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The effect of quantum lattice fluctuations on the ground state of a half-filled-band one-
dimensional molecular-crystal model with on-site (U) and nearest-neighbor (V) Coulomb repulsion
is investigated. The nonadiabatic effects due to finite phonon frequency co are treated through a
variational polaron wave function. The electronic correlations are decoupled by a Hartree-Fock ap-
proximation. Our variational approach gives a rather good description of the continuous variation
of the dimerization, which is in good agreement with that of the Monte Carlo simulations, as func-
tions of U, V, and co. However, the Hartree-Fock theory predicts a fictitious long-range spin-

density-wave order and a discontinuous transition between it and the charge-density-eave (CDW)
state. These are somewhat different from the results of numerical simulations. Furthermore, we

propose a valence-bonding (VB) state for describing the short-range antiferromagnetic correlation
for intermediate values of U and V and determine the transition point between the VB state and the
CDW state, which is in good agreement with that of the numerical simulations. The effect of quan-
tum lattice fluctuations on the transition point is also discussed.

I. INTRODUCTION

In recent years, a great deal of theoretical effort has
been devoted to understanding the competing instabilities
in the one-dimensional many-electron and phonon cou-
pling systems. Both in the adiabatic limit (where the
phonon frequency co equals zero) and the nonadiabatic
limit (large-co limit) the situation becomes clear, and a
coherent picture has emerged. ' However, the theoreti-
cal analysis becomes much more difBcult in the presence
of retardation (finite phonon frequency), and a few at-
tempts have been made to evaluate the correction to the
adiabatic scheme when the electronic energy is small
enough so that quantum lattice fluctuations may play an
important role.

In a recent paper' (hereafter referred to as I) we stud-
ied the effect of quantum lattice fluctuations in the one-
dimensional molecular-crystal model in the abscence of
Coulomb repulsion by means of a variational approach,
in which the nonadiabatic effects due to the finite phonon
frequency co are treated through a variational polaron
wave function. In the treatment a part of the lattice dis-
tortion is carried over by the electrons and interferes with
the static (frozen) lattice deformation. This leads to a
weakening of the effective (adiabatic) potential stabilizing
the dimerized state. Moreover, in the finite-co case we
showed that the lattice fluctuations are "squeezed" by the
electron band motion, and the phonon subsystem is in the
so-called two-phonon coherent state. Our results are in
good agreement with both Monte Carlo simulations and
renormalization-group analysis.

In this paper, we extend our previous variational treat-
ment to the molecular-crystal model in the presence of
on-site (U) and nearest-neighbor ( V) Coulomb repulsion
in the half-filled-band sector. The Hartree-Fock approxi-
mation will be used to decouple the electronic correla-
tions, and besides the long-range charge-density-wave
(CDW) order there may be another type of long-range
order —spin-density-wave (SDW) order —in this approxi-
mation. """ Furthermore, as it was proved exactly that
the one-dimensional Hubbard model cannot develop the
long-range SDW order, ' we will propose a valence-
bonding state for describing the short-range antiferro-
magnetic correlation for intermediate values of U and V,
and then discuss the phase transition between the long-
range CDW ordering state and the algebraic SDW order-
ing one.

The model considered in this paper was studied by
Hirsch in a previous paper by means of the Monte Carlo
simulations on finite-size lattices. His main results are as
follows: (l) the transition between CDW and SDW re-
gions deviates slightly from U = U, =2 V+A. /K (A,

denotes electron-phonon coupling, K denotes the string
constant) towards smaller U for intermediate correlation;
(2) the phonon frequency plays a relatively minor role,
and its main effect is to reduce the size of both CDW and
SDW correlations, with respect to the co=0 limit; (3) the
transition between CDW and SDW phases becomes
discontinuous for large values of U. In this paper, we will
compare our results with his.

In a recent paper Nasu' studied the same model as
ours through a variational approach close to ours. But,
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as was said in I, he decoupled the polaron effect and the
frozen dimerization, not allowing for any interference be-
tween the two effects. We believe that this does not per-
mit us to correctly treat the effect of quantum lattice fluc-
tuations and makes it impossible to reproduce the numer-
ical results of the Monte Carlo simulations.

