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Dynamics of first-order transitions in iwo-dimensional systems with long-range interactions
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The dynamics of first-order phase transitions in two-dimensional Ising systems with long-range
interactions has been studied by means of numerical simulations using the Metropolis Monte Carlo
method. The kinetics of domain growth was examined at early times for spinodal decomposition for
both conserved and nonconserved order parameters; the resultant behavior was found to be in

agreement with linear theory, as predicted by Binder. The late stages of domain growth for noncon-
served order parameters were also studied and the results were in agreement with the Allen-Cahn
growth law.

I. INTRODUCE lON

The kinetics of first-order transitions has been the sub-

ject of many recent investigations. ' The principal
theoretical model used for these investigations is the Ising
model with nearest-neighbor interactions for which both
nucleation and spinodal decomposition have been stud-
ied. In the studies relating to spinodal decomposition the
system is usually quenched rapidly from a single phase
disordered state at infinite temperature to an unstable
state below the ordering temperature T, . The system
then orders kinetically via the formation of small
domains and their growth to macroscopic size. Studies of
spinodal decomposition have been undertaken for both
conserved order parameters, in which case the kinetic or-
dering process is referred to as phase separation, and
nonconserved order parameters for which the kinetic or-
dering process describes an order-disorder transition.
The early-time regime leading to the formation of
domains is described by a theory due to Cahn, Hilliard,
and Cook. For example, for the case of a conserved
order parameter, these authors predict the occurrence of
a long-wavelength instability with exponentially growing
modes for wave numbers less than a critical wave num-
ber, k, . Their theory is basically a linear stability
analysis of the equations of motion for spinodal decompo-
sition about the state of the system immediately after the
quench.

In this paper we examine the efect of long-range mi-
croscopic interactions on the kinetics of spinodal decom-
position. We shall be especially concerned with the early
stages. The experimental systems most relevant to our
study include polymer blends whose properties involve
long-range interactions. It should also be noted, how-
ever, that early-time regimes of systems with short-range
interactions can also now be studied since experiments
can be performed to high resolution in time. Further-
more, crossover efects between early- and late-stage dy-
namics can be studied experimentally.

In the initial stages of spinodal decomposition, long-
range interactions inhibit the first-order transition and al-
low the system to remain uniform and become unstable.
Nevertheless, since phase separation is driven by a long-
wavelength instability, the uniform disordered state even-
tually breaks up as domains appear and grow. However,
for sufficiently early times in a system with long-range in-
teractions, one should be able to observe the linear insta-
bility. Binder has made this precise by noting that any
ordering structure must be negligibly small for the linear
regime to be valid; systems with long-range interactions
can therefore exhibit a linear regime whose duration in-
creases with the range of interaction. His predictions are
discussed in more detail later. As inentioned above,
long-chain molecules such as polymer blends are there-
fore ideal for experimental studies of early-stage spinodal
decomposition. In particular, some aspects of recent
light-scattering experiments on these systems have been
interpreted in terms of linear theory. It should be
mentioned that these experiments do not address the is-
sue of whether or not a linear theory exists, at sufficiently
early times, for systems with short-range interactions.

Metropolis Monte Carlo simulations on three-
dimensional Ising systems with long-range interactions
have previously been performed by Heermann' for con-
served order parameters and his results were in reason-
able agreement with linear theory. Recently, Elder,
Rogers, and Desai" solved the Cahn-Hilliard-Cook equa-
tion numerically using a discretized scheme for square
lattices with conserved order parameters. Their results
were also in agreement with linear theory at sufficiently
early times and they showed the duration of the linear re-
gime depends logarithmically on the range of interaction,
in agreement with Binder's predictions.

