Anomalous Raman spectra from La₂CuO₄

Gerald Burns and F. H. Dacol

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (Received 30 October 1989; revised manuscript received 15 December 1989)

We show that some published Raman spectra from the superconductors $(La_{2-x}Sr_x)CuO_4$ and La_2NiO_4 are incorrect. We believe that these spectra were obtained when the samples were "burnt" by the focused laser beam and were actually due to La_2O_3 . Similar anomalous results can be obtained when starting with Nd₂CuO₄ where the spectra come from Nd₂O₃. A spectrum distinctly different from those of La_2O_3 or Nd₂O₃ is obtained from Y₂O₃.

Blumenroeder et al.¹ have reported a three-mode Raman spectrum from $(La_{2-x}Sr_x)CuO_4$, the high- T_c material. Their spectrum is more intense, with different frequencies, than other recent measurements on single crystals² of this same material. A weaker spectrum with similar frequencies to Blumenroeder et al.¹ has more recently been reported by Ogita et al.³ in La₂NiO₄. This latter material and $(La_{2-x}Sr_x)CuO_4$ have the so-called T structure.⁴ Blumenroeder et al.'s intense spectrum has been of concern in the understanding of these materials.^{5,6} On occasion, we have also observed similar Raman spectra from $(Nd_{2-x}Ce_x)CuO_4$ (unpublished data), the electrondoped superconductor which has the related T' structure.⁴ In this paper we explain the origin of these anomalous results.

One result from the structural differences between the T and T' structures is the symmetry of the allowed Raman modes. Group theory predicts the following allowed Raman modes:⁷

- T structure, $2A_{1g} + 2E_g$,
- T' structure, $A_{1g} + B_{1g} + 2E_g$.

We ignore the $2E_g$ modes in the following discussion since usually they are too weak to be observed² and when they are observed^{2(b)} in isostructural Sr₂TiO₄, they are less intense than the A_{1g} modes. Thus for both of these structures, for Raman modes with atoms vibrating along the c axis, only two modes are expected, $2A_{1g}$ for materials with the T structure and $A_{1g} + B_{1g}$ for materials with the T' structure.

In attempting to study the Raman spectra of $(La_{2-x}Sr_x)CuO_4$, $(Nd_{2-x}Ce_x)CuO_4$, and their superconducting-metal phases doped respectively with Sr^{2+} and Ce^{4+} , we have found that the signals from ceramics are very weak. In fact, we could only be certain of the spectra from single crystals^{2,8} when the input laser and output signal were both polarized parallel to the *c* axis. In some ceramics, weak Raman lines could be detected in agreement with our single-crystal results; however, we were not confident of the validity of these weak signals without the polarized-light single-crystal results. Thus, the reported¹ three-line spectrum seemed to us not only too intense, but it contained too many lines.

In attempts to measure the Raman spectra of doped and pure $(La_{2-x}Sr_x)CuO_4$ and $(Nd_{2-x}Ce_x)CuO_4$ ceramics, we increased the laser power and shaped the focus. Often this led to an intense Raman spectrum which we called "burn spectra" because microscopic observation showed that we have burned a small hole in the sample at the spot where the laser was focused. Such a burn spectrum is shown in Fig. 1(a). The intensity is about 10 times stronger than the best Raman spectra that we observe in ceramic $(La_{2-x}Sr_x)CuO_4$ or $(Nd_{2-x}Ce_x)CuO_4$. Eventually, it occurred to us that these burn spectra are the same as those published previously.^{1,3}

It was easy to determine what materials led to the burn spectra. Figure 1(b) shows the intense Raman spectrum of powdered La₂O₃; that of Nd₂O₃ (not shown) is very similar. Note that the observed signal is about 100 times that of the burn spectra in Fig. 1(a). The frequencies of these intense features are listed in Table I. Thus, a small amount of La₂O₃ (or Nd₂O₃) easily accounts for the reported anomalous spectra.^{1,3} The frequencies (Table I) and intensity agree with the burn spectra [Fig. 1(a)] as well as those spectra published earlier.^{1,3} For comparison purposes, in Fig. 2 we show the correct Raman spectrum² from a single crystal of $(La_{2-x}Sr_x)CuO_4$. Although weak in comparison to the spectrum in Fig. 1(a), the $2A_{1g}$ modes can be clearly seen.

TABLE I. The frequencies (in cm⁻¹) of various materials discussed in the text.

