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Generalization of the random-phase-approximation (RPA) theory of ferromagnetism for spins
S = ~, based on a refinement of the decoupling for a relevant three-spin Green's function, is present-

ed. With the reasonable choice of two characteristic functions of the present theory —the virtual

spectrum L(co) and the decoupling factor ~(cr ), where co is an excitation energy and 0. is the relative
magnetization —the theory provides a fair description of magnetic phenomena not only at tempera-
ture T~O, in the vicinity of the Curie temperature Tc, or at high T, but at all temperatures and
external magnetic fields H. A relation between some parameters of the functions h(~) and ~(0 ),
and the critical indices of the static scaling theory, has been established. The form of the universal

scaling function W, following from our theory, has been found. For the power-law virtual spectrum
6 ~ co' at co~0, 0&s & 1, we have found the nonanalytic increase of the magnetization versus the
field at T & Tc.cr( T,H) —o( T,O) ~ H'. It reduces to the classic result of Holstein and Primakoff for
the three-dimensional isotropic Heisenberg ferromagnet having s =

—,. Assuming this power-law

spectrum at all energies up to some cutoff energy, we have obtained a rather good agreement of the
present predictions for cr( T,H) with experimental data for Ni, for all temperatures and fields avail-

able. Some model virtual spectra are found to lead to interesting models of ferromagnetism, with

the magnetization and the susceptibility functions given in terms of explicit analytic formulas.

I. INTRODUCTION

The spin-wave theory for the isotropic Heisenberg
ferromagnet in three dimensions (3DIH) predicts that
close to the temperature T=0 the magnetization
M ( T,H ) grows with the small magnetic field H as
5M=M(T, H) M(T, O) AH—'~, see Holstein and Pri-
makoff. ' Near the Curie temperature Tc the static scal-
ing hypothesis is generally considered to be valid, and
one speaks of magnetic phenomena in terms of linear sus-
ceptibility g and critical indices P, 6, y, and y . Rather
naturally, there arises the question, whether, and in
which way, the predictions of both approaches match at
intermediate temperatures. Some authors could have
been aware of this problem (see Ref. 2, p. 20), but so far it
has not been analyzed openly, it seems.

The system of localized spins S=—,
' coupled ferromag-

netically is a prototype of real ferromagnetic systems, and
its properties have been analyzed in many approxima-
tions. " The quantum-mechanical aspect of the spin
dynamics is strong here, but fortunately the equations of
motion for the spin operators are relatively simple. This
allows one to describe many properties of such systems
analytically, at least in the random-phase approximation
(RPA), as has been done by Bogolyubov and Tyabli-
kov. ' Somehow, the physical content of this important
work has been little investigated, and, for example, the
behavior of 5M versus H for H~O in the RPA has not
been known, although numerical analysis of Flax" at

finite H suggested a nonlinear behavior in this limit.
The aim of this paper is twofold: (i) to generalize the

RPA theory so that it allows us a fair interpolation be-
tween the spin-wave T~O region and the static scaling
T~T, region and (ii) to predict the analytical behavior
of the relative magnetization o and the initial susceptibil-
ity y in the generalized RPA (its label is MCRPA, to be
explained later) and the RPA itself, at all limits of in-
terest in the whole T-H plane. Besides, we demonstrate
that this theoretical scheme is rather versatile and can be
specified to generate a number of interesting models of
ferromagnetism.

The plan of this paper is as follows: In Sec. II we in-
troduce a correction of the RPA decoupling of the
relevant three-spin Green's function (GF), which results
in the aforementioned generalization of the RPA —the
MCRPA. In Sec. III a basic equation of state relating 0,
T, and H, and an equation relating g and T are derived,
and a comparison with some exact results is done; here a
useful notion of the "virtual spectrum, " related to the
spectrum of elementary magnetic excitations, is intro-
duced. For some model virtual spectra we solve the
MCRPA equations analytically —see Sec. IV. The lead-
ing term of the field dependence of the magnetization
below Tc has been established in Sec. V. In Sec. VI we
give a rather full analysis of the T and H dependence of
the magnetization at T~0, and determine conditions for
some spurious terms to vanish. An equation of state near
Tc has been derived in Sec. VII and Appendix E; in Sec.
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VIII it has been rewritten in the form of the scaling equa-
tion, with critical indices given in terms of formal param-
eters s,p of the present theory (related to the virtual spec-
trum and a decoupling factor, respectively). Some
MCRPA models of ferromagnetism have been numerical-
ly analyzed in Sec. IX. Then in Sec. X we show that, in
spite of a rather simplistic choice of the virtual spectrum,
the present approach allows us a good fit of its predic-
tions with experimental data for nickel. A summary of
conclusions is given in Sec. XI.

In the main body of this paper we mainly present a
simple intuitive argument. As such an analysis has not
been done so far even for the RPA, a rather full treat-
ment, including derivations and mathematical details, has
been given in the Appendixes.

magneton. With the coupling constants J& =0 and JI )0II

it is the Ising ferromagnet, whereas for JI =JI )0 weII

have the isotropic ferromagnet. We shall consider some
intermediate anisotropic cases too. St", Sf, and St' are the
usual spin operators attached to the lattice site 1.

In this work we shall follow the derivations of Bogo-
lyubov and Tyablikov (BT), and Plakida. It is con-
venient to introduce the relative magnetization

(2.2)

Actually, because of the lattice translational invariance of
the system, o. is independent of the lattice vector 1. Here
(X &r is the thermal average of the operator X with the
Hamiltonian (2.1). We recall that for S=

—,
' the following

relation holds:

II. A CORRECTION OF THE RPA DECOUPLING
SI'=-,' —S( SI+, (2.3)

Let us consider an anisotropic Heisenberg ferromagnet
in an external magnetic field H directed along its anisot-
ropy axis (chosen to be the z axis). The Hamiltonian of
such a system of N spins S=

—,
' is

&= —
—,
' g [Jt I St'St' +JI I (SI"St +S—)sf ) ] PH Q —St

1,I' I
I@1'

(2.1)

where S =S'AS . Therefore, the magnetization we
seek can be expressed in terms of the correlation function
(S S+ &r, which can be determined, via the spectral
theorem, from the corresponding double-time Green's
function (GF). Using the equation iX=[X,&], we ob-
tain for this GF,

(2.4)

where p is the product of the Lande factor and the Bohr the following equation of motion:

pH GI t
(—t —t')=5(t —t')([S(+,St ] &z. + g [J)' I ((St'. (t )St+(t ),St. (t') » —Jt t-((St'(t)st+-(t), s( (t') »],dt I"A l'

(2.5)

where [X,Y] stands for the commutator of X and Y, and
t is time.

The two-spin GF on the left-hand side (LHS) of Eq.
(2.5) depends on a three-spin GF on the right-hand side
(RHS). A general strategy of the Green's-function
methods in such cases is to approximate the three-spin
GF by an appropriate combination of two-spin GF's.
Several ingenious "decoupling" schemes have been
developed; let us just quote Callen, Katsura and Hori-
gushi, and Kumar and Gupta, and the references quot-
ed there. An interesting comparison of relative merits of
the commutator and the anticommutator Green's func-
tions has been made by Schreiber.

These studies, usually aimed at the low-temperature
expansions of the magnetization at H=O, provide a
description that is rather complex and therefore not too
convenient for predicting the magnetization at nonzero
fields and at elevated temperatures. Instead, in this paper
we propose an extension of the BT treatment, which re-
tains its formal structure and yet allows us to interpolate
approximately between the low-temperature Bloch-type
behavior of the magnetization and the static-scaling (or
renormalization-group) dominated behavior near the Cu-
rie temperature.

Let us generalize the BT decoupling (also called the

I

random-phase approximation, RPA, in this context), on
requesting that

((St'(t)S(+. (t),st, (t') »=att t (St'&r((st+(t},st. (t') » .

(2.6)

As follows from Eq. (2.5), we need it for l "Al only. On
setting ~&I I-=1, we return to the BT decoupling, leading
to the T behavior of the magnetization at T~0, and
to the critical index P= —,

' near the Curie temperature Tc.
Instead of following the RPA, let us try to gain some in-
sight into the nature of the decoupling factor ~11 I-, via
the simplest integral characteristic of the GF's involved:
We request that leading frequency moments of both sides
of Eq. (2.6) should be equal. Taking into account that for
the GF of the ((X(t},Y(t') » type the zeroth moment is
( [X,Y] & z-, we arrive at the equation

2(stst' &r5rr" (St St &r~tr=2irtr-r (S'&r5rt- . . (2.7)

Although for some combinations of indices the equality
of both sides turns out to be impossible, in the important
case I' = l "Al we obtain from (2.7)

(2.8}
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cr = 1

qGBZ

E
coth (2.9)

Now, however, the magnetic excitation energy depends
also on ic(o ),

E =pH+oic(cr)coq . (2.10)

Temperature and frequency are taken in units of energy,
k~T~T and Ac@—+co, here and throughout the paper.
The wave vector q belongs to the first Brillouin zone (BZ)
and coq is defined as follows:

co =—' g [J)~—JI exp(iq. l)] .
1%0

(2.11)

According to Eq. (2.10), we can treat co as the excitation
energy per unit magnetization [to be precise, per unit of
the product eric(o )], in the limit H~0, say, a virtual ex-
citation energy. Note that the self-consistency enters into
Eq. (2.9) not only through the factor o (as in RPA) but
also through the decoupling factor «(o ) in Eq. (2.10).

III. FORMULATION OF THE THEORY
IN TERMS OF VIRTUAL SPECTRUM.

HIGH-T EXPANSION OF THE SUSCEPTIBILITY

In further sections of this paper we shall investigate the
physical content of Eqs. (2.9) and (2.10) under some as-
sumptions concerning the form of «(o ). As the very pos-
sibility of introducing the a different from unity and o.
dependent has appeared to us via the analysis of moments
of relevant Green's functions, we shall call this approach
the "moment corrected" RPA theory (MCRPA), just to
distinguish it from other theories related to the RPA.

It turns out that even in the classic RPA case (rc= 1)
these formulas so far have not been analyzed with the
care they deserve. To pursue this aim, we have found it

Intuitively, this form looks natural. The two-spin corre-
lation function appears here in the decoupling procedure,
which is in the spirit of the Callen concept. Note that
the decoupling factor (2.8) goes to unity when T~O be-
cause in the ground state all spins should be parallel.

%e want to introduce, via the decoupling factor, more
realistic information about the three-spin correlation
than is in the RPA, without changing substantially the
forrnal structure of the RPA. Therefore, in the following
we drop all subscripts, assuming ~ to be the same for all
combinations of l, l', I', appearing in the calculations.
Equation (2.8) suggests that the o dependence of «should
be crucial. Therefore, it is postulated here that a depends
on T and H via cr(T, H) only. The form of the function
K(cr ) will be specified later.

Let us mention that in terms of the more general
decoupling scheme proposed recently by Kumar and
Gupta our decoupling is a special case, corresponding to
the following decoupling factors of them:

f, =(1—o«)l(1 —o), f2=f3=0.
As ~ is just a number, not an operator, further steps of

the BT derivation remain the same, and we end up with
the RPA-type equation,

very useful to introduce the notion of an auxiliary spec-
trum b (co). First, let us recall the notion of the spectrum
of energies Eq of elementary excitations, i.e., the density
of states

g(co)=N ' g 5(co E—q), fdefog(co)=1 .
qE BZ

(3.1)

g(co) =5{[co JtlH]1[c—rK(cJ)])l[crK(o')] . (3.3)

An analysis of the low-frequency behavior of b, (co) for an
isotropic Heisenberg model (to be used later to explore
the low-T and low-H magnetization in the MCRPA) is
given in Appendix A.

Using the virtual spectrum, we can rewrite Eq. (2.9)—
the equation of state for this system —in the following
form:

pH+~atehu
)

0 = coth
2T (3.4a)

Here we have introduced the notation for an average
with b, (a)),

{f(co))—:fd~&(~)f(c0), (3.4b)

to be used from now on. Let us note here that the
well-known relation for the magnetization, cr(T, H)—
= —o(T,H), results, via (3.4a), in a relation for the
decoupling factor

«( —o ) =ic(o ) . (3.5)

The form (3.4) of the equation of state, being equivalent
to the original Eq. (2.9), is more convenient than (2.9) be-
cause it involves only one-dimensional integration. It
offers a perspective of study models characterized by
various virtual spectra, and an opportunity to derive a
number of special cases and to sysematize them without
any explicit reference to dispersion relations of magnetic
excitations or to dimensionality or symmetry of the sys-
tem investigated. In particular, it allows one to examine
models characterized by the virtual spectra of the origin
different from the Heisenberg Hamiltonian (2.1).

In other words, the magnetization in the MCRPA, as
expressed by Eq. (3.4}, is a functional of two functions:
b, (co) and «(o ).

In the following we shall not return too often to the
roots of this equation. Rather, we shall rely on a general
phenomenological argument in accepting a reasonable

Clearly, this spectrum depends on the "external" parame-
ters T,H.

Explicit considerations of the details of the q depen-
dence in (2.11) and of the q integration in (2.9) can be
dificult. To avoid it, let us introduce the "density of vir-
tual states, "or the "virtual spectrum"

h(co) =N ' g 5(co —coq), f dco h(co) =1 . (3.2)
qEBZ

This function is an inner characteristic of the system, de-
pending only on the material constants, J)' and J&, and on
the crystal structure, given by the lattice vectors l. It is
related to the spectrum of elementary excitations (3.1}by
the obvious relation
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form of both functions to examine the variety of magnet-
ic phenomena following from the MCRPA.

To demonstrate the first advantage of the approach
proposed, let us look at the Curie temperature Tc. Put-
ting H =0 and o ~0 in (3.4) we find

pling J=I restricted to z nearest neighbors,

4T (T)
expert

zI 2 zI I
p2 4T z 4T T

(3.15)

M(T, H }=@So (T,H), (3.7)

is the so-called "initial susceptibility" y(T), or its inverse
r(T), defined as follows for S=

—,':
dM(T H) p l. r}o(TH)

H o dH 2 H-o B(pH}

rT=
2y( T)

(3.8)

(3.9)

[note that r (T) is in units of energy]. Using Eq. (3.4), we
can easily derive a relation between the susceptibility and
the temperature for the paramagnetic region, T)Tc. In
order to do this, we replace the cr on both sides of Eq.
(3.4a) by its small-H expansion

o(T,H)=cr(T, O}+ H+O(H )=0+ +O(H~)
H T

(3.10)

and then take the limit H ~0 to obtain

1 b (co)

2T 7'+KpN
(3.11}

This elegant equation shows that to determine the rela-
tion between r and T in the MCRPA it is enough to find
the Hilbert transform of the virtual spectrum b, (co). The
high-T expansion of r(T) obtained from this equation is
as follows:

2

1 Kp
Tc=, lim a(o. ) =

2( co 0'~o 2 co

This shows that the critical behavior of magnetization is,
within the MCRPA, crucially sensitive to the form of
b, (co) in the vicinity of co=0. With Ko finite and positive
the system can be ferromagnetic only if (co ') is finite
and nonzero.

Another important characteristic of ferromagnets, be-
sides the magnetization

In such cases the moments (3.13) and (3.14) reduce to

(co) =zr/2,
(co'& =(I+ I/z)(co)' .

(3.16)

(3.17)

Thus, in order to have the leading terms of the MCRPA
expansion (3.12) the same as in the exact expansion (3.15),
we must assume

co=—a(0)=1 . (3.18)

If we choose this value for ao, the g(T) of the MCRPA
becomes the same as the one of the RPA. The discrepan-
cy between the RPA and the exact result starts from the
next term,

'2
4T 1 zI zI

z [yRp~( T)—y&„,( T) ]=— +0
p

P'" z 4T 4T

3'

(3.19)

It is noteworthy that this discrepancy might be removed
by a modification of the virtual spectrum, such that (co )
of Eq. (3.17) is replaced by

'&„„=(1+2/ )( (3.20)

Similarly, by an appropriate modification of higher mo-
ments, we might correct the higher-order terms of (3.12).

Having established the conditions of reconciliation be-
tween the present approach and the exact results, we find
out that they are too restrictive if we are interested in a
single simple scheme capable of describing the experi-
mental situation fairly at all temperatures and fields.
This is why in the next sections we shall turn a blind eye
to the condition Kp=1 ~ Hopefully, a more consequent
treatment of this point will emerge in the future.

On comparing Eq. (3.11) with (3.6) we see that r~O
when T~Tc+0+. Let us recall that according to the
static-scaling theory the r ( T) should have at this limit a
power-law character

=1+( ) '+(2( )'—( '))
r p2 2T 2T r ( T) ~ g ' o- ( T Tc )r . — (3.21)

3

+o(
2T

(3.12)

r(T) ~y '~(Tc T)r' (3.22)

This relation defines the critical index y; a similar rela-
tion holds for the critical y' in the region T (Tc,

where the moments can be easily calculated. For this iso-
t op' coup ng Ji =J1 =Jt we haveIl

(3.13)

( 2) 1 yJ2+ 'i yJ 2

1

(3.14)

Expansion (3.12) may be compared with the exact
high-T expansion obtained by perturbation methods (see,
e.g., Tyablikov ) for cubic lattices, with the interspin cou-

provided that r is finite in this region.

IV. FULLY SOLUBLE MCRPA MODELS

Let us stress here the point of view (to be proven in fur-
ther sections) that the moment-corrected RPA is not only
a useful theory of ferromagnetism, allowing one to inter-
pret and understand, at least semiquantitatively, several
subtle phenomena. Also, especially in the virtual spec-
trum formulation (3.4), it leads to simple but nontrivial
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b, (co) =5(ru —rul ),
where

(4.1)

l&0
(4.2)

Using (3.4), we immediately obtain the molecular-
(internal- or mean-) field, Weiss-type equation

models of ferromagnetism, showing merits of clarity and
transparency. In this sense, the present work gives an in-
tegration of the theory of ferromagnetism at a level of
reasonable precision reconciled with relative simplicity.