Both Heermann and Elder, Rogers, and Desai studied
spinodal decomposition for conserved order parameters.
However, linear theory should also hold at sufficiently
early times for a system with long-range interactions
where the order parameter is nonconserved. In addition,
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the critical wave number, for a given range of interaction,
should be identical in both situations, since only the
dynamical aspects of the phase transitions are different,
not the local quasiequilibrium aspects. We therefore
studied the early stages of spinodal decomposition in sys-
tems with both conserved and nonconserved order pa-
rameters; comparing these gives us insight into the unsta-
ble dynamics. Also, by examining two-dimensional sys-
tems we generalize Heermann's three-dimensional results,
and by using an Ising model with long-range interactions,
we are able to study a more microscopic model than the
explicitly coarse-grained Langevin model considered by
Elder, Rogers, and Desai. Finally a study of the late
stages of order-disorder transitions is made during the
time regime when dynamics is dominated by domain
growth in order to investigate the role played by the
range of interaction.

The results' are presented in Sec. II. The early stages
of spinodal decomposition are considered in Sec. II A. A
linear regime for systems with sufficiently long-range in-
teractions is observed regardless of whether or not the or-
der parameter is conserved. The critical wave number is
found to be independent of the specific dynamics to the
accuracy of the calculations. Section IIB contains a
study of the late stages of growth. In this regime, a long-
range interaction only appears to affect nonuniversal am-
plitudes. No study has been made of the late stages of
phase separation due to limitations of computer time. Fi-
nally, in Sec. II C we conclude the paper with a summary
of our results.

II. METHOD AND RESULTS

by spin-exchange dynamics. As a measure of increasing
order following the quench, we calculated the structure
factor, S(k, t), which is the Fourier transform of the real
space pair-correlation function:

1 ik-x,.
S(k, t)= —g a(x, , t)e

x

where k=2m/(&N )(ni+mj), and m, n =0, 1, . . . , V'N.
Our results are given in terms of the circularly averaged
structure factor S (k, t) =g'S (k, t) /g'1, where
denotes a sum over a circular shell defined by
n ——' ~

~
k

~
~N /( 2m ) (n + —,'.

Predictions for the early stages are in terms of the
coarse-grained Langevin description. The motion of the
local order parameter f(x, t) (which is the local magneti-
zation of the previously mentioned spin system) can be
described by the following Langevin equation:

= —M( —V )' +rl(x, t},
t x, t

where a = 1 for phase separation where the order parame-
ter is conserved, while a=0 for an order-disorder transi-
tion where there is a nonconserved order parameter. The
variable, M, in Eq. (I) is the mobility, rl is a Gaussian
thermal noise which satisfies the fluctuation-dissipation
relation,

( (rtxt)q( 'x, t')) =2TM( —V )'5(x —x')5(t t'), —

and Boltzmann's constant has been set to unity. The
coarse-grained free-energy functional Fcan be written as

A. Early stages F[y]=fd'x —~vt(~' —" q'+
2 2 4

(2)

We studied the two-dimensional ferromagnetic Ising
model with long-range interactions on a square lattice by
Monte Carlo computer simulation. The Hamiltonian is,

H= —gJ, o, o

where a; =+1 are the N local spins on sites i, and J;& is
the coupling constant. It is taken to be a positive con-
stant over a diamond shaped area centered on i, and
equal to zero ifj is outside the diamond, ' i.e.,

where f = —(~r~/2)f +(u/4)g is the bulk free-energy
density.

Equation (1) is difficult to solve due to the quartic non-
linearity in f. This dominates the dynamics in the late
stages of growth and gives rise to a complicated domain
morphology. In the very early stages of growth, it is ex-
pected that one can neglect this term (at least for the
coarse-grained Langevin model) and linearize around the
initial value of the order parameter, namely P(t =0)=0.
This gives rise to the linear Langevin equation,

const if j is inside the diamond,J ='
0 otherwise .

The number of spins interacting with the central spin in
the diamond is R, from which we obtain the range of in-
teraction R. (Thus the usual nearest-neighbor-interaction
Ising model corresponds to 8 —=2.} The system is
prepared at infinite temperature by taking a random ini-
tial configuration, and then quenched to a temperature
below T, . The critical temperature is given by'
T, =R J, as R ~00. We consider symmetric quenches,
where the initial mean order parameter
P(t =0)=(1/N)( g; o; ) is equal to zero. In the case of
a nonconserved order parameter, the system evolves by
spin-flip dynamics, and for a conserved order parameter,

S'(k) =
C(k —k )

(4)

Fourier transforming this, one readily obtains the struc-
ture factor

S(k, t)= f d x e'"'"(g(x, t}g(O,t)),
which is given by the form due to Cahn, Hilliard, and
Cook,

S(k, t) =[S(k, O) —S'(k)]e "'""+S'(k),
where S(k,O) is the initial structure factor. S (k} is given
by
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and k, is a critical wave number given by

(5)

~Ii NIIIII ~

)IRK
4Kfl I8

i a' q I ~~ 1 9i

The function, A (k), in Eq. (3) is the amplification factor
and is given by

g (k}=2~Ck2~(k2 —k~) (6)

To our knowledge, this result has not been observed
experimentally in systems with short-range interactions
because nonlinear effects become important very quickly.
Indeed, neglect of the quartic term in the linear theory
gives

S (t) -e'[1+0(g )]

for the structure factor. But the higher-order term itself
behaves like e', resulting in a singular perturbation
theory. ' Binder has shown, however, that systems with
long-range interactions behave linearly during the early
stages of coarsening after the quench. Note that the con-
stant C-R gives the range over which spatial inhomo-
geneities can persist. This implies that the wave number
k, ~ 1/R. Then, if one lets k=kR, and t=t/R ', we
have the scaled expression for linear theory:

~$J

i I i i
II I I 'I

~ ~ IT

a ii .'i%i'J
&&'L"heave

l11 .4 ~ R ~ rN pl ~~+

&g'gl tie m I &38
~ C ~.%iii~i;~n% H'lB IW

(a)

f P gg
h

~ '

(d)

2MCk (k —k )f-

S(k, t)= S(k,O)—
C(k —k, )

T
C(k —k, )

where C:—C/R, and k, —=Rk, . We use this to estimate
the next term in the expansion. ' That term must grow
to be of order a correlation volume, R ", to be apprecia-
ble. This implies a time, e'-R, and we thus recover
Binder's result that linear theory holds for the time re-
gime t (0(R 'lnR).

We studied the early stages of the order-disorder tran-
sition (nonconserved P) by means of simulations on sys-
tems of size 256X256, with periodic boundary condi-
tions, choosing R =220, 312, 420, 544, 684, 760, 840,
and 1200. Systems were quenched to T =0.4T, with 40
independent runs performed for each interaction range.
Simulations were terminated at 5 Monte Carlo steps per
spin (MCS), since the dynamics was very fast. The first
MCS was split into 64 substeps, while the remaining 4
MCS were split into 16 substeps. This was done to irn-
prove resolution during the early-time dynamics. In Fig.
1, typical configurations for R =840 are shown. Initial-
ly, up to about 0.5 MCS, the system is diffuse. As time
increases, diffuse domains, without well-defined domain
walls, begin to form. During these times the dynamics
involves domains becoming more compact, as they in-
crease in magnetization (i.e., local value of order parame-
ters) without a significant increase in size. Note that a
domain morphology, which is indicative of late-stage
growth, is apparent by t=2.5 MCS. Thus one should
only expect a linear regime for times less than this, while
fluctuations are small. By studying the system for several
values of R, we found that changing the range of interac-

FIG. 1. Configurations for R =840. Times are t=0.5, 1.25,
1.875, and 2.5 MCS. (Nonconserved order parameter. )

tion affects the size of domains rather than the growth
rate, as expected. As domains become compact, i.e., their
mean order parameter becomes equal to the equilibrium
value, dynamics involves domain growth, which corre-
sponds to the late-time scaling regime. This will be dis-
cussed in the next subsection. We also found that when
the temperature of the quench increases towards T„
domain walls become more diffuse.