La ₂ CuO ₄ (Ref. 1)	La_2NiO_4 (Ref. 3)	La ₂ CuO ₄ (Burn spectra)	Nd ₂ CuO ₄ (Burn spectra)	La ₂ O ₃	Nd ₂ O ₃	$(La_{2-x}Sr_{x})CuO_{4}$
98	100	99	101	104	106	
170		182	180	191	191	226
386	405	396	422	411	440	433

FIG. 1. (a) The "burn spectra" that can be observed in Raman measurements of La_2CuO_4 if the laser power is too intense; (b) Raman spectra from La_2O_3 . (The weak feature at 77 cm⁻¹ is a plasma line.)

FIG. 2. The Raman spectra from single-crystal $(La_{2-x}-Sr_x)CuO_4$ showing the $2A_{1g}$ modes. For the x=0 material at room temperature, we also observe the soft mode (associated with the tetragonal-orthorhombic transition) at 93 cm⁻¹.

- ¹S. Blumenroeder, E. Zimgrebol, J. D. Thompson, P. Kellough, J. L. Smith, and Z. Fisk, Phys. Rev. B 35, 8840 (1987).
- ²For example, see (a) G. Burns, G. V. Chandrashekhar, F. H. Dacol, and M. W. Shafer, Solid State Commun. **68**, 67 (1988); W. H. Weber, C. R. Peters, B. M. Wanklyn, C. Chen, and B. E. Watts, *ibid.* **68**, 61 (1988); (b) G. Burns, F. Dacol and M. W. Shafer, *ibid.* **62**, 687 (1987); Phys. Rev. B **37**, 3381 (1988).
- ³N. Ogita, M. Udagawa, K. Kojima, and K. Ohbayashi, J. Phys. Soc. Jpn. 57, 3932 (1988).
- ⁴G. Burns and A. M. Glazer, Space Groups for Solid State

FIG. 3. Raman spectra from ceramic Y₂O₃.

La₂O₃ (and Nd₂O₃) is hexagonal, space group D_{3d}^3 ($P\overline{3}m1$), with one molecule per unit cell.⁹ The phonons can be classified according to the

$$2A_{1g} + 3A_{2u} + 2E_g + 3E_u$$

irreducible representations of the D_{3d} ($\bar{3}m$) point group. Then there should be $2A_{2u} + 2E_u$ infrared-active phonons and $2A_{1g} + 2E_g$ Raman-active phonons. We only observe three Raman-active modes from ceramic samples. The same three modes were observed from arc-melted La₂O₃ and Nd₂O₃ and we could not detect the fourth expected mode.

The closely related material Y_2O_3 , also used extensively in making many high- T_c material, has a different crystal structure from that of La₂O₃. Y_2O_3 has the cubic bixbyite crystal structure⁹ with Z = 16 in the body-centered space group T_h^7 (Ia3). Thus, it has 120 normal modes, although many may be degenerate. The Raman spectra are shown in Fig. 3 (that of Ho₂O₃ is similar). It is very intense and quite different from that of La₂O₃ or Nd₂O₃ [Fig. 1(b)]. With the strong narrow mode at 382 cm⁻¹, it should be relatively easy to detect as an impurity.

In conclusion, we have shown that some of the reported Raman spectra^{1,3} for $(La_{2-x}Sr_4)CuO_4$ and La_2NiO_4 actually are due to locally decomposed material. The spectra shown are due to La_2O_3 . Similar burn spectra can be obtained if Nd₂CuO₄ is overheated, then the spectra are due to Nd₂O₃.

It is a pleasure to thank Russell Allen for arc melting the La_2O_3 and Nd_2O_3 samples and G. V. Chandrashekhar for useful discussions.

Scientists (Academic, New York, 1990).

- ⁵V. A. Maroni, T. O. Brun, M. Grimsditch, and C. K. Loong, Phys. Rev. B **39**, 4127 (1989).
- ⁶R. Feile, Physica C 159, 1 (1989).
- ⁷G. Burns, M. K. Crawford, F. H. Dacol, E. M. McCarron III, and T. M. Shaw, Phys. Rev. B 40, 6717 (1989).
- ⁸M. K. Crawford, G. Burns, G. V. Chandrashekhar, F. H. Dacol, W. E. Farneth, E. M. McCarron III, and R. J. Smalley, Phys. Rev. B (to be published).
- ⁹R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1968), Vol. 2.