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We have studied the spectrum of low-spin eigenstates of a spin-% Heisenberg model on 4X4
square lattices with up to third-neighbor antiferromagnetic exchange interactions. We have com-
puted the staggered susceptibility, spin-spin correlation function, and the overlap of the exact
ground state with various variational spin-density-wave ordered states as well as with the equal-
amplitude, nearest-neighbor resonating-valence-bond state (which is the prototypical short-ranged
RVB state). We find evidence for a complicated phase diagram with a region in which a short-

ranged RVB state may be the ground state.

I. INTRODUCTION

The notion that the ground state of a sufficiently frus-
trated spin-1 Heisenberg model may be disordered (a
“quantum spin liquid”) plays a prominent role in several
theories' ~7 of the origin of superconductivity in highly
correlated two-dimensional electron gases. Frustration
appears to be necessary to stabilize a spin-liquid state,
since most studies® !! of unfrustrated antiferromagnetic
Heisenberg models have concluded (although not
rigorously proved) that the ground state has nonzero
long-range antiferromagnetic order.

One can classify the possible ground states of quantum
spin systems by their broken symmetry and excitation
spectra. For the purposes of this paper it is useful to con-
sider a partial catalog.

(i) A spin-density-wave (or Néel) state, which we
denote SDW, has broken translational, spin-rotational,
time-reversal, and parity symmetry. Independent of the
value of the microscopic spin, the low-energy excitations
of this ordered state are spin-1 gapless ‘“Goldstone”
modes, or magnons.

(ii) A spin-Peierls state (or valence-bond crystal) has
broken translational symmetry without broken spin-
rotational symmetry. It has a severalfold degenerate
ground state, and a gap in its excitation spectrum. We
expect that all the excitations of a spin-Peierls state have
integer spin.

(iii) A spin-liquid state is translationally and spin rota-
tionally invariant. There are several possible subclasses
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of spin liquid states. (It remains to be established which
of them, if any, exist as the ground state of a sensible spin
model.) We distinguish a compressible from an in-
compressible spin liquid depending on whether or not
there is a gap to spin excitations. We draw a further dis-
tinction between an integer spin liquid, in which all finite
energy quasiparticles have integer spin, and a half-
integer spin liquid, which possesses finite energy half-
integer spin excitations. Since our primary interest is in
the spin-liquid states, we briefly list some proposed liquid
states.

(a) There exist exactly soluble models in arbitrary di-
mension with integer spin per unit cell which can be
shown to have unique, disordered ground states with a
nonzero gap.'? Presumably, as suggested by single-mode
analysis and numerical studies of one-dimensional chains,
these are examples of incompressible integer-spin liquids.

(b) The short-ranged resonating-valence-bond (SR-
RVB) state,>* of which the prototypical example'® is the
nearest-neighbor RVB state (NN-RVB), is an incompres-
sible spin liquid. This state corresponds closely to the
chemist’s picture'* of resonating valence bonds. It has
been suggested that the excitations of a SR-RVB state are
spin-1 “spinons,” although it remains unclear whether or
not they are generically confined. An example of a par-
ticular exactly soluble model with a SR-RVB ground
state is the Klein model, discussed in the following.

(c) Recently,'® one of us has argued that, viewed as a
spin system, a BCS s-wave superconductor is an example
of an incompressible half-integer spin liquid. Transla-
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tional symmetry is unbroken, although, of course, gauge
invariance is broken. There is a gap to spin excitations,
and the lowest-energy spin excitations (the Bogoliubov
quasiparticles) are neutral fermions which carry spin 1.
Indeed, the SR-RVB state is essentially a Gutzwiller pro-
jected fully gapped BCS state.!

(d) Incompressible spin-liquid states may break time-
reversal invariance. For instance, Kalmeyer and Laugh-
lin* have proposed a state based on an analogy with the
fractional quantum Hall effect which has broken time-
reversal symmetry.'® Such a state is thought to have
half-integer spin excitations with fractional statistics.

(e) Compressible spin-liquid states with gapless spin ex-
citations can also be envisioned. Examples of these
“long-ranged” RVB states are the ground state of the
spin-1 nearest-neighbor antiferromagnetic chain, and the
ground states of certain two-dimensional SU(N) antifer-
romagnets in the large-N limit. These latter states have

=1 quasiparticle excitations with either a pseudo-
Fermi surface' or pseudo-Fermi points.’