A typical example of early-time evolution of the struc-
ture factor is shown in Fig. 2 for R =420. The structure
factor has been fitted for each wave number k separately,
up to 0.4375 MCS, for all the systems investigated. From
this fit we obtained A (k) as a function of k, as shown
for R =544 and 760 in Fig. 3. Note that the behavior is
in agreement with linear theory [Eq. (6) with a=O). We
extracted the critical wave number k, from the form of
A (k} just mentioned. In Fig. 4 we show that k, ~ 1/R,
as predicted by Eq. (5), while in Fig. 5, we see that—1/S'(k) is proportional to k, in agreement with Eq.
(4). Another indication of the linear regime is the scaling
S(k, t,R)=S(kR, t). As is shown in Fig. 6, this scaling
works for early times, as anticipated, but breaks down at
later times.

We next investigated the early-time behavior of phase
separation by means of simulations on systems of size
256X256, with R =84, 144, 220, and 312. Again, we
considered quenches to T =0.4T„and 100 independent
runs were performed for each interaction range. In con-
trast to the order-disorder transition, the dynamics here
is much slower, due to the presence of the conservation of
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FIG. 2. Structure factor S(k, t) for R'=420. Times are t=1,
2, 3, 4, and 5 MCS. Inset shows the very-early-time evolution
from 0 up to 0.5 MCS, with a period of 0.125 MCS. (Noncon-
served order parameter. )

FIG. 4. Critical wave number k, vs 1/R. (Nonconserved or-
der parameter. )

the order parameter in phase separation. From observa-
tion of coarsening in the configurations, we expect a
linear regime (when the fiuctuations in the local order pa-
rameter are small) for times less than about 60 MCS for
R =312, and about 30 MCS for R =220. Figure 7

shows the time evolution of the structure factor for
R =220 up to 70 MCS. We note that S (0, r) is fixed dur-
ing the phase separation due to the conservation law.
Note also that the maximum of S(k, t) is approximately
fixed for early times. This implies that domains form and
become more compact, but their sizes remain approxi-
mately constant. As in the order-disorder transition, we
fitted the structure factor for R =220 and 312 to linear
theory [Eq. (3)]. The resulting amplification factors are
shown in Fig. 8, from which it is evident that,

2 (k) ik'~ (k' —k')

I

10
I

20
(03 Q2

I

40

which is in agreement with Eq. (6) for phase separation.
The critical wave number, k„was then extracted from
the fit in Fig. 8, and the critical wave numbers for both
the order-disorder transition and phase separation were
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FIG. 3. Amplification factor A (k) vs k, for (a) R =544 and
(b) R =760. (Nonconserved order parameter. )

FIG. 5. Fitted results for —1/S'(k) vs k for R'=760.
(Nonconserved order parameter. )
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found to be equal within approximately 12% for R =220
and 7%%uo for R =312. This shows that k, does not de-

pend on the dynamics, but only the local quasiequilibri-
um aspects of spinodal decomposition. Also, as in the
order-disorder transition, we verified the scaling of S (k, t)
with R, i.e., S(kR, t/R ), which is displayed in Fig. 9 for
early times.
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FIG. 9. Scaling of early-time results S(kR, t'/R ). (a)
t/R =0.06 and (b) t/R =0.31. (Conserved order parameter. )
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B. Late stages

L(t)=$(0, t)' (9)

During the late stages of spinodal decomposition, the
system is composed of domains of ordered phase which
are separated by thin we11-de6ned interfaces. The dynam-
ics during these stages is such that the total surface free
energy of these interfaces is minimized. ' ' The mean
domain size grows in time via L (t)-t", while the struc-
ture factar scales with L (t) by

$(k, t) = L "(t)F(kL (t) ) .