II. THEORETICAL ANALYSIS

We start from the one-dimensional extended Hubbard
model with on-site electron-phonon coupling in which
the local electron density couples to the intramolecular
vibration mode,

H=g pi+ —
q, tg—(c, c, +, +ct+, c, ) Ag—q, (n, —1)++Un, &n;&+QVn, n;+, ,

1 2 E
2M' 2

where n; =c; c; and ni =n; &+n, &. The other notations are as usual. We restrict ourselves to the half-filled-band sec-
tor. One can perform an ordinary coordinate and momentum transformation on operators q, and p;:

A'AM
Pi l

' 1/2

(b; b;), —q;=
1/2

(b; +b;), (2)

where co =&K /M. Thus H becomes

H =ficoN/2+ gficob; b;
—A.

2M'

' 1/2

g(bt+b, )(n; —1) tg(ct c;+i—+c;+, c; )++Un, tn, i++. Vn;n;+i .

In the following, three unitary transformations, similar to those in I, will be used to introduce three variational pa-
rameters. The first one is a coherent-state transformation for every phonon mode,

MaoS = —g( —1)'m
2iri

l

' 1/2

(4)

H& =exp(S& )H exp( —S& )
' 1/2

(b, +b, ) —Ag (b, +b;)(n; —1)
l

=AtoN/2+ gficob, b, +Km ON/2+ g( —1)'moA'to
l l

L

—g( —I)'&mon; tg(ct c;+& +—c;+, c; )++Un, &n;&+QVn;n;+, ,
l i, a l

where mo is the first variational parameter that measures the phonon-staggered ordering. After the transformation, H1
represents a new electron-phonon coupling system in which the equilibrium position of the phonon mode q; is
—( —1)'mo A, IK, —( —1)'m—o, and —

(
—1)'ma+ A, IK, when n, =0, 1, and 2, respectively. In other words, the polaron

effect, which will be taken into account by the following two transformations, is referred to the phonon-staggered order-
ing state, not to the original disordered state, so long as mo%0.

The second one is a modified Lang-Firsov-type transformation' that introduces into consideration the well-known
polaron effect,

Si = gg5(b, b, —)(n, —1), —

where we have defined

g =e /iiico, e =A, /2K,

c. is the polaron binding energy. As we said in I, it is esential here to associate the effective polaronic distortion, mea-
sured by 5, to the density fluctuation n,- —1, but not to n;. Actually, the homogeneous part of the charge density

g, n, =N is coupled to the. homogeneous deformation, which carries a "full" polaron efFect independent of 5 and decou-
pled from the following transformed Hamiltonian. This is one of the differences between our treatment and that of Ref.
14.
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Hi =exp(S2)H&exp( —Sz) =f'tcoN/2+gf'tcob; b;+KmoN/2 —g( —1)'(1 —5)Amon,
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+g( —I )'mc)fico
2A

1/2

(b; +b, ) —gA, 2M'

1/2

(1 5—)(b; +b, )(n, —1)

t—g(c, c, +, expI g5—[(b; b;—) —(b, +, b, —+, )]I+H.c. }
l, CT

+ [ U —(25 —5 )A, /K]gn; tn; t+ g Vn; n;+, . (8)

5 is the second dimensionless variational parameter, and it measures the degree of the polaron effect. When 5=0, there
is no polaron effect. When 5=1, we should have me=0 in Eq. (8), and the polaron effect suppresses the frozen
phonon-staggered ordering. When 0 & 5 & 1, we expect that there would be a nonzero frozen phonon-staggered ordering
but reduced by the polaron effect. Of course, the practical value of 5 should be determined by the variational ap-
proach. '

The third transformation is the so-called "squeezing" one that is used to partly ofFset the polaronic narrowing efFect

on the bandwidth, as can be seen from the second to the last term of Eq. (8), and to increase the possibility of the pola-
ron tunneling.

Si = ga—(b;tb; b;b; —), (9)

H& =exp(S& )Hzexp( —S&)=ftcoN/2++fico(b; cosh2a+b;sinh2a)(b; sinh2a+b;cosh2a)
l

1/2

+Km ON/2 —g( —1)'(1—5)Amon; —gA, 2M'
(b;"+b; )(n; —1)e

+g( —1)'mofico
2A

' 1/2

(b; +b;)e ~

tg(c; —c;+, exp[ g5[(b, b—, ) (b,t+—
&

—
b. ;+i)]e ~—I+H. c. }

l, CT

+ [ U (25 5)—A /K—]g n; t n; &
+Q Vn; n, +, ,

l

(10)

where a is the third variational parameter. This transformation generates a new type of coherent lattice state, the two-
Phonon state. ' When a~~ (e ~0) we can see that there would be no polaronic narrowing effect on the band-

-point energy of phonons go
value for a.

Now we can average H3 over the vacuum state ~0 }of the transformed phonon subsystem, and thus the electron and
the phonon subsystems are decoupled and we obtain an effective Hamiltonian for the electron subsystem,

H, &&OMAH&~0}=f'tco(v +I/i )N/4+KmoN/2 g( —1)'(1—5—)Amon; ptg(c; —c;+i +c;+i c; )

+ [ U (25 5)A—/K] g—n; t n; &
, +g Vn, n, +, ,

where

r=exp( —2a) and p=exp — 5 r
2K%co

(12)

We will use the Hartree-Fock approximation"'

n, ,n, , =n, , &n, , }+&n,, &n, , &n, , &&n, , }-,

(n; &+n; ~
)(n, +, t+n, +, t) =(n;t+n;i)&n;+, t+n;+, t )+ & n, &+n, t }(n,+, t+n;+, t) —&n, t+n;t }& n. ;+,t+n;+, t ),

and set

& n, }=
—,
' [1+(—I )'crS+( —1)'m, ], (13)

where a =+1 for spin up and —1 for spin down. S and m, are the long-range SDW and CDW ordering parameters,
respectively,
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(14)

(15)

We are in the half-filled case, so that

(16)

In the Hartree-Fock approximation H,z reads as follows:

H,a=fico(r

+llew

)NI4+KmoN/2+(V ——„'U,)m, N+ VN+ ,'U, N—+,'U, S —N ptg—(c, c, +, +c;+, c; }

—g( —1)'[(1—
5)Amo+ (2V —

—,
' U, )m, + ,' U,—S]n,t

—g( —1)'[(1—
5)Amo+ (2V —

—,
' U, )m, ,' U—,—S]n;(, (17)

where

U, =U —(25—5 )A, /K .

This Hartree-Fock Hamiltonian can be solved easily. The ground-state energy is

Es(5,r )IN =fico(2+1/2)/4+Kmii l2+ V+ ,'U, +( V——
—,'U, )m, + ,' U,S—

(18)

g I4p t cos k+[(1—5)Amo+(2V —
—,'U, )m, + —,'U, S]zI'~z

Ic &0

g I4p t cos k+[(1—5)Amo+(2V —
—,'U, )m, —

—,'U, S] ]'~
Ic &0

in which the variational parameter m0 is determined self-consistently by

(1 5) (1—5)Amo+(2V —
—,
' U, )m, + —,

' U,S

k &0 I4p t cos k+[(1—5)Amo+(2V —
—,
' U, )m, + —,

' U,s] J'~

(1 5) (1—5)kmo+ (2V —
—,
' U, )m, —

—,
' U, S

zizz'
k&0 {4p t cos k+[(1—5)Amo+(2V —

—,'U, )m, —
—,'U, S]zj'~z

The equations to determine m, and S, Eqs. (14) and (15), are

(1—5)Amo+(2V —
—,
' U, )m, +—,

' U, S

Nk &0 [4p t cos k+[(1—5)Amo+(2V —
—,'U, )m, + —,'U, S] )

'

(1—5)Amo+(2V —
—,
' U, )m, —

—,
' U, S

Nk&o [4p t cos k+[(1—5)Amo+(2V —
—,'U, )m, —

—,'U, S]z)'~

(1—5)kmo+(2 V —
—,
' U, )m, +—,

' U, S

Nk&o I4p t cos k+[(1—5)Amo+(2V —
—,'U, )m, + ,'U, S] I'—

1 (1—5)Amo+(2V —
—,
' U, )m, —

—,
' U, S

Nk &o t4p t cos k+[(1 5)Amo+(2—V —
—,'U, )m, —

—,'U, S] I'

Compared with Eq. (21), Eq. (20) can be rewritten as

(19)

(20}

(21)

(22)

Kmo=(1 —5)Am, or mo=(1 —5)—m, . (23)

Because of equations

Kmo/2+(V ——'U )m =—'[(1—5) A, /K+2V ——'U, ]m, =—'J, m,

and

(1—5)kmo+(2V —
—,
' U, )m, =[(1—5) A, /K+2V —

—,
' U, ]m, =J,m, , (24)
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where

J,=(1—5) A, /E +2 V —
—,
' U, ,

we have, from Eqs. (19), (21), and (22),

Eg(5, r )N=irt~(2+I/r )/4+ V+ ,'U—,+ ,'J,—m,+ ,'U—,S

g [4p t cos k+(J,m, + —,'U, S) ]'~ ——g [4p t cos k+(J,m, —
—,'U, S) ]'

Nk&o[4p t cos2k+(J, m, + —,'U, S) ]'~ Nt, &o[4p t cos k+(J, m, —
—,'U, S)2]'~ g6)

Nk&o [4p t cos k+(J,m, + ,'U, S—) ]'~ Ni, &o [4p t cos k+(j,m, —
—,'U, S) ]'

As the ground-state energy, Eq. (25), can be rewritten as

8 (5,r )N=Rco(r +I jr )/4+ V+ —,'U, +(1/8J, +1/4U, )[(J,m, + —,'U S) +(J,m, —
—,'U S) ]

+2(1/8J, —1/4U, )(J,m, + ,'U, S)—(J,m, ,'U, S—) ——g—I [4p t cos k+(J,m, + —,'U, S) ]'
k&0

+[4p t cos k+(J, m, —
—,'U, S) ]' I, (28)

when (1/8J, —1/4U, ) )0 we must let

J,m, + —,
' U, S= —(J,m, —

—,
' U, S), m, =0 (29)

5 and r, at which the ground-state energy Eg(5, r )/N
arrives at a stable minimum Eg (5,2 )/N.

A. co=0 limit

for Es(5, r')/N to be minimized; but when
(1/8J, —1/4U, ) &0 we must let

Je~e+ 2 UeS =Je~e 2 UeS, S =0 . (30)

Thus, we know that the CDW and the SDW order could
not coexist, and the transition between the two phases
takes place at

U =2J, U —A2/E =2V . (31)

III. RESULTS OF HARTREE-FOCK APPROXIMATION

In the Hartree-Fock approximation a long-range SDW
order results when U —

A, /K)2V, but a long-range
CDW order results when U —

A, /I(.
' &2V. This fact is

not influenced by quantum lattice fluctuations in the ap-
proximation.

In the co=0 limit we have found that 5 =0 and r =1
for any employed values of other parameters E'p U, and
V. So in this limit we have the same solution as that of
Chan and Heine. " A discontinuous transition takes
place at U —

A, /K =2V between the CDW and SDW
state.

5 =0 is just as one might expect because the co=0
limit is the so-called adiabatic limit at which there should
be no polaron effect.

B. co= (x) limit

When co= oc,

p=exp( e5 r /%co) —=I;
thus we can let ~ =1, that is, there is no "squeezing"
effect in this limit. This leads to

Our model Hamiltonian (1) is defined by four parame-
ters as far as ground-state properties are concerned,
which we can take to be the phonon frequency co, the po-
laron binding energy c =k /2K, the Coulomb repulsion
U, and V. The transfer integral t can be set equal to 1 by
rede6ning the overall energy scale.

Our variational procedure consists of two steps. '

First, for every choice of the variational parameters 5 and
r, Eq. (26) or (27) could be solved for m, or S, and thus
the corresponding ground-state energy E (5,r )/N [Eq.
(25)] could be determined. Second, one should search for
optimum values of the variational parameters 5 and r,

E (5, 1)/N —
—,'A'co= V+ —,

' U, + —,'J, m,~

g (4t cos k+ J,m, )'
~koO

2J,1= g (4t cos k+J m )& koo

when

2V~ U —k /E;
or

(32)
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Eg(5, 1)/N —
—,'fuu= V+ —,

' U, + ,' —U,S

——g (4t cos k+ —,'U, S )'i
&k o

U,
y (4t~cos k+ I U2S2) 1/2

&k o

when

2V & U —
A, '/E .

(33)

+(U A~/I—C)gn;&n, &+ ~n;n;+& ', (34)

By numerical calculations, we have found that the
minimum of Es(5, 1)/N is always achieved at 5 =1 no
matter whether the other parameters s, U, and V are
large or small. If we substitute 5 =1 and r =1 into
Eq. (11)we have the effective Hamiltonian

H,fr=Ra)N/2 tg(c;—~c; + )~+c;+)~c;~)

2
U

s O

4

FIG. 1. (1) m~ and (2) S vs U relations, Boo=0. 1, V=O, or
V = U/2. The dashed line is the co=0 result for U, V =O. The
611ed circle with the line through it denotes Monte Carlo simu-
lations (Ref. 4).

C. General co case

In our theory, mo is only a variational parameter, and
we should define the phonon-staggered ordering parame-
ter tn, which can be measured by experiments or by
Monte Carlo simulations, as follows:

m =—g( —I)'(q;),1
(35)

that is, in this limit the effective Hamiltonian becomes an
extended Hubbard model. This is the same result as that
of Hirsch, who got it by means of the functional integra-
tion, and discussed this limit in some detail. For V =0,
from the effective Hamiltonian (34) it is obvious that the
transition, at U=A, /K, between the CDW state and
SDW state, is continuous even if in the Hartree-Fock ap-
proximation.

ous, but when fin=1 the transition is quasicontinuous.
That is to say that in the case of V =0 when the phonon
frequency co increases from 0 to ~ the order of the tran-
sition between the CDW and SD%' state changes from
discontinuous to continuous in the Hartree-Fock approx-
imation.

For comparison, in Figs. 1 and 2 we also show the re-
sults of Monte Carlo simulations. We can see that our
results are in good agreement with those of the numerical
simulations, except the order of transitions in the case of
V=0. Hirsch predicted a continuous transition no
matter whether the frequency co is large or small. In ad-
dition, for V = U/2 the variational results, in agreement
with Monte Carlo simulations, indicate that the dimeri-
zation increases slowly with U, while the mean-field
theory "' (in which the effect of quantum lattice Huc-

where q, is the position operator of the phonon mode and

( ) represents an average over the ground state of the to-
tal system. It is proved in I that

m =m+ —5m= rn—
E E (36)

As ma=(A, /IC)(1 5)m„w—e have nt ~nto; that is, we
should include in m the contribution of the polaron
effect apart from the static staggered ordering parameter
mo.

P

V~Ul2

S

Figure 1 shows the dimerization parameter m and
long-range SDW order parameter S as functions of U in
the case of fico=0. 1 and V =0 or V= U/2 (we take the
unit so that t =1, k =0.25, and s =0.81). Figure 2
shows m~ and S as functions of U in the case of Ace=1
and V=0 or V = U/2. The qualitative behaviors of the
curves in the two figures are the same: When V= U/'2

there is always a long-range CDW order, but when V =0
there is a phase transition at U =2cz =1.62 between the
CDW and the SDW state. We can see from the figures
that when %co=0. 1 the transition is obviously discontinu-

FIG. 2. (1) m~ and (2) S vs U relations, fins=1, V=O, or
V= U/2. The dashed line is the co=0 result for U, V=O. The
611ed circle with the line through it denotes Monte Carlo simu-
lations (Ref. 4).



QUANTUM LATTICE FLUCTUATIONS IN THE ONE-. . . 4729

tuations are omitted) would predict no change in that
case.

Figure 3 shows the optimum values of the variational
parameters 5 and r as functions of U in the case of
fico=1, V=O or V=U/2. For V=O, when U increases
5 increases, reaches a maximum at U =1.62, where the
phase transition between the CDW and SDW state takes
place, and then decreases. Besides, in the r versus U
curve for the same case there is a minimum at the transi-
tion point. These facts indicate that at the phase transi-
tion point the polaron effect is strongest. For V= U/2,
the CDW ordering dominates, and it can be seen from
the figure that 5 decreases and 2 increases monotoni-
cally with increasing U. We believe that it is the long-
range order that reduces the polaron effect. '

Figure 4 shows the dimerization parameter m~ as func-
tions of V in the cases of Ace=1 and U=2,4, 6, and 8.
For comparison the results of Monte Carlo simulations
are also shown. The phase trnsition for every case is
discontinuous, and it takes place exactly at
V, =—,'(U —

A, /X) in our Hartree-Fock approximation.
These are different from the results of numerical simula-
tions that predict that the transition may be continuous
for small values of U, and it can deviate slightly towards
larger V for intermediate values of U. We wi11 return to
this problem and explain the meaning of the vertical
dashed-dotted line in the figure in the next section.

Figure 5 shows the CDW ordering parameters m„5
and r as functions of A'co in the case of U =4 and V =2.
Figure 6 shows the SDW ordering parameter S, 5, and

as functions of fico in the case of U =4 and V=0.
From the two figures we can see that 5 are always
monotonically increasing functions of Ace and in the
large-co limit 5 ~1, as is discussed in Sec. IIIB. Be-
cause when co increases from 0 to ~ our model system
goes from the adiabatic limit to the nonadiabatic limit,
we can say that the nonadiabaticity in the system is con-
nected with the well-known polaron effect. ' ' ' In the
two figures our variational treatment gives a good

I
I

I

I

I l

I

I
~

I

I) I

I
I I

1

I

l

I
I
I
I

I I

I
I

I
~ I I

U~6 ~i
I

I

I ~

I

I
I

I

I

I
I

I

I LI
v

2

0
0

FIG. 5. (1) m„(2)5, and (3) r vs fico relations, U =4 and
V =2.

FIG. 4. m~ vs Vrelations for various U, %~=1. The vertical
dashed lines represent the transition points in the Hartree-Fock
approximation. The filled circle with the line through it denotes
Monte Carlo simulations I'Ref. 4). See the text for further de-
tails.

I

(4)

(2)

m

2

I

2
U

FIG. 3. [(1) and (3)] 5 and [(2) and (4)] r' vs U relations,
Pm= 1, [(1)and (2)) V =0, and [(3) and (4)] V = U/2.

FIG. 6. (1) S, (2) 5, and (3) r vs Rap relations, U=4 and
V =0.
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description for the continuous decrease of the long-range
ordering parameter m, and S with increasing Ace between
the adiabatic and the nonadiabatic limit. It is the pola-
ron effect that reduces the long-range order, but it cannot
be suppressed completely in our model system with
nonzero Uand V.

IV. FURTHER RESULTS
FOR PHASE TRANSITION POINTS

In the Hartree-Fock approximation the phase transi-
tion between the CDW and SDW state occurs exactly at
U —A. /K =2V, and in the region of U A, /K—&2V it
predicts a fictitious long-range SDW order. However,
the results of Monte Carlo simulations predict a transi-
tion between the long-range CDW ordering states and

I

the short-range antiferromagnetic correlation state,
which occurs at V = V, & —,

'
( U —

A, /K) for intermediate
values of U. In this section, we will propose a valence-
bonding state for describing the short-range antiferro-
magnetic correlation for intermediate values of U and V,
and then compare its energy with that of the CDW state
to determine the phase transition point.

Let us come back to the effective Hamiltonian (11) and
make the variational parameter mo equal to zero,

H, tt=kto(r +1/r )N/4 ptg— (c; c;+, +c, +, c; )

+[U —(25 5)—A, /K)gn, &n, 1+ ~. n, n, +1 . (37)

When U —A. /E and V are larger than the hopping in-
tegral t, we can divide H,l into two parts,

H a Ho+H

HO —& I tX(C—
2n&yCZn+ 1a+C 2n+ 1 crc2ne )+[ U (25 —5}~—/K](n2n 1 n2n 1+n2n+1$ n 2n+11)+ Vn2n n 2n+ I l

n CT

H, = tg(C—2n, nc2ncr+C2 (rnc2„ ln),
n, a

(38}

(39)

(40)

and we will treat H
& by perturbation theory. The ground state of Ho in the half-filled-band case can be easily construct-

ed,

Ig &
—II »„,(C2nlC2„+ll C2nlc2n+ll )+;(C2n(C2nl+C2n+lfc2n+11} l0&

(1+v ) vQ

where ~0& is the vacuum state and
1/2

(41)

[U —(25—5 )A, /K —V]
U = +1

16t2
U —(25—5 )r(. /K —V

4t
(42)

The ground-state energy Es(5,2), which is the lowest
eigenenergy of the zeroth-order Schrodinger equation

(43)

and is related to the variational parameter 5 and 2, is

Eg(5, r )/N=3V/4+ ,'[U —(25—5 )l—/K]
' 1/2

+t[U —(25—5 )A, /K —V]
16

limit is shown in Fig. 7, where the dashed line denotes
U —

A,2/K =2 V. For comparison, the results of the
Monte Carlo simulations are also shown. It is evident
that when V & 1 and U —r(, /K & 2, that is, when H, in

4-

(44)

The optimum values of 5 and r, 5 and r, and the
stable minimum of E( g, 5r) /NEg(5, 2 )/N, can be
determined by a similar manner as that illustrated at the
beginning of Sec. III. In what follows, we take
Eg(5, r )/N, which is thus derived, as a rough estima-
tion for the ground-state energy of the short-range anti-
ferromagnetic correlation state and then compare it with
the ground-state energy of the long-range COW ordering
state to determine the phase transition point.

First of all, we consider the large-co limit (co= ~ limit},
where the effective Hamiltonian (37) becomes that of Eq.
(34). The transition line obtained from our work in this

2-

4
U -g/K

FIG. 7. Phase boundary between CDW and SDW regions in
the ~= ~x& limit. The dashed line denotes U —A,'/E =2V. The
solid line denotes the prediction of the valence-bonding state in
Sec. IV. The closed circle denotes Monte Carlo simulations
(Ref. 4).
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1.5

V
C

FIG. 8. Phase transition point V, vs Ace relation, U =4. The
horizontal dashed line denotes V, = —,'(U —

A, '/K)=1. 19. The
short-dashed line at the top-right corner is the co=00 limit:
V, = 1.4442.

(40) could be treated as a perturbation, our results for the
transition point are in good agreement with those of the
numerical simulations.

Then we consider the general co case. Figure 8 shows
the transition point V, as a function of A'co in the case of
U =4. The horizontal dashed line denotes

V, =—,'( U A, /E) = 1.19—,

the result of the Hartree-Fock approximation. The short
dashed line at the top-right corner of the figure is the
co=00 limit: V, =1.4442. We can see from the figure
that V, increases monotonically with increasing fico,

starting from V, =1.2884 when co=0. We believe this is
because the polaron effect, connected with the nonzero co,

is unfavorable to the long-range order.
We have also calculated the values of V, in the cases of

A'co=1 and U =4, 6, and 8, and the results are shown in
Fig. 4 by the vertical dashed-dotted line. The result for
U=8 is V, =3.3442, which is in good agreement with
that of Hirsch, V, =3.32+0.05.

state of a half-filled-band one-dimensional molecular-
crystal model with on-site and nearest-neighbor Coulomb
repulsion. Our main results are summarized as follows.

(a) We have shown that our variational approach gives
a rather good description, even if a Hartree-Fock approx-
imation is used to decouple the Coulomb correlation, of
the continuous variation of the dimerization as functions
of the Coulomb repulsion U, V, and the frequency co. We
have compared our results with those of numerical simu-
lations and found that they are in good agreement. Our
variational treatment might overestimate the lang-range
order because we start from a long-range ordering state
with m040, while the finite-size calculations would in-
crease the disorder. We believe that these are the main
factors that result in the deferences between our results
and those of Ref. 4 when the long-range CDW order
dominates.

(b) Our theory in the Hartree-Fock approximation al-
ways predicts a discontinuous transition between the
CDW and the SDW state, exactly at U A, /E =—2V, ex-
cept for V=O; in this case the order of the transition
changes from discontinuous to continuous when ~ in-
creases from 0 to (x).

(c) We have made a rough estimation for the ground-
state energy of the short-range antiferromagnetic correla-
tion state. By comparing it with the ground-state energy
of the long-range CDW ordering state we have deter-
mined the phase transition point that is in good agree-
ment with that of the numerical simulations for inter-
mediate values of U and V. Furthermore, we have shown
that the transition point V, moves up ( U and e~ fixed)
when the frequency co increases, and this indicates that
the polaron effect favors a disordered state.

In this paper, the superconducting correlations are to-
tally disregarded because the parameter regime discussed
is particularly unfavorable for them except for V =0; in
this case we showed in I that in the co=~ limit if
U (A, /K the system is on the borderline between CDW
and superconductivity. ' If the system is a departure
from the half-filled case the superconducting correlation
might dominate. ' This is a problem for further
research.
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