As a good entry point, we shall present in this section
some simple, fully soluble models. For the Ising case,
JI =0, there is only one excitation energy ~i, and we
have

r(T)=4C (Tc —T)+0((TC —T) ) . (4.10)

We can see that the corresponding critical exponent y' is
also 1. At the same time the coeScients multiplying
~T Tc~—differ by a factor of 2; the same occurs in the
classic MFA; see Fisher's comments to his Eq. (3.39).

For the RPA, with C=2, we have obtained from (4.7)
the explicit formulas for the T dependence of the spon-
taneous magnetization o (T,O) and the inverse suscepti-
bility r ( T) for the whole ferromagnetic range of tempera-
tures:

pansion below Tc follows directly from Eqs. (3.9), (3.8),
and (4.7). To avoid at this stage, a discussion of the o.

dependence of a near Tc, let us write the formula for the
RPA case ~=1,

'2

pH+ o K(o')col
0.= tanh

2T
(4.3) cr(T, O)=log&(2' '+(2 ' "—1)' )/

r(T) =4Tcln(2)(2 ' ' —1), r= Tc/T .

(4.11)

(4.12)
and from (3.11) for the paramagnetic inverse susceptibili-
ty,

r(T)=2(T Tc), —
T& Kuril/2 ——. (4.4)

(8 —A )Ku

2 ln(B /A )
(4.6)

and from (3.4) the form of the equation of state for this
case,

pH+rJK(o')8 K(o )(8 —A)
sinh

2T
=exp

2T

In particular, with the RPA decoupling factor a=1, one
has just the Weiss equation. Such a derivation of this
textbook formula shows an interrelation between the
Weiss and the Ising concepts, and suggests possible ex-
tensions of them.

For the intermediate case J& & JI &0 the virtual spec-
trum is broad and shows a gap at low energies. As a
rough imitation of such a situation, we can take the rec-
tangular (uniform) spectrum

b (ru ) =8((8 —ro)(cu —A ) ) /(8 —A ), 8 & A & 0 . (4.5)

From (3.6) we immediately get the corresponding Curie
temperature

Similar explicit formulas can be obtained for C= —,', 3,
and 4.

The functions for C=2 have been shown in Fig. 1. As
the formulas (4.8)—(4.12) are explicit and transparent, the
rectangular-spectrum model is a particularly convenient
model to demonstrate the basic features of ferromagnetic
phenomena. Note that in the Weiss formula (4.3) the o
versus T dependence is given implicitly.

Interestingly, the Curie temperature (4.6) for the rec-
tangular spectrum goes to zero when A ~0. It is a hint
that ferromagnetic ordering gets destroyed when the den-
sity of virtual states is too large at low energies. Note
that such a situation, h(ru)~const for co~0, corre-
sponds to the two-dimensional isotropic Heisenberg sys-
tern.

Examples of other model virtual spectra, leading to an-

alytic solutions in the paramagnetic region T ) T&, are
given in Appendix B and Table III. Interestingly, one
finds here that the value of the critical index y depends
on the presence or absence of a gap at co=0 in the virtual
spectrum; see also Fig. 2. This point will be discussed
later.

pH +CJK( rr ) A

2T
(4.7)

The initial inverse susceptibility for T & Tc follows easily
from Eq. (3.11). In terms of the scaled reciprocal temper-
aturer=TC/Tand C=B/A we have

(T)=2T, C inc 1 —C
C —1 C —1

Close to T~ it is

(4.8)
0

TlTc

(4.9)

i.e., the critical index [see Eq. (3.21)] is y =1. Similar ex-

r(T)=2C (T Tc)+0((T Tc) —), —lnC 2

FIG. 1. The RPA (i.e., a=1) spontaneous magnetization
cr( T, O), Eq. (4.11),and the scaled inverse magnetic susceptibility
r(T) l(4Tc), Eqs. (4.12) and (4.8), vs reduced temperature
T/Tc, for the rectangular virtual spectrum (4.5) with
B/A =C=2.
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r
Tc 3.

bility is not valid there. On the other hand, the static-
scaling theory gives that at T=Tz there is cr ~H' for
H ~0, and the scaling index 8 is close to 5. In this sec-
tion and Sec. VI we shall therefore investigate, what the
predictions of the RPA and the MCRPA are for the in-
termediate range of temperatures, and whether one can
use the present approach to interpolate between the tem-
perature limits mentioned earlier.

First, on differentiating Eq. (3.4) with respect to H, tak-
ing the limit H~O and applying the definition (3.8), we
obtain

1.4 1.8 2.2 2.6
y( T)=cr~ sinh

0 pKpN

2T

—2

[4T@(cro,T)],

FIG. 2. The scaled inverse magnetic susceptibility r(T)/Tc
vs T/T& in the paramagnetic range of temperatures, T & T&, in
the RPA. The elliptic virtual spectrum (see Appendix B),
shown in the inset, is chosen to mimic three different cases: (a)
(=4.0—the spectrum close to 5(co 2TC), w—hich results in the
classic mean-field behavior of the susceptibility [here
r =2(T Tc), i.e.—, the critical index y = 1], (b) /=0. 25, a broad
spectrum with a gap, y= 1, (c) (=0.01, (almost) gapless spec-
trum 6 ~ co' ' for co~O (reminiscent of the spectrum for the 3D
isotropic Heisenberg Hamiltonian at this limit). At T~T&
there is r ~ ( T—Tc ), i.e., y =2.

(5.1)

cp(cr, T)=cr coth
crK(cr )co

2T
—1=0, (5.2)

and

where ere=a(T, O), the spontaneous magnetization, is a
root of the equation

4(cro, T)= lim (p(cr, T) .
&0 c)cr

(5.3)

V. FIELD DEPENDENCE
OF MAGNETIZATION BELOW Tc

While there is a vast literature on the temperature
dependence of the spontaneous magnetization, especially
at T~0 and T~Tz, see the Introduction, its field
dependence (except at Tc) seems to be an almost forgot-
ten problem. We only have to mention here the numeri-
cal analysis for the S=—,

' isotropic Heisenberg ferromag-
net in the RPA, done by Flax;" he has observed non-
linear trends in the cr versus H plots below T&, but has
not investigated the H ~0 limit. Even in the textbooks it
is hard to find that in their classic paper Holstein and Pri-
makoff have not only given their famous transformation,
but have also proven for isotropic Heisenberg that at
small T the magnetization goes as

5o = [o ( T,H )
— (Tcr0) ] Hac'

for H ~0. This means that the notion of initial suscepti-

( co )—:f dco co 6(co)
0

(5.4)

must be convergent. Emergence appears at the lower
limit of integration, unless there is a gap there in the vir-
tual spectrum, as in the case with anisotropic interspin
coupling, J)~) JI . However, for the isotropic Heisenberg
ferromagnet in three dimensions (3DIH) Eq. (2.11) im-
mediately gives Eq. (A9), i.e., b, (co) ~ co'r for co~0. It is
clear in this case, and for any model spectrum of the form
5 o- co' in this limit, with 0 & s & 1, that the integral (5.4) is
divergent and the initial susceptibility y is infinite.

To make further investigations more quantitative, we
should concentrate on the function o (T,H) for small H.
Let us take the virtual spectrum in a rather general form,

Qbviously, 4(o o, T)QO because cro must be a single root
of Eq. (5.2) in the range 0& T & Tc. For the numerator
of (5.1) to be finite, the necessary condition is that the in-
tegral

&(co)= .

e(co)co'6, (co)=e(co)co' g D co, for co&co„
m=0

aribitrary, integrable function of co, for ~„&co(co
0, for co (co,

(5.5)

where co„ is the lowest nonzero point of nonanalyticity of
A(co), co =maxco, and for the power index s there is
0 & s & 1. Note that such a form of h(co) with s =

—,
' corre-

sponds to the 3DIH ferromagnet; see Appendix A.
The freedom of having s different from this value turns

out to be useful for a description of magnetic phenomena

near Tc. Note that the spectrum with a gap, b, (co) =0 for
0 (co (co„, is also covered by this general form —one ob-
tains it by setting D =0, m =0, 1,2, . . . .

Evaluation of the integral (3.4) with the preceding
spectrum, at small H, has been done in Appendix C. On
solving iteratively Eq. (C4) we obtain the following form
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of the o versus H dependence, valid for 0(T & T& ..

o(T,H) o—(T,O)

cr( T, O)

2@DDT

sin(ns )@(o0, T )a c/c(cJ0)
'

S

X +O(H ' H')
o ()a(cr0)

(5.6)

where era and 4 are defined by Eqs. (5.2) and (5.3) and DD
is the coeScient of the leading term of the analytic factor
in the expansion (5.5}. We can see that for H~O the
field-induced increase of the magnetization has a nonana-
lytic form ~ H', with the power index s as in the nonana-
lytic factor of the virtual spectrum (5.5}. For the 3DIH
ferromagnet the magnetization increase goes as H', i.e.,
as found by Holstein and Primako8' for the limit T~O.
However, our result is valid at all temperatures below
T~, both in the RPA, a=1, and in the MCRPA ap-
proach.

VI. LO%'-T EXPANSION GF MAGNE'&RATION

~, =a(1), ~',:dx/der —at cr =1,
cra(cr ) =@i[1+(I+x&/z, )(cr —I)+O((cr —1) )) . (6.1)

On solving Eq. (Dl) with the help of (D16) and (6.1) we
obtain

It is interesting to compare the higher-order terms of
the magnetization expansion with respect to T, for low T,
with the exact terms derived elsewhere. An expansion
procedure for Eq. (3.4), appropriate for this purpose, has
been presented in Appendix D. Function I' given in the
form (Dl) of this equation has been calculated —see Eq.
(D16}—assuming the virtual spectrum (5.5). Factor
oa(o ), appearing in the first argument of this function,
can be expanded with respect to the quantity o —1,
which is small for T~O,

o(T,H)=1 —2[DDI'(1+s)Zi+, (x)y'+'+D, I (2+s)Z2+, (x)y +'+Der(3+s)Z&+, (x)y +'+O(T +')]

+4I[1—(1+s)(1+x',/~, )][DDI (1+s)] [Zi, (x)] y
+ '

+[2—(3+2s}(1+le',/~, )]D r(1+s)D, r(2+s)Z, ,(x)Z, (x)y + '+O(T + ')I,
x =pH/T y =T/z, . (6.2)

credibility to the RPA and MCRPA predictions in the
whole ferromagnetic region of temperatures.

Being still within the 3DIH model, we can compare
Eq. (6.2) with the exact low-temperature expansion de-
rived by Dyson. ' His result consists of two parts: a con-
tribution due to independent spin waves, given here in
Eq. (D18}, and a correction due to dynamical spin-wave
interaction, which in the present notation can be nicely
written as

We can see that the low-temperature expansion of the
magnetization is determined in full by the constants
DD, Di, D2, . . . , and by the power index s of the low-

frequency part of the spectrum (5.5}, and by the decou-
pling factor z(o ) and its first derivative, both taken at
o =1. With a, = 1 and a', =0 this MCRPA formula turns
into the RPA formula, such as given by Tyablikov, al-
though it should be noted that our coefBcients D have
been defined in a general way —Eqs. (A10)-(A14)—
whereas those in Ref. 4 concern cubic lattices with
nearest-neighbor interactions only.

Amazingly, in the mentioned work there is not an ex-
plicit form of the cr versus H dependence in the H~O
limit; the function Z (pH/T) [defined in Eq. (D13)], ap-
pearing in Ref. 4 and in Eq. (6.2), is in fact somewhat
difFicult to analyze in this limit. We
complete this point using Eq. (D15); th
the expansion at small T and H/T are

0~„„=—8Q DDI'( —,')Zizz T

X D, I'( —,')Z T ~ +O(T ) . (6 4)

cr(T,JI)=1—2DDr( —') g( —') —27/' H
2 T

(6.3)

have been able to
The value of Q, according to Dyson, is between 1.35 ande leading terms of 1.68 (for cubic lattices and S=

—,'). The so-called kinemat-
ical interaction leads to corrections that are exponentially
small and negligible.

We see, that in order to have the terms in the first set
of square brackets in (6.2) equal to the initial terms of the
Dyson formula (D18) for spin S=—', we should set the

T3/'2+ Of T5/'2s 2'+O'T ~ . power index s =
—,
' and choose the value of the decoupling

factor at cr= 1 to be

We can see that the Holstein-Primakoff low-temperature
result, following from the spin-wave mechanism of mag-
netic excitations, is hidden in the formula (3.4). It lends

a, =a(1)=1 . (6.5)

The terms in the curly brackets of (6.2) correspond to
the dynamical interaction contribution (6.4). We see that
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«i= s«)/{s+1) . (6.6)

Our term ~ T has exactly the same field dependence
~Zs~2(pH/T)Z5&2(pH/T) as the Dyson term (64}. On
inserting (6.5) and (6.6) into its coefficient we obtain, in
our case,

—1

QMCRPA (6.7}

i.e., the coef6cient has the same sign as the Dyson's, al-

though it is 4-5 times smaller.
We have therefore found that within the MCRPA (but

not RPA) it is passible to eliminate the T3 term, while re-
taining the T term, although its coeScient is too small.
However, in this work we shall not exploit this point any
further.

(6.2) contains a spurious term ~ T, absent in (6.4}. It
turns out that one can eliminate this term by choosing
the derivative of the coupling factor at a = 1 to be

(to )(t+Q lolt')=R, p,H
cFKo

(7.3)

where the notation for the RHS is (i) if the virtual spec-
trum shows a gap at low frequencies, i.e., D =0 for
ttt =0, 1, . . . , then [see (C35}]

A general idea behind this form is that of the two terms
on the LHS, ~o and ~ lo l~, only one is to be left; the
same takes place for the terms ~ H' and ~ H'. The actu-
al choice depends on the coefficients of these terms,
which can be zero or not. This point is crucial for this
paper —it is the freedom in choosing the parameters b, c
of «(o ), which makes it possible to adjust the MCRPA
critical index P to the value following from experitnent or
derived with the renormalization-group (RG) methods.

We can cover all possible cases with a single formula
by writing

s=l, R, =(c0 '&, (7.4a)

«(cr)= («10+ha clo l ), —

1+b —c= 1/«0, 2&p &4 .
(7.1)

These are the values of the coefficients b and c, together
with the power index p, that determine within the
MCRPA the values of some critical indices, as will be
shown later. Such an ansatz is in the spirit of the On-
sager reaction-field correction of the mean-field theory of
magnetism, ' as one can see best by applying the form
(7.1) in Eq. (3.4a).

The general form of the MCRPA equation of state (3.4)
has in Appendix E been transformed into a combination
(E6) of power series in variables, which are small in the
critical region. This equatian, with the «(o ) of Eq. {7.1)
inserted, will now be rewritten in terms of the variables
o, H/o, and t [see (E5)], and the accuracy will be limited
only to the leading terms of the expansions involved.
One obtains

VIL EQUATION OF STATE NEAR Tc

In this section we shall find the form of the equation of
state in the MCRPA in close proximity to the Tc. In this
region the static-scaling theory is valid, and one may ask
whether the present theory can match it and in which
way. Indeed, this can to a great extent be achieved with a
proper choice of the decoupling factor «(cr) and of the
model virtual spectrum b, (co}.

When T approaches Tc, the formula (5.6) becomes
meaningless, because its denominator tends to zero; we
need a more subtle treatment; see Appendix E. In this re-
gion the temperature dependence of the decoupling fac-
tor x becomes important. It is our ansatz that it enters
only through the relative magnetization cr. In accor-
dance with the discussion in Sec. II and with Eqs. (3.5}
and {6.5), and having in mind some further steps, we pos-
tulate «(o ) in the following form:

or (ii) if Do )0 in the spectrum (5.5), then

0&s &1, R, =ADO/sin(ns) . (7.4b)

The notation far the LHS is (i) if c =0, b =1/«0 —1,

b&[&~ ')(~&/3],
then

2&p &4, Q~=c . (7.5b)

It is clear from the above, that depending on our choice
of the coeScients b, c and Do,s we can have essentially
diferent models of ferromagnetism.

VIII. SCALING EQUATION

The last form of the equation of state (7.3) can be
transformed into the form typical for the static-scaling
theory (see Ref. 2, and references therein). Depending on
the choice of the coefficients b and c [related to the for-
mal index p, see (7.5)], and on the properties of the b, (t0)
[related to the formal index s, see {7.4)] we can have many
kinds of critical behavior, each represented by an equa-
tion of the form of a scaling equation

y =x (Q x~+sgn(t))' ',
R,

(p =2) V (2 &p & 4), (s = 1)V (0 & s & 1 }, (8.1)

where

x=o/ltl'", y=pH/ltl"+""', (8.2}

(7.5a)

or (ii) ifb=(co ')(co)/3, c=l+b —1/«0, c)0, then

(co ') ft+(3(to '&&co& b)tr'+clol~]—
'1

+g)
Do~ pH ~R pH

sin(ns) cr«0
' o«0

T Tc
Tc

(7.2)

and o. «0 and H «0 have been assumed. Consequently,
on comparing x and y defined by (8.2) with the same vari-
ables defined within the static-scaling theory using the
critical indices, we have established the following rela-
tions between the critical indices and the MCRPA pa-
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rameters s and p:

P=1/p, b, =(p+s)/p/s, 5=1+p/s, y= 1/s . (8.3)

Customarily, one writes the scaling equation in the
form x = JV(y), where IY is the so-called scaling func-
tion. Equation (8.1), being of the form y= W' '(x),
therefore gives the (inverse) scaling function. It has been
derived here, for the first time it seems, from first princi-
ples.

Six sets of the parameters and critical indices, charac-
terizing six types of the MCRPA models of ferromagne-
tism, have been shown in Table I.

We can see that the MCRPA offers many possible
models, and one needs an independent guide to choose
some. This can be either an experiment or suggestions
from an independent theory, such as the renor-
malization-group theory (RG). As an example, we have
take the values @=0.3647 and y = 1.3866, determined for
the isotropic Heisenberg system by Le Guillou and Zinn-
Justin' using the RG methods, and used them to calcu-
late, via Eqs. (8.3), the parameters s and p of the present
theory: s =0.72118 and p=2.742. The same has been
done for the Ising system, assigned here to s=1; with
P=0.325 one gets the value p=3.077. For the Ising sys-
tern there is no similar way to manipulate the critical in-
dex y in order to adjust it to experimental or RG values;
it is just y =1 here, as in the mean-field approximation
(MFA).

We may consider the so-obtained numbers as giving us
some information on the ( SfSI' ) correlation function, via
Eqs. (7.1) and (2.8), and on the virtual spectrum [i.e., the
density of states, see (3.3)] at low energies, via (5.5). The

number s=0.72118 differs considerably from the value
s =

—,', following from the formula (A9) for the 3DIH mag-
net. This may be an artifact, due to our forced implanta-
tion of the RG result onto the RPA scheme. On the oth-
er hand, we may consider it as an indication of the
temperature-induced renormalization of the energy spec-
trum of ferromagnets near the transition temperature, as
compared with the spectrum near T=O. In any case, the
idea of an interrelation between the microscopic parame-
ters s,p and the indices of the scaling theory is important
and enlightening.

The six models described earlier, characterized by vari-
ous sets of mutually interrelated parameters and indices,
have been presented in Table I. Some experimental
figures are also shown. Interestingly, the indices in the
original RPA model for the 3DIH system (type 3, with
s =

—,
' and a = 1) are the same as for the spherical model. '

IX. SPONTANEOUS MAGNETIZATION
FOR SOME MCRPA MODELS

In this section we report the results of numerical calcu-
lations of the magnetization for several MCRPA models
exhibiting the renormalization-group-imposed critical in-
dices, and compare these cr versus T plots with the corre-
sponding Weiss and RPA plots, treated here as reference
plots.

It is convenient to express characteristic frequencies of
virtual spectra and temperature in units of the critical
temperature Tc. Various virtual spectra with a gap at
co=0 (types 1 and 2 in Table I) are expected to result in
similar magnetic behavior. (Some such spectra are dis-
cussed in Sec. III and Appendix 8 in connection with the

nr

TABLE I. MCRPA indices s and p, and critical indices for six types of models.

Type of model

Spectrum with

gap at co=0
Weiss-Ising

RPA imposed ~
RG imposed P

2
3.077

0.5
0.325'

3
7.154

Gapless spectrum
RPA imposed ~

3DIH imposed s
RG imposed P

3DIH imposed s
RG imposed y

RPA imposed c
RG imposed P

and y

0.5

0.5

0.7212

0.7212

2.742

2.742

0.5

0.3647'

0.5

0.3647'

6.484

3.771

4.802

1.3&66'

1.3866'

Experimental (Ref. 21)
Ni
Fe

Co
Ga

0.378
0.389
0.37
0.36
0.38

4.58
4.35

3.61

1.34
1.33
1.30
1.23
1.19

'From Ref. 13.
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TABLE II. Parameters of the decoupling factor x, (7.1) and of the model virtual spectra for various models of the MCRPA theory
of ferromagnetism. These models correspond to the six model types of Table I. po=2(1+y)(4+8y+y )/(1+2y)/3.

Model

Ising spectrum (4.1)

ci)1 pTc, s 1, ( co ) —col

%'eiss-Ising (WI)
RPA-imposed ~, p=2

RG-imposed P=0.325,

p = I/P 2/p (8—3p)/6 (—8
3

Debye spectrum (9.1)

corn
—pTc, 0 (s & 1

(co ') =(s+ I)/s/co
(~)(cu ') =(s+1)'/s/(s+2)

RPA-imposed ~
3DIH-imposed s =

2

RG-imposed P=0.3650, p= i/P
3DIH-imposed s =

—,
'

RG-imposed y=1.3866, s =1/y
RPA-imposed c, p=2

RG-imposed P and y,
p =1/13, s = I/y

6/p

2(1+y)/p

As above

p/(1+y)/2 —1

(1+y )'/(1+ 2y ) /3

(48—Sp)/30

1+b —1/vp

48
5

(pp

(pp

paramagnetic susceptibility. } To represent them we take
the Ising virtual spectrum (4.1), and characterize such
models by the dimensionless parameter p =col /Tc.

For models based on gapless spectra (types 3—6 of
Table I) we take the Debye-like spectrum of a power-law

type

(9.1}

The plots of the decoupling factor «[o ( T, O) j, shown in
the inset, display its strong variation with temperature
(except for p=2, the same as the WI case). There is a
tendency of a to increase for T~ Tc. This may be inter-
preted as a tendency of three-spin correlation functions
for the Ising systems to decrease in this limit slower —see

1.0

where Do =(s+ 1)/co'+', characterized by two

parameters —the power index s and the cutoff energy co

p=tu /Tc. Other simple spectra of this type (not con-
sidered here) might be the gapless elliptic one and the
gapless singular one, both shown in Table III. We should
emphasize that the main reason for choosing (9.1) as our
model spectrum is that it is the simplest spectrum of the
(5.5) type, i.e., the one having the power-law behavior at
low frequencies. It may differ signi6cantly from real
spectra not only in different shape at higher frequencies,
but also at low frequencies —the value of Do in (9.1),
which is imposed by the normalization condition, may be
quite different from Do following from the dispersion re-
lations cu at small wave vectors q [see Eqs. (A9), (A10),
and (A2)].

Having established the virtual spectrum, we can deter-
mine other relevant parameters for the six model types of
Table I; they are given in Table II. The corresponding
o ( T,O) plots are shown in Figs. 3 and 4. Figure 3 shows
the MFA spontaneous magnetization curves adjusted, via
«(o ), to exhibit the RG critical exponent' for the Ising
system, P=0.325 (model 2). Clearly, they are steeper
near Tc than the classic Weiss curve (labeled WI, model

1), with P= —,'. The overall magnetization turns out to be

quite sensitive to the choice of the parameter p=cor /T&.

0.8

Q6-
X

Q4- 1&-

0

0 02

02

25~
04 0.6 QB 1.0

Q4 08 1.0

FIG. 3. Spontaneous magnetization o.(T,O) vs T/Tc, assum-
ing virtual spectrum 6(co)=5(co—col ), i.e., the MFA. Curve
WI —classic %'eiss Ising plot, solution of Eq. (4.3) at H=O with
«=1, (model 1 of Tables I and II); here P= —'. The remaining

curves represent model 2 of these tables. It is the MFA model
with the decoupling factor a, Eq. (7.1), chosen so that the criti-
cal index P=0.325, the renormalization-group value for Ising
case. The curves are labeled by the corresponding values of the
parameter p=col/Tc Appropriate «[o. (T,O)] plots are shown
in the inset.
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1.0

~ LLpG„„

Eq. (2.6)—than the corresponding product of the magne-
tization and relevant two-spin correlation functions
would.

Now let us approach the magnetization of the systems
with gapless virtual spectra. For the Debye-like spec-
trum (9.1) the comparison of the classic RPA magnetiza-
tion curves with the predictions of the MCRPA, Eq.
(3.4), adjusted to exhibit the RG critical indices near Tc,
is presented in Fig. 4. Clearly, the RG corrections push
0. to much higher values than those occurring in the
RPA, which is in accord with experimental trends. This
increase is quite substantial even if one takes into account
the critical index y only; see the curve RGy. It should
be emphasized that with such y we have a deviation of
the low-temperature magnetization 1 —cr cc T'+', s = 1/y,
from the famous Bloch T law. Indeed, the power in-
dex 1+s=1.7212, see the tables, which should be com-
pared with 1.5 for s= —,', the spin-wave-model value for
the 3DIH system. The difference, although small from
the point of view of ordinary experimental accuracy (see,
e.g., Fig. 5 for Ni), may have a profound meaning. In
the RGy case the P index still has its MFA value —,',
while the RGPy curve exhibits the critical behavior,
o ~(Tc T)~, cha—racterized by the RG P=0.3647. The
value p =6, dictated by the ~=1 of the RPA, is optional
in the MCRPA; in the next section this freedom will be
exploited to achieve a good fit of the model curves to the

experimental data for Ni.
The a[o(T,O)] curves drop from 1 at T=O to =0.79 at

Tc. This agrees with the intuition of an enhanced decline
of higher-order correlation functions near the transition
point, as compared with the low-order ones —see Eq.
(2.8). Note that for Ising systems an opposite tendency
has also appeared, as mentioned earlier.

We should note here that model 3 does not correspond
in full to the BT theory. Although we have here ~=1
and the power index of the virtual spectrum is s =

—,', our
model spectrum (9.1) differs significantly from the exact
spectrum (3.2) with the 3DIH dispersion law (Al), ap-
pearing in the BT theory.

X. COMPARISON WITH EXPERIMENT FOR Ni

A magnet characterized by the localized spin S=—,
'

does not possibly exist in nature, but at least nickel was
once believed to be the case. This is, partly, why we have
taken Ni for comparing its magnetic characteristics with
predictions of the MCRPA models. It is also hoped that
the exact value of S is of secondary importance when one
does not deal with the absolute value of the magnetiza-
tion M(T, H) but with the relative magnetization
cr=M(T, H)/M(0, 0). Finally, as we have worked with
the model forms of the virtual spectra (4.1) and (9.1), only
the main features of the characteristics can be expected
to be in agreement with experimental data. Only being
aware of these inherent limitations, it is sensible to make
the comparison. As we shall see, however, the result is
better than anticipated.

In Fig. 5 we compare the MCRPA plots of the RGPy
type for the spontaneous magnetization versus tempera-
ture with the experimental data for Ni, as collected in the

0.4 0.9

L ~~RESaa

W~g P7

L&a"
G8-,

0 02

0 02

0,4 0.6
Tl'r

I

0.4

09 8

0.8 1Q

$0,

FIG. 4. Spontaneous magnetization o.(T,O) vs reduced tem-
perature T/T&, assuming the Debye-like power-law form of the
virtual spectrum, Eq. (9.1). The curve labeled RPA follows
from the original BT equation (3.4) with ~=1 and the spectrum
index s =

2
(the value such as for 3DIH Hamiltonian), model 3

of the tables. Remaining curves correspond to the MCRPA
models presented in the tables. Curve RGy is for model 5, in
which the power index s in the virtual spectrum is adjusted to
lead to the critical index y=1.3866 of the renormalization
group for 3DIH Hamiltonian. In model 6, curve RGpy, the
critical indices P=0.3647 and y = 1.3866 of the RG have been
imposed to determine the corresponding microscopic parame-
ters p and s, via Eqs. (8.3). Inset shows the corresponding
x[o(T,O)] plots. In all cases p=6.

Q2

0 02 O.4 O.e Oa ~g

Tl Tc

0
Q6 08 100.4

FIG. 5. Spontaneous magnetization of model 6 of the
MCRPA, but with the RG critical indices replaced by the ex-
perimental values p=0.378, y=1.34 for nickel, compared with
the experimental points for the magnetization taken from Ref.
15. The only free parameter p has been found to be 6.2 for the
best fit. With the original RG parameters the deviations are
—10% larger and for best fit we have found p =6.5.
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Landolt-Bornstein tables, ' with T& =627.25, according
to Carre and Souletie. ' An overall fit is rather good for
the case p=6.2, although one must remember that at
both limits T~O and T~T& taken separately the spin-

wave theory and the RG approach, respectively, provide
a better agreement. The virtue of the present result is,
however, clear: It is perhaps the only plot, so far, in

which the predictions of these two theories, so important
from a conceptual point of view, have been (to a good ap-
proximation) united within the single interpolation
scheme of microscopic origin. With a somewhat different

p one obtains a similar quality of the fit for Fe and Co.
True, there is a small discrepancy, mentioned in Sec.

IX—at low temperatures the power index in
1 —o ~ T'+', when calculated using the RG indices P and

y (or using experimental indices), differs a little from the
spin-wave value —,. This, however, is hardly visible within

the pictorial accuracy of Fig. 5. Besides, we could easily
remove this discrepancy, on introducing a phenomenolo-
gic interpolation such as

s =
—,
' + ( 1/y —

—,
'

)exp [—w ( T Tc ) /( —Tc T ) ]

(giving correct value at T~O, T~Tc, and T~ ~) into
the MCRPA, if we were for the interpolation merits only.

The discrepancy between the experimental points and
the MCRPA curves of the RGPy type in Fig. 5, seeming-
ly small, turn out to be quite visible in the isotherms, 0.
versus the scaled external field h =pH/Tc, near the criti-
cal temperature, as we show in Fig. 6. Here the experi-
mental points have been taken from the paper by Weiss
and Forrer' (corrected for demagnetization effects, ac-
cording to them). We have used the experimental critical
indices P, y of Kouvel and Comly' (with the original RG
indices the deviations are slightly larger, —5%). The
largest discrepancy appears in the critical isotherm, at Tc
(experimental data marked with T/Tc=1.0005 in Fig.
6), in spite of the fact that the critical index 5, as calculat-
ed here from the experimental P, y (see Table I) via Eqs.
(8.3), differs negligibly from the purely experimental 5
given there, and from the corresponding RG value.

Most probably, it is the simplified power-law form of
the virtual spectrum (9.1) with a wrong value of Do,
which manifests itself in the wrong factor f in the form
such as cr =fh ' for the critical isotherm. This occurs
in spite of the fact that such a spectrum gives the index 5
correctly (to the accuracy of s discussed earlier).

An overall quality of the fit is fairly good. The devia-
tions between the calculated curves and the experimental
points decrease fast for temperatures departing up or
down from the critical temperature. Characteristically,
the existing deviations near Tc are at all measured mag-
netic fields roughly the same as at H=O, Fig. 5, so the
general trend of the magnetization changes as a function
of the field is given properly.

In Fig. 7, in order to demonstrate the way in which the
critical indices tend to show up in the MCRPA iso-
therms, we present three of the curves o(T,H), which
were already shown in Fig. 6, but now we plot them
versus h' for T(TC and versus h' '+~' for T=Tc.
With such a scale, at a sufficiently small field, the straight
line is expected. We can see that such a behavior covers

'f/T =04674
~ ~ n n n n rasa n ~ ra n nn n ll Il

0.8-
Ni 0.7L 65

v v U U

0.8779

0000 0 g 0 0 0 0
0.6 &

0.4

0,9674

'0995

0.2

0006 X012 QOOl8 00024

h=p H/Tt-

FIG. 6. Isotherms of magnetization cr(T,H) vs external mag-
netic field (in the units of critical temperature), h=pH//T&,
model 6 of the MCRPA as characterized for Fig. 5, compared
with the experimental data of Weiss and Forrer (Ref. 17). The
curves and experimental points are labeled by corresponding re-
duced temperatures.
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FIG. 7. Three isotherms o. vs h of Fig. 6, now plotted against
h' for temperatures below Tc (two upper curves) and against
h' '+ ' at the transition temperature, in order to demonstrate
how wide the range of H is, where the leading terms dominate
in the expansions (5.6) and (7.3).
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Spectrum

Elliptic
width 2A )0
gap gA &0

TABLE III. Inverse paramagnetic susceptibility r ( T) for some virtual spectra.

2~ 'A x' e(x),
x = A' —{co—gA —A )'

A sop/4

Gapless'
elliptic,
width 2A & 0

2m 'A x' e(x)
x =co(2A —co)

2(T—Tg) /T A xo/4

Singular,
width A &0
gap gA &0
0&s&1

co —gA
f's

sin(s~)
y, (x)=

$71

2s i Tcps {/)

[T—Tco, (4)]'"
Ti/s [T T + {g)]1/s

sAao

2p, (g)

Xx'(1 —x) '6[x{1—x)] p, (f)=, 1-
1+

Gapless'
singular,
width A)0

( T T )1/s
2s 'Tc T'' —(T—T )''

sA~p

2

'Such spectra were used in Ref. 22 in connection with some phonon problems.

almost the whole h range at T=T&/2 and at T&, but
only a small part of this range for T close to T&. A small
deviation from straight line is always present.

XI. CONCLUSIONS

In the present theory —the MCRPA —the magnetiza-
tion and related characteristics are given as a functional
(3.4) of two functions —a virtual spectrum b(co), related
to the spectrum of elementary excitations, and a decou-
pling factor a(o ), related to the three-spin correlation
functions. Elementary mechanisms of interspin correla-
tion and information on energy spectra of elementary
magnetic excitations are in this versatile approach
present to a degree sufficient to allow us to shape it, via
some phenomenologic parameters, to fairly fit its predic-
tions, for the magnetization versus T and 8 and the ini-
tial susceptibility versus T, with the experimental data or
with the predictions of the renormalization-group theory.

Decoupling procedure for the three-spin Green's func-
tion in the equation of motion (2.5) for the two-spin GF
(($(t),$(t'))) has been refined, as compared with the
RPA theory, on requesting the equality of first non-
vanishing frequency moments. It has suggested to us that
the decoupling factor ~ depends mainly on the relative
magnetization o ( T,H ). The so-constructed moment-
corrected RPA theory represents the long-needed inter-
polation scheme for the magnetization and the initial sus-
ceptibility of isotropic Heisenberg ferromagnets (and, to a
lesser extent, for Ising ferromagnets), the scheme reason-
able in the whole (T H) plane. -

In particular, one can choose the model decoupling
factor (7.1) so that the magnetization near the Curie tem-

perature exhibits the renormalization-group (or experi-
mental) critical index P. Similarly, one can set up the vir-
tual spectrum (5.5) so that the critical index y agrees with
the RG or experimental values. There exist simple alge-
braic relations between the parameters s,p of the
MCRPA and the critical indices —Eqs. (8.3). The rela-
tion between the power index s in the leading term of the
assumed spectrum (5.5) and the critical index y for the
susceptibility in paramagnetic region of temperature
seems to be of a conceptual importance.

We have determined the behavior of magnetization
versus the field H at all temperatures. For T & Tc it goes
as

5o =cr(T,H) —o(T,0) ~H',

which turns into the Holstein and Primakoff' result
5o ~H' in the case of the isotropic Heisenberg fer-
romagnet in three dimensions, at T~O. The equation of
state in the critical region has the form (8.1) of the scal-
ing equation. Thus we have derived, for the first time, it
seems, the form of the scaling function W(y) of the static
scaling theory, both for the MCRPA and the RPA.

Using some model forms of the virtual spectrum in the
MCRPA equation (3.4) we have been able to complete
the integration involved and obtained analytic formulas
for the magnetization and the susceptibility versus tem-
perature, see, e.g., Eqs. (4.11) and (4.12), which are expli-
cit and thus good for demonstration; see also Table III.

We show that the MCRPA-predicted magnetic charac-
teristics at some special T,H limits can be, on varying
disposable parameters of the decoupling factor (7.1) and
the spectruin (5.5), made identical with the exact values,
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calculated elsewhere from the Hamiltonian. Such possi-
bility should not be pushed too far, however, because the
too-short-blanket effect can appear —and improvement
in one (T H)-region can result in a worsening of the fit in
other regions. Without such a pressure, the MCRPA
with a rather primitive model virtual spectrum gives for
Ni a good description of the experimental situation in the
T-H plane —it becomes only fair near T~, although the
critical index is right.

Summing up, we have found that, starting from the an-
isotropic Heisenberg Hamiltonian, one can generalize the
usual RPA theory of ferromagnetism, so that it provides
a fair interpretation of magnetic phenomena at all fields
and temperatures, including the critical phenomena. In
this practical scheme all essential predictions are given in
the form of relatively simple explicit formulas. We be-
lieve that with more sophisticated model functions b(co)
and «(o ) an even better description of experiment is pos-
sible.

APPENDIX A: VIRTUAL SPECTRUM OF THE
THREE-DIMENSIONAL ISOTROPIC

HEISENBERG MODEL AT LOW FREQUENCIES

where

C (n)= —,
' g J~,~(n /), n=q/q .1
~ m! l&O

(A3)

&(~)= f d3q 5(co —a) )
(2n ) nz

"3f d Q„f dqq 5(co co —).
(2~}3 4~ "

o

Here U„ is the volume per one lattice site /. Now we fix
the direction n and change the variable q (a scalar) into x
defined as

x =x(q)=Czq —C4q +C6q— (A4)

This series can be inverted in a standard way,

In order to determine the virtual spectrum b, (co), in the
definition (3.2) we replace the q summation by the in-

tegration over the Brillouin zone (BZ)

The dispersion relation for virtual frequencies, Eq.
(2.11), for the 3DIH ferromagnet, J) =JI =J&, takes on
the form

coq= —,
' g J~[1 exp(i—q /)] .

lWO

(A 1)

Here the range of interspin coupling is arbitrary. Assum-
ing the inversion symmetry of the structure (as, e.g. , in
the case of all Bravais structures), and coupling isotropy:
J( —/) =J(/) =J( ~/~ ), we can rewrite it as follows:

(iq /)' (iq /)~ (.iq /).
2! 4! 6!

q = A &x'+ A2x + A3x +

where

A )
= Cq ', Aq —C4Cq, A3 =(2C4 CqC6 }Cz—

and then differentiated:

q~dq =
—,'( A, x+ Azx + A3x + )'

X(A, +2A~x+3A3x + )dx .

(A5)

(A6)

(A7)

=Cz(n)q —C4(n)q +C6(n)q— (A2)
Having calculated the series for the square root and then
for the product of two series, we finally get

x[q Z[n)j
3/2 1/2 5A2 7A3 7A2

h(co)= d Q„dx 5(co—x)—,'A, x'i 1+ x+ + x~+
(2~)' 2A, 2A, 8A2

(A8)

Now for small co, i.e., less than min x[qaz(n)], and
within the convergence radius of the series in (AS), we
can perform the integration with respect to x and obtain

I

For example, the cubic lattices we obtain

( (n)=~ QJ(n / +pg / +pg / )=~n gJ

(A10)

D, = ' f d'Q -'[C (n)] ' 'C (n),2(2~)3 4
(A11)

b(cu)=co'i (Do+D, co+D~co + . . ), (A9)

where the coefficients D are given by the full solid angle
integrals

VatDo= f d Q,[C~(n)]
2(2m)' 4

and, from (A10)

vat 12

(2n ) QJI/
l

3/2

=
—,', g J(/ (A13}

I

(A14)

Dp = f d~Q —"[C (n)] " [(: (n)]2(2n. )' 4~

——,'[Cz(n)] ~ C6(n) (A12}

APPENDIX B: PARAMAGNETIC SUSCEPTIBILITY
VERSUS T FOR SOME SPECIAL SPECTRA

Besides the rectangular spectrum (4.5), there are other
virtual spectra b(co), for which Eq. (3.11) for the inverse
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paramagnetic susceptibility r can be analytically integrat-
ed. In Table III we give the relevant formulas for a cou-

ple of them, the Curie temperatures calculated by re-

questing r =0, and the values of critical index y.

APPENDIX C: THE MCRPA EQUATION OF STATE
AT FINITE TAND SMALL H

16 (A, , h)= g GA(A, }h",
&

n!

where

6„"(h)= lim L(h+ hm)) .
a

h~0 Bh

(C12)

(C13)

pH
2T ' (C 1)

To understand the field-dependence of the magnetiza-
tion at finite temperatures of various magnetic systems,
which may be described within the MCRPA, we have to
make it explicit in the equation of state (3.4). This will be
achieved now in the form of a power series in H. %e do
not assume H to be infinitesimal —the only limitation is
imposed by the radius of convergence of these series.

We assume the virtual spectrum (5.5). Three variables
of our problem, o, H, and T appear in the RHS of Eq.
(3.4) in two combinations only:

For example,

6, (A, )= 1 1

(hm)' sinh'(hm) ) (C14)

gB GBL+gBU (C15)

6 L(A, , Q, A)= —1, 'f da)b(r0)co '(1+A,h 'co)
0

When investigating the GB, we must separately examine
the small frequency limit. We choose an arbitrary fre-
quency Q from the range (O, co„), where b, (co) is given in
the form (5.5), and split the integration range in (Cll)
into the lower (L) and upper (U) parts,

O'K( o' )

2T (C2)
(C16)

While we are interested mainly in the small-h expansions,
we must allow the A, to be arbitrary —it is large at low
temperatures, although small around Tc and above it.
We rewrite Eq. (3.4) as

6 "(A,,Q, A)= J dcob(co)[(A+Ace) ' —(ka)) '] .

(C17)

o ( coth( h +Ace) ) —1 =0,
and then break up the term depending on h,

o [F(A,)+G(A, , A )1—1=0,

(C3) The latter function is analytic in h,
00

GBU(A, ,Q, A)= ~ GBU(A, , Q)h"
n ——~

". (C18)

where

F(A, ) = ( coth(A co) ),
6(A, , h )= ( coth(h +W) —coth(4u) ) .

(C5)

(C6)

'n

GBU(A Q) = lim 6 "(&,Q, h )
a

o Bh

=n!( —()"h ' "f dmh(m)a)
0

(C19)

L(x)=coth(x) ——1
(C7)

It is convenient to introduce the coth(x) function with
the 1/x singularity removed, i.e., the Langevin function pn using the low-frequency expansion (5.5) for 4(co) we

rewrite (C16}as

having the obvious expansion

L (x)= 'x ——'x 3+—'x '——
3 45 945

C X2m+1
m=0

(C8)

6 = —
A,

' g D I(s+rnQAA, '),
m=0

where we have introduced the function

I(p, Q, g)= I dcoaP '(1+/ 'co)

(C20)

(C21)
valid for Ixl &n. Coefficients c„can be expressed in
terms of the Bernoulli numbers. Using this function we
can write (C6) as

which can be expressed' in terms of the hypergeometric
function F(a,P;y;z) as

with

G =6"+6'

= (L(A+Leo) L(Ace) ), —

(C9)

(C10)

I(p, Q, g) =p 'Q"F( 1,p; 1+@;—Qg' ')

~P Q~-'
+ $F(1 1 —p2 —p; —gQ ') .

sin(np) p —1

h+A, m A,~ Ace +h
The 6 (A„h ) is an analytic function of h at h =0,

(Cl 1}
(C22)

Using this form, we can split the 6 into its nonanalytic
(N) and regular (R) parts
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G BL G N+ 6BLR
' S+m 'm

(C23}

h m.

sin(m. s )
6 (s(,,h)= —)1,

' g D
h

sin( mrs +nm) A,

T

oo gS+m —1

6 "
(A, Qh)= —A,

' g D —F l, l —s —m;2 —s —m;—
s+m —1

(C24)

(C25)

Note that the nonanalytic part is already independent of
the Q. On exploiting that

oo

F(1,1 —p;2 —p, ;z}=g z",
0P —1 —n

(C26)

which depends on Q, but when we combine it with the
GBU, Eq. (C18}, which is also regular and Q dependent,
we arrive at the sum, which is already Q independent,

GBR(g h ) GBLR+GBU y gBR1 1 h

we get, for the regular part the expression,

Qs+m N

6 (A, Qh)= —g
o s+m n—

L

(C27)

G =0. {C34}

Therefore 6(A, , h} is an analytic function of h. The
coefficients g„"of the 6 "expansion (C29) turn in this
case into the moments of the virtual spectrum

and 6„"(A.), Eq. (C13), occurring in the regular part of 6,
depend on the b, (rsvp} in its full range of frequencies, while
the nonanalytic part of G, Eq. (C31), involves the low-
frequency part of b, (c0) only, namely, its analytic factor
5, (ro) and the power index s, 0 &s & 1, which defines the
character of nonanalyticity of the spectrum.

It should be noted that the virtual spectrum with a gap
at lOW frequenCieS, h(r0}=0 fer 0 &rsi & CO„, (e.g., SuCh aS
for the Ising madel) is represented by the formula (5.5)
with b,,(c0)=0. It follows from Eq. (C31) that in such
cases

(C28)

1 gBR (~—1 —n)
n! (C35)

because for the coefBcient

OS+m —8

g„"=f dcoh(co)co ' "+ g
m=0

we immediately get

(C29)

APPENDIX D: EQUATION OF STATE FOR T « T

We shall examine here the MCRPA equation of state
(3.4), looking for its explicit dependence on T and H in
the region of very low temperature, and assuming the vir-
tual spectrum of the general form given by Eq. (5.5).
First we rewrite (3.4) as follows:

BR g(Q)Q
—1 —n

dQ nl
r

00
Qs+m '

Q
—1 —n

m=0

cr 1+2P

where

T pH
sr'.(o }

' T
—1=0,

Finally, we have obtained the equation of state (C4),
with F(A, ) given by (C5), and G(A, , h } in the form

kpHP= g Xzexp
JIc

—I T
(D2)

with

6 GN+GBR+GA (C30) a~or e
(D3)

G N

S

1 h

sin(mrs) A,

where the b,,{co) is the analytic factor in the spectrum
(5.5), and

using the obvious expansion

coth(x}=1+2 g exp( —k2x), x) 0 .
k=1

In order to evaluate (D3) we split the integration range

GB — y g
1 1

" h
(C32) Xk =Xk"+Xk

oo6"= y. GA{X}h"
, nt

(C33)

As desired, in this form of the equation of state the h

dependence is explicit. The coefficients g„, Eq. (C29),

+ deeds u exp
0 0 T

(DS)

where Q is an arbitrary fixed frequency from the range

(O, cu„}. We note that the term Xk is exponentially small

in 1/T
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k cTKQ
Xk =exp

oo T
Xk = g I (s+m+1)D

m=0 O'Kk

's+m+1
+X" (D 1 1)

X f ~d ~( )
ko'K(co Q)

(D6)
the nonanalytic term exhibiting the T-power behavior has
been separated from the Xk, which is exponentially
small in 1/T. On returning to (D2) we obtain

because the integral in (D6) is clearly less than one.
For b(co) given by (5.5) we can evaluate the term Xk"

analytically

xa = x D„J dmsp+ exp

T pH
oK(cr)

' T

00 T= g I'(s+m+1)D
O'K O'

's+m+1

= gD
m=0

's+m+1'
T r(s+ m+1) p,H

Xzs+m+1 T
+ ' ' (D12)

k O'KQ where

(D7)
Z~(x)= g k e

k=1
(D13)

r(v) = r(v, 0}, (D8)

I (v, u)= f dxx" 'e (D9)
Q

the latter having the following asymptotic expansion' for
large u:

T

r( )
„„~'r(1 —+ ) 1.=, r(1 —v)( —u)

(D10)

Therefore, in writing

where r(v) and I'(v, u } are the complete and the incom-

plete gamma functions

Z (x}=e "4(e ",a, 1) .

Using its known expansion we find

(D14)

Z (x)=r(1—a)x '+ g (k!) 'g(a —k)( —x)",
k=0

(D15)

where g(x } is the Riemann's g function.
Therefore (D12}can be rewritten as follows:

and the ellipsis denotes here and throughout this appen-
dix the terms that are exponentially small. Note that
terms shown explicitly in (D12) are independent of the
auxilliary parameter Q. The function (D13) can be writ-
ten in terms of the special function 4(z,s, v) defined in

Ref. 20, p. 27,

= g D r(s+m+1)
s+m+1

p,Hr( —s —m) "
T

's+m

+
" g(s+m+1 —k)

k=0 k!

k
gH + 0 ~ ~

T

(D16)
»nce r(&+m +1)r(—

&
—m ) = —( —1) n/sin(sn. ), we can see that nonanalytic part of 2P, Eq. (D16), is the same as

G, Eq. (C31), derived in a different way.
Equations (Dl) and (D16) represent the equation of state, accurate to terms exponentially small in 1/T. It has a form

of the noninteger-power series in the variables T/[sr K(o ) ] and pH /T.
Let us note that the preceding method applied, and the expression obtained for P, may be used also to evaluate the

free energy A, and the magnetization o, versus T and H, of a perfect gas of independent (noninteracting) spin waves for
the 3DIH ferromagnet, as introduced by Dyson'

+T ]n 1 —e ~~++
indp 0

T 3
00 pH T m+2

=E0—T g Z, D I (m+ —, ) + (D17)

~~ jndp 1 T pH=1——P
pS BH S 2S ' T

3

g Z, D I(m+ —,') +.pH '+
m=0

(D18)
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where

Fp= p—HS —
—,'S g Jt,

I
(D19)

F(A, ) = (coth(Aa]) )

1 + —'Am ——'gm)2+
)A,cO

' 4'

and S is the spin value. Parameters D have been calcu-
lated in Appendix A. The formulas (D17) and (D18) have
exactly the same structure as those derived by Dyson. '

However, the Dyson formulas were derived for cubic lat-
tices with nearest-neighbor coupling, whereas here such
restrictions are absent —the parameters D are defined
for arbitrary structure and interaction range.

We can see that in the light of the expansion (D15) the
leading term in H in the magnetization formula of Dyson
1s

](a] ])+ g & g2m+]( 2m+])
m=0

and from (C13) and (C8)

(2j+1+2k )!&2j+]( 2j+] )2k ~ 2J'+]+2k (2 + 1 )]j=p J

G (A, )= g (2j+1+2k)!~2j( 2j)
j=p ) t

(El }

(E2)

o(T,H) cr(T,—O) ~H'i (D20) It is convenient to multiply the equation of state (C4) by
a(o')/(2T ) to have the variable A, , Eq. (C2), there

It should be noted that for the virtual spectrum with a
gap at low frequencies, b,(a])=0 for 0(to(to„, the func-
tion Xk in Eqs. (D5) and (D6) is exponentially small, and
therefore cr( T,H ) differs from 1 by such a small contribu-
tion.

AF(A. ) —a'(o')(2T) '= —
A, G(A, , h ) . (E3)

Now we make use of Eq. (3.6), and insert into (E3) the
expansion (El), to rewrite the following combination of
its leading terms;

APPENDIX E: EQUATION OF STATE AT FINITE T
AND SMALL cr AND H

«(o )

2T
«p «(o ) T Tc «p

Tc 2T Tc 2T
«(o )

—
«p

2T

We shall develop here a convenient form of the
MCRPA equation of state for the critical region of tem-
peratures, and for T & Tc. The equation of state (C4),
supplemented by (C5), (C6), and (C30)—(C33), will be
specified under the assumption of small cr. By this we
mean that its dependence on 0. will be given in the form
of power series; the magnitude of cr is therefore limited
only by the requirement of convergence.

Since T is finite and so is «(cr )„small cr leads to small A, ,
Eq. (C2).

We therefore need to represent functions F(A, ) and
G„(A,) as power series. From Eqs. (C5)—(C8) we have

«(tr ) «p

Kp

Kp

2TC(1+ t }
(E4)

t =(T Tc)/Tc, T—= Tc(1+t) . (E5)

Finally, we arrive at the following form of the equation
of state:

where, following habits of the static-scaling theory, we
have introduced the scaled deviation from the critical
temperature

«(o ) «p

Kp
+A,2[ —,

] (a])—
—,', (a]')A,2+O(A, )]=—

A,G, (E6a)

where the RHS, according to Eqs. (C30)—(C33) and (E2), is
S '1

—
A, G(k, , h ) = m h h h

Do —D1 — +0
sin( m.s ) A,

'
A.

[—' ——'(to )A. +O(A, )]——')].
3 15 2

+ g g +0h BR BR h

2 r

[ —
—,', (a])+O(A, )]+0 A,

T 2

'3

(E6b)

and where the variables, h, A, , and t are related to o., H, and T via Eqs. (Cl), (C2), and (E5), respectively. Of course, we
have explicitly written only a few terms of the pertinent series, but higher-order terms, if needed, can easily be included
using the mentioned expansions.
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