(f) Toffe and Larkin!” have shown that for a large spin
(S >>1) frustrated Heisenberg antiferromagnet, there ex-
ists a narrow region of parameter space [of width of order
exp(—S)] in which there exists a spin-liquid phase
(presumably of the incompressible integer-spin variety).
Chakravarty, Halperin, and Nelson'® have also suggest-
ed, based on hydrodynamic arguments relating the long-
wavelength properties of the antiferromagnet to the prop-
erties of a (2+ 1)-dimensional nonlinear o model, that as
a function of increasing frustration there could be a
second-order transition from a SDW (Néel) state to a
quantum-paramagnetic state, which in this language is an
integer spin, incompressible spin liquid.

This list is certainly not exhaustive; even more exotic
states are possible, such as valence-bond liquid crystal
states, which break the point-group symmetry of the lat-
tice but are translationally and spin rotationally invari-
ant,'® or Wiegmann!® states which break specific com-
binations of time-reversal and translational symmetry.

The Klein model®**?! is a spin-+ Heisenberg model
which is known not to have a SDW ground state. It has
an extensive ground-state entropy; the ground-state man-
ifold is spanned by the set of nearest-neighbor valence-
bond (NN-VB) states. Any superposition of NN-VB
states (and only such a state) is a zero-energy ground
state of Hy. The Klein Hamiltonian, Hg, is equal to the
sum over all sites of the projection operator onto the
highest spin state of the total spin on that site and its
nearest neighbors. On a square lattice, this model has
competing first-, second-, and third-neighbor antiferro-
magnetic exchange interactions in the ratio
JJ,:J3=1:1:0.5, as well as short-ranged four-spin in-
teractions. Any small perturbation about the Klein mod-
el will select a particular superposition of NN-VB’s to be
the ground state (up to a possible degeneracy of order 1
in the thermodynamic limit). Which superposition is
selected depends on the nature of the perturbation. Thus,
the Klein model is at a multicritical point in Hamiltonian
space. Each of these superpositions is believed to have an
exponentially decaying spin-spin correlation function®
and a gap in its spin-excitation spectrum. In Ref. 3 (see
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also Appendix B) it was shown that the properties of a
weakly perturbed Klein model at energies small com-
pared to the spin gap are equivalent to those of a hard-
core quantum-dimer gas, in which the dimer is roughly
representative of a valence bond. From an approximate
analysis of this model, it was concluded that a NN-RVB
state would have a branch of low-lying spin-0 excitations,
dubbed ‘“‘resonons.”

The fact that the Klein model has exact NN-VB
ground states suggests, more generally, that sufficiently
frustrated spin-J Heisenberg models may have SR-RVB
ground states. Here we report the results of exact diago-
nalization studies of finite-size models with first (J,),
second (J,), and third (J;) neighbor antiferromagnetic
exchange interactions, in a modest attempt to test the va-
lidity of this suggestion. We were largely motivated in
this study by the success of similar studies®? for the frac-
tional quantum Hall effects: As in that case, one expects
that results for finite-size systems may give reliable evi-
dence for the existence of an incompressible liquid phase,
since unless the system is near a critical point such a state
should have a correlation length of order one lattice con-
stant. Of course, because the systems we have studied are
small, we cannot be confident that all of the behavior de-
scribed below is representative of the system in the ther-
modynamic limit. We note, however, that the NN-RVB
state is known to have a short correlation length (about
1.3 lattice constants!!). Given the existence of a SR-RVB
phase, our system should be large enough so that our
conclusions are self-consistent. With these caveats, we
feel our results lend support to the notion that frustrated
spin-1 Heisenberg models can have SR-RVB ground
states.

In summary, our numerical study has led us to three
major interferences concerning the effect of frustration on
the thermodynamic states of a spin-] Heisenberg antifer-
romagnet. We list them in order of decreasing certainty:
(a) There exists a parameter range of the (highly) frustrat-
ed Heisenberg model which has a non-SDW ground state,
i.e., the ground state does not spontaneously break spin-
rotational symmetry. (b) In the non-SDW region of the
phase diagram, there exists a region in which the ground
state is a liquid; the ground state does not have spontane-
ously broken translational symmetry (i.e., spin-Peierls or-
der). (c) In the liquid phase, there exists a region where
the overlap with the nearest-neighbor RVB state is large,
and where the spectrum and correlation functions behave
as expected of a SR-RVB state. This suggests that there
exists a liquid phase which is adiabatically related to the
nearest-neighbor RVB state, and which can reasonably be
identified as a SR-RVB phase. We return to these points
in Sec. IV.

In Sec. II we explicitly describe the calculations we
have performed. In Sec. III we give the results of those
calculations with a minimum of interpretation. In Sec.
IV we outline our three major conclusions, which follow
from these results and certain plausible assumptions
which are detailed below. Finally, we briefly comment on
the relevance of this result to the theory of high-
temperature superconductivity. In Appendix A we dis-
cuss the analytic solution to the same problem on a small-
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er (eight-site) lattice. In Appendix B, we discuss the rela-
tion between the putative spin-liquid phase and the quan-
tum hard-core dimer gas.

II. DESCRIPTION OF THE CALCULATIONS

The calculations are conceptually straightforward.
Consider a 4X4 square lattice with either periodic
boundary conditions (PBC’s), or twisted boundary condi-
tions (TBC’s) which are periodic in the y direction but
“twisted” in the x direction, so that the site (1,n) is taken
to be a nearest neighbor of the site [4, n +2(mod 4)].
Both boundary conditions are chosen so that they do not
frustrate any of the candidate ground states. By compar-
ing the results from these two sets of boundary condi-
tions, we can to some extent monitor finite-size effects
and sensitivity to boundary conditions.

The Hamiltonian is block diagonalized by classifying
the states according to the irreducible representations of
the total spin rotation group (i.e., by their total spin S
and the total z component of the spin S,), and the transla-
tional group whose irreducible representations are labeled
by an index k. In the case of PBC’s, k is the crystal
momentum, k=(kx,ky ), where k; =0, tm/2, or w. For
TBC, k=(k,v), where v==1 depending on whether the
state is odd or even under reflection about the x axis, and
k=0, /4, £ /2, or =, is the x component of the crys-
tal momentum. The TBC’s have the advantage that they
allow a larger number of distinct values of k, so we have
been more thorough in our study of the system with these
boundary conditions. In addition, while for both bound-
ary conditions, the number of distinct first and second
neighbors of a site is the same as for the infinite system,
for TBC’s each site has three distinct third-nearest neigh-
bors while for PBC’s it has only two. Because of this
difference, in comparing results for the two boundary
conditions, we rescale J; such that (J; )PBC=(%)(J 4)TBC
(see also Appendix A).

Once the Hamiltonian is block diagonal, the blocks are
diagonalized numerically. The largest block is 105X 105
(TBC) and 107X 107 (PBC) in the spin-O sector and
218X 218 (TBC) in the spin-1 sector. The eigenenergies
and eigenstates can then be compared with various varia-
tional states. We solved the model analytically along the
line J; =0, and the results constitute a check of our nu-
merical computations (see Appendix A).

To obtain a qualitative understanding of our numerical
results, one can consider the energy of various candidate
variational ground states. A NN-RVB variational ansatz
for the ground state was obtained by taking the equal am-
plitude superposition of all nearest-neighbor valence-
bond states with phases determined by Marshall’s cri-
terion.”> The energy of this NN-RVB state (obtained
from its spin-spin correlation function on a 4 X4 lattice’)
is

Exyngrvs=—0.33J,+0.15J,+0.15J5 . (1)
Three variational spin-density-wave states (|SDW,),
|SDW,), and |SDW,)) were also considered, where
ISDW, ) is the ground state for J;=1 and J, =0 for k #i:
[SDW,) is the ground state of the nearest-neighbor
Heisenberg model, which presumably has long-ranged or-
der of the sort shown in Fig. 1(a) in the limit of a large
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FIG. 1. Schematic renditions of the long-ranged magnetic or-
der inferred for the states referred to in the text as (a) SDW,, (b)
SDW,, and (c) SDW;. At the classical level, the energy is in-
dependent of the relative angle between the axes of quantization
on the different sublattices; the results of our first-order spin-
wave analysis and evidence (see Fig. 4) from our numerical cal-
culations suggest that this decoupling of the lattices survives
quantum corrections. This implies that these states would have
more than the Goldstone mode with zero energy.
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FIG. 2. Analytic estimates of the phase diagram in the ther-
modynamic limit, obtained as described in Egs. (1) and (2) in the
text. Compare with Figs. 3(a) and 3(b).
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system, and [SDW,) and [SDW;) consist, respectively,
of two and four interpenetrating versions of [SDW,) on
different sublattices, as shown in Figs. 1(b) and 1(c).
Theoretical estimates for the ground-state energy per
spin of these SDW states can be obtained by computing
the spin-spin correlation functions in each state SDW; on
a 4X4 lattice. For these states, this gives the following
estimates for the ground-state energy:
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Egpw; =~ —0.35J,+0.21J,—0.21J; ,
Espw, ~0.00J, —0.35J,+0.21J; , (2)
Espws; ~0.00J, +0.00J,—0.357, .

The energy estimates of Eqs. (1) and (2) yield approxi-
mate phase boundaries for the frustrated Heisenberg
model studied here. The results are shown in Fig. 2. As
can be seen in the figure, these rather naive estimates
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FIG. 3. Plots of the overlap between the exact ground-state wave function and the various variational wave functions defined in
the text: (a) and (b) show the 95% and 70% overlap contours with SDW; (a) for PBC’s and (b) for TBC’s. (c) shows a contour map of
the overlap with NN-RVB for TBC’s. The corner labeled J, corresponds to J, =J3; =0, and similarly for the remaining corners, with
Jy normalized so that they add up to 1 everywhere. The small-scale structures are artifacts of the interpolation. (d) Overlap with the
SDW, states for TBC’s as a function of J along lines radiating out at 10° intervals from the J, corner, starting from the J; =0 line. (e)

Similar plot for the overlap with NN-RVB.
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coincide fairly well with the regions where the character
of the ground state is changing (as determined by where
the state with the largest overlap changes—see Fig. 3
below). A sophisticated spin-wave calculation?® with
J3;=0 also suggests the existence of an intermediate
phase or phases between SDW,; and SDW,. For
|SDW, ), as J, and J; are made different from zero, the
classical ground-state energy will be independent of the
relative orientation of the staggered magnetization of the
two interpenetrating SDW’s. Similarly, for [SDW;) at
the classical level, the four interpenetrating SDW’s can
have any relative orientation. Ioffe and Larkin'” have ar-
gued that for the classical Heisenberg model with J; >0,
a helicoid state is favored for J, <2J,+4J;. (We find
this phase is stable for 2J,+4J,>J,>2J,—4J,.) Our
system is too small to accommodate an incommensurate
SDW.

III. RESULTS

A. Results of the numerical experiments
for twisted boundary conditions

(1) Even for the simple nearest-neighbor antiferromag-
netic Heisenberg model (J,:J,:/3;=1:0:0), where the
ground state is thought to have long-ranged SDW order,
the equal amplitude NN-RVB state has?® overlap

| {NN-RVB|¥,)|=0.93=(0.9954)'

with the exact ground-state wave function |¥,). This is a
remarkably large overlap for a 16-spin system and a zero
parameter variational wave function. For generic ap-
proximate ground states, even very good ones, we expect
the overlap with the true ground states to fall exponen-
tially with the number of sites, so a better figure of merit
might be the 16th root of the overlap. For example, the
overlap with the classical Néel state is 0.17=(0.895)'6.
We conclude that, independent of the nature of the long-
ranged order, the short-ranged correlations in even this
simplest of Heisenberg models are remarkably well cap-
tured by the NN-RVB state.

(2) The ground states exhibit a great deal of wave-
function “rigidity.” Over a fair range of couplings away
from the corners of the phase diagram [see Fig. 2(b)]
where they are by definition the exact ground state, the
overlap between |SDW,), and the true ground state
remains close to one [see Fig. 3(b)]. We identify these re-
gions of the phase diagram as being approximately the re-
gions where, in the thermodynamic limit, the ground
state has a broken symmetry of the indicated SDW kind.

(3) We have verified our identification of the various
SDW phases by evaluating the spin-spin correlation func-
tions

G(R—R')=(Sg-Sg.) (3)

as a function of J; (see Fig. 4). In all cases, in the corners
of the phase diagram, the spin-spin correlation function
corresponds to the states represented in Fig. 1.

(4) We have also calculated the appropriate susceptibil-
ities,
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FIG. 4. Spin-spin correlation functions along the line J; =0.
The curves labeled 1-5 are, respectively, the correlation func-
tion evaluated for the first through fifth nearest-neighbor spins.
Note that for large J,, the correlation function looks much like
the correlation function for J, =J; =0, but on the single sublat-
tice of Fig. 2(b). There is almost no correlation between the
spins on different sublattices over most of the region where the
overlap with SDW, is large.

[(Olsg [n )2

E-F @

X;i=2

n#0

where So is the Fourier transform of Sz, n is summed

over all (spin-1) excited states, j labels the appropriate

SDW state, and Q,=(w,m) and Q,=(,0). x; for J;=0

is shown in Fig. 5. The susceptibility x; is large wherever

the overlap with the corresponding SDW; state is large

(compare Fig. 3), and begins to fall when the overlap be-
gins to fall.

(5) There is a large range of parameters near
J|~J,~J; where the overlap of the exact ground state is
small with all of the SDW states defined earlier [see Fig.
3(b)]; in what follows we will argue that this is a region
with a non-SDW ground state. In part of this region, the
overlap with the NN-RVB is large ( >0.95), and, in fact,
larger than with any of the SDW states [see Fig. 3(c)].
We suggest that in this region there exists a phase with a

SUSCEPTIBILITY

(0] 0.2 04 06 08 |
Ja /() +Jp)

FIG. 5. The susceptibilities (solid line) and their first mode
approximations (dotted line) for the SDW, and SDW, states for
J3;=0and TBC’s. See Eq. (4) in the text.
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SR-RVB ground state. The maximum overlap with the
NN-RVB along the J;=0 line is 0.995 and occurs at
J:J5:J3=1:0.37:0, just beyond the point where linear
spin-wave analysis predicts the disappearance of Néel or-
der.2* At this point, the expectation value of the Klein
Hamiltonian in the exact ground state is (0.01)J per site.
[Note that the overlap with SDW, is still large (~0.95)
at this point; for this reason, when we discuss the proper-
ties of a representative point in the non-SDW (“liquid”’)
phase, we have chosen the point J,:J,:J;=1:0.61:0,
where the overlap with NN-RVB is still moderate, 0.47,
and the expectation value of the Klein Hamiltonian is
still small, 0.1 per site, while the overlap with SDW, is
relatively smaller, 0.30.]

(6) We have computed the excitation spectrum in both
the spin-0 and spin-1 sectors as a function of J;. The ex-
citation energies of the six lowest-lying spin-0 and six
lowest-lying spin-1 states are shown as a function of

(E-Eg)/(J), +Jp)

0 0.2 0.4 06 0.8 [
Ja /(4 +J3)
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J,/J, along the line J; =0 in Fig. 6(a). A more complete
spectrum for different values of J; is shown in Figs.
6(b)-6(g): Figures 6(b) and 6(c) are for the nearest-
neighbor Heisenberg model (J,:J,:J;=1:0:0), Figs. 6(d)
and 6(e) are for J:J,:J;=1:0.61:0, and Figs. 6(f) and 6(g)
are for J,:J,:J3;=1:0.29:0.23; Figs. 6(d)-6(g) are in the
putative SR-RVB region.

(a) In the regions we have identified as SDW phases,
there is always one (or, in the case of SDW, and SDW,,
two and four, respectively) anomalously low-energy spin-
1 excited state which transforms under translations in the
same way as the expected SDW state. Thus, for instance,
in the SDW, region, the lowest-lying excited state is a
spin-1 state with k=(m, —1) [analogous to k={(, ) for
PBC’s]. Moreover, for each value of k, the lowest-lying
spin-1 excited state has energy substantially below that of
the next lowest states, while the higher-lying states ap-
pear to form a continuum. By contrast, the lowest-lying
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FIG. 6. (a) The energies of the lowest six spin-O (solid lines) and the lowest six spin-1 (dashed lines) excited states along the line
J3=0 with TBC’s (b) and (c). The spin-0 and spin-1 excitation spectra for J,=J; =0 (SDW, region). The system has TBC’s and the
symmetry of the states is labeled accordingly. k is essentially the crystal momentum in the x direction. The spectrum is symmetric
under k— —k, so we have only shown the states for positive k. (d) and (e) The excitation spectrum for J,:J,:J; =1:0.61:0 (putative
SR-RYVB region) plotted in the same way as in (b) and (c). (f) and (g) The excitation spectrum for J,:J,:J;=1:0.29:0.23 (putative SR-
RVB region) plotted in the same way as in (b) and (c). In (d)-(g), j =J,/(J,+J,+J;3) and jj =J,/(J, +J, +J3).
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FIG. 6. (Continued).

spin-0 excited states are considerably higher in energy
than the corresponding spin-1 states and all lie at what
appears to be the bottom of a continuum. This is the ex-
pected finite-size behavior of a system which will exhibit
broken spin-rotational symmetry in the thermodynamic
limit. The anomalously low-lying spin-1 excited state in-
dicates the nature of the emerging SDW order. A state
with finite sublattice magnetization is necessarily an ad-
mixture of (at least) a spin-0 and a spin-1 state, so a low-
lying spin-1 state is an obvious indicator of a tendency to-
ward SDW order. [Indeed, as shown by the dotted curve
in Fig. 5, the susceptibility in the SDW phases is well ap-
proximated by the single-mode approximation (SMA) in
which the sum in Eq. (4) is replaced by the single term
corresponding to the lowest-lying spin-1 excited state.]
In the thermodynamic limit, the broken-symmetry state
will have a branch of gapless magnon excitations, i.e., the
Goldstone boson corresponding to the broken spin-
rotational symmetry.

We thus identify the branch of isolated spin-1 excