiferromagnet by use of Monte Carlo simulations
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We have reinvestigated the magnetic properties of a stacked triangular Ising antiferromagnet

by use of multi-spin-flip Monte Carlo (MC) simulations with the aid of finite-size-scaling theory.

According to our MC results, only one phase transition occurs in this crystal.

In recent years, interest in phase transitions of frustrat-
ed Ising-spin systems has been enhanced in connection
with experiment. ' s Blankschtein et aI. suggested, from
a theoretical speculation together with a Monte Carlo
(MC) study, that two phase transitions occur in the
stacked antiferromagnetic triangular lattice. We restudy
the same problem by the use of multi-spin-flip (MSF)
MC method.

The Hamiltonian of the system is written as
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where Jo is the nearest-neighbor (NN) interaction along
the z axis and J~ is the NN interaction in the xy plane
(Fig. 1). Here Jo and Ji are both positive. S;( ~1)
denotes an Ising spin at site l and the summations run over
the NN pairs either along the z axis or in the xy plane.

According to the previous MC simulations, 2 s there is a
sharp peak in the specific heat at the temperature
T=2. 15Ji/ktt(= Ttv ) in the case of Jo/Ji 0.5, where ktt
denotes the Boltzmann constant, and it is believed that a
phase transition occurs at this temperature. Moreover,
there is a small peak at the temperature T=0.45Ji/
ktt(-=Tt. ). Blankschtein et al. thought that the second
phase transition occurs at T TL and the peak is due to
the phase transition. In this paper, we show that this
peak, which is actually a bump, is not due to the conven-
tional phase transition, but the linear-chain-like excita-
tion s.

In this crystal at low temperatures, the correlation in

the z direction is extremely larger than that in the xy

c-K'[&(tttt/J )') —(P/J )'llN, (2)

where K Jo/kttT. There is a small bump in the specific
heat at kttT/(2Jo)=0. 45. The peak position, the peak

plane, and hence the conventional single-spin-flip (SSF)
MC method may fail to predict the correct behavior of the
magnetic property of the crystal. This difficulty can be
removed if we use the multi-spin-flip method: Let us

consider a spin cluster composed of n spins on a column
parallel to the z axis. There are 2" possible spin states for
the cluster. The spin states of the cluster can be deter-
mined by the MC method if the configuration of sur-
rounding spins is known. That is, a renewed state of the
cluster is chosen among the 2" states at each MC trial. In
our case, n L, is the lattice size in the z direction.

We have performed the MSF MC simulations for vari-
ous values of Ji/Jo. The adopted lattice size was N

18z &L,. L, was fixed at the value of 12 because of the
limit of machine capacity. The eftect of the L, value will

be discussed later in this paper. We assumed the periodic
boundary conditions. In our calculation, the MC average
was taken over 5000 MC steps per cluster after discarding
5000 MC steps per cluster. We used a cooling process
such that the initial spin configuration at the temperature
T is inherited from the final configuration at the higher
temperature T+l5.T, where hT 0.1Jo/ka. The starting
temperature was taken at T 4.0(2Jo)/ktt.

In Fig. 2, we show the MSF MC data of the specific
heat defined by
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FIG. 1. Lattice structure of a stacked triangular Ising anti-
ferromagnet.
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FIG. 2. MC data of the specific heat for various values of
J~/Jp. J~/Jp 1.0 (A); 2.0 (8); 3.0 (C); for the dotted line, see
text.
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FIG. 3. MC data of the specific heat for various values of the
crystal size, N L„tx 12: L 12 (dotted line), L 18 (dashed
line), and L, 24 (solid line). The value of J~/Jp was fixed at
2.0.

ycLc (3)

at low temperature. Here chic K /(coshK) represents
the specific heat of a free linear chain and y is a numerical
factor where 3 & y & 3 . Our MC data at low tempera-

height, and the shape of the bump on the low-temperature
side are not affected by the change of the Ji/Jo value, as
can be seen from this figure. Hence, we think that this
bump is due to the linear-chain-like excitations in the
crystal, where the coupling constant of the "linear-chain"
is given by Jo. According to Coppersmith, the specific
heat of our system is expressed as

tures are well fitted by Eq. (3) if y 0.376 (the dotted line
in Fig. 2).

In Fig. 3, we show the MSF MC data of the specific
heat for various values of the crystal size: N 12 x12,
18 &12, and 24 x12. The Ji/Jo value was fixed at 2.0.
The peak at high temperature shows an appreciable
change due to the size change. On the other hand, the
bump at low temperature does not show any change due
to the size change. The above behavior also indicates that
the bump is not due to the conventional phase transition.
Although we have to perform the MC calculation with in-
creasing lattice size in the z direction, we could not do it
because of the limit of the machine capacity. Instead, we
perform the calculation for the case L, 9.

In order to see the linear-chain-like excitations in our
crystal, we compare the specific heat of our crystal with
that of the linear chain at low temperature. The partition
function of a linear chain with periodic boundary condi-
tion (or ring) with ri spins is written as

Z(n) 2"[(coshK)"+ (sinhK) "], (4)

where K Jo/kgT. On the other hand, the partition func-
tion of the linear chain with free ends (or open chain) is
written as

Z(n) 2 "(coshK)" (5)

By using the standard formula, we can calculate the
specific heat as

C- —k, [lnZ(n)] .d d
dT d 1 T

The computed specific heat (c) of the linear chain is
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F1G. 4. (a) The specific heat of our crystal with a periodic boundary condition is compared with that of the ring. a Ji/Jp. The

scale for the crystal is written on the left ordinate and the scale for the ring on the right ordinate; see text. (b) The specific heat of the
crystal with free xy surfaces is compared with that of the open chain. a J~/Jp, see text.
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shown in Figs. 4(a) and 4(b). Here e=C/(nk—s). In Fig.
4(a), the solid line and the dashed line denote the specific
heat of the ring with n 12 and n 9, respectively. The
solid line in Fig. 4(b) denotes c with an open chain of
n 12. We note the following two points: (i) For the case
of the ring, the peak position depends on the value of n.
(ii) For the case of the open chain, the peak position does
not depend on the n value but the magnitude of c is given
by cLg (n —1)/n.

We also show the MC result of specific heat for our
crystal in Figs. 4(a) and 4(b). The filled circles denote
the MC data for the crystal size N 18 x12 and the
crosses denote the MC data for the crystal size
N 18 x9. The periodic boundary conditions are as-
sumed in Fig. 4(a) and the free xy surfaces are assumed
in Fig. 4(b). As can be seen from Figs. 4(a) and 4(b), the
MC data for our crystal demonstrates the above-
mentioned characteristic features of the specific heat of
the linear chain. Hence, we think that the MC calculation
again indicates the existence of the linear-chain-like exci-
tations in the crystal.

At a high temperature of ksT/(2Jo) =2.15, where the
peak of the specific heat is observed, the SSF excitations
will be dominant compared with the linear-chain-like ex-
citations. Hence, we performed the conventional SSF MC
simulations in this temperature region. In the SSF calcu-
lation, the MC average was taken over 5000 MC steps per
spin after discarding 5000 MC steps per spin. The precise
MC data of the specific heat for the case of J~/Jo 2.0 are
shown in Fig. 5 for various values of the crystal size
N L: L 12 (crosses), L 18 (filled circles), and
L 24 (open circles). According to the finite-size scaling
theory, the peak height of the specific heat is given by

a +a I' (6)

where a ~ and a2 are some numerical constants and a and
v are the well-known critical indices. By using the MC
data in Fig. 5, we find that a/v is nearly equal to 0.5.
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FIG. 5. The specific heat data by the single-spin-flip MC
method for various lattice sizes: N 12' (crosses), 18' (filled
circles), and 24' (open circles). The value of J~/Jo was fixed at
2.0.
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F16. 6. MC data of i1(T) defined in Eq. (7) for the case

Ji/Jo 2.0.

Matsubara and Inawashiro calculated the correlation
function in the z direction and they found that Tz, is some
turning point for the above quantity. In this paper, we
compute the correlation function in the xy plane. In our
calculation, we adopted the MSF MC method and the as-
sumed number of spins was 60 x 12.

It is known that the correlation function (SoS„)„„in the
antiferromagnetic triangular lattice at T 0 K is written
as (SoS,) ~ -r '/ cos(2ar/3) for large r, where r denotes
the distance between spins on the xy plane. s In the case
of the stacked triangular lattice, we find that the correla
tion function in the xy plane is, in a good approximation,
written as

(SoS„), -r +' "' 'cos(2'/3), (7)

where d 3 and g(T) is a numerical parameter which is
determined by the calculation.

According to the MC calculation, the correlation func-
tion for T & TN is not described by Eq. (7) but it is de-
scribed by

(SoS,)„»—exp( —a'r )cos(2irr/3) (8)

for large r, where x means the inverse of the correlation
length. That is, ri(T) oo for T& T~ if we follow the
form of Eq. (7). In Fig. 6, we show the computed values
of ri(T) for the case J~/Jo 2.0. We observe two anoma-
lous changes in il: an abrupt drop at T T~ and a sudden
increase at T TL, toward the ground-state value, ——,

' .
Thus, in the low-temperature region (0(T (TL), there
appear spin states (or phases) with various i1 values, as
seen from Fig. 6. We note that the g value at the critical
point is —0.75 for the two-dimensional Kosterlitz-
Thouless model. '

We have seen that the MC data of the specific heat and
the correlation function support the existence of phase
transition at T T~. The MC data also indicate some
turning point at T Tl. below which the magnetic proper-
ties of the crystal are different from those above TL, . We
may define this TL as the temperature below which the
linear-chain-like excitations become dominant.
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