The growth exponent n and the scaling function I' are
properties of the dynamical universality class. We have
only considered the order-disorder transition for this sec-
tion of the paper. In this case the Allen-Cahn' growth
law holds and therefore n =

—,'. For our purpases, a con-
venient de6nition of length scale is given by'

200—

ieo—

&120-
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I I
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The scaling function has been calculated by Ohta,
Jasnow, and Kawasaki. '7 For d =2, they found

2

F(x)=fdy, J,(xy),
(e~ ')

(10)

where J, is a Bessel function of the first kind. For large
x, this is in agreement with Porod s law, for which
F(x)- I/x3. These results are well established for sys-
tems with short-range interactions ' here we wish to
clarify the effects of the interaction range, R, on domain
growth. It is natural to expect that R only affects
nonuniversal amplitudes in L (t) and F(x).

In order to study the late stages of order-disorder tran-
sitions for long-range interactions, we investigated sys-
tems of size 128X128 lattice sites, and R =40, 60, 84,
144, 220, and 312. These systems were quenched to
T =0.4T„whereas the systems with interaction ranges
R =84 and 220 were quenched to several temperatures,
ranging from 0 to 0.95T„in arder to study the depen-
dence of scaling and growth on temperature. The results
were averaged over 20 independent runs, and the simula-
tions were performed out to 100 MCS. Figure 10 shows
that L grows linearly with time, so L(t}-t'~, as ex

FIG. 11. Amplitude of growth law L (t) /t vs R'. (Noncon-
served order parameter. )

pected. For systems with ranges of interaction R )220,
finite-size effects become important before we can observe
the late-stage scaling regime. To show the dependence on
the range of interaction an domain size, we plot the fitted
values of L /t versus R ~ in Fig. 11. These fits are con-
sistent with the form L (t}-Rt '~2.

In addition, we calculated the scaling function,

where x =kL(t). For the systems we have studied, F be-
comes time independent for approximately t )40 MCS.
In Fig. 12 the scaled functions are plotted for all the sys-
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FIG. 12. Scaling function F(x =kL(t)) vs x, for difFerent R.
Solid-line St is to Eq. (10). (Nonconserved order parameter. )



4652 LARADJI, GRANT, ZUCKERMANN, AND KLEIN 41

tems investigated at 0.4T„from which it can be conclud-
ed that the scaled function does not depend on the range
of interaction. The solid line corresponds to the predic-
tion of Ohta, Jasnow, and Kawasaki, ' which is in good
agreement with our numerical results. We also fitted F
for large wave numbers to Eq. (11), and found agreement
with Porod's law. Furthermore, we have studied the tem-
perature dependence of scaling of two interactions
R =84 and 220, for several temperatures ranging from 0
to 0.95T, . For T&0.4T, the scaling function is almost
temperature independent, but for larger temperatures F
becomes strongly dependent on T, and narrows as rin-
creases. However, when x is rescaled with a
temperature-dependent prefactor Q( T) as in
x~x/Q(T), F(x) is again given by the form calculated
by Ohta, Jasnow, and Kawasaki to the accuracy of our
calculations. This factor, Q(T), decreases with increasing
temperature as is qualitatively expected from theoretical
arguments. ' This is reasonable since Q(T) can be re-
garded as the temperature-dependent amplitude of the
growth law.

C. Conclusions

In summary, we have investigated the effects of long-
range interactions on the kinetics of first-order phase
transitions. This is the first study of phase separation for

both the two-dimensional Ising model with long-range in-
teractions and the early stages of the order-disorder tran-
sition. We have found that long-range interactions are
suScient to allow the observation of a linear regime, in
agreement with Binder's predictions. The critical wave
number was found to be independent of the dynamical
model studied, which gives us confidence in both our
simulation results and the use of coarse-grained models to
describe kinetic Ising models, even during the early
stages of growth. An unanswered question, which is not
addressed by our work, concerns the existence of a linear
regime for systems with short-range interactions. We
also studied the late stages of growth of an order-disorder
transition. Our results imply that, for any large but finite
range of interaction, there is an eventual crossover to
late-stage growth. In this late-stage growth regime, the
range of the interaction only appears to affect nonuniver-
sal amplitudes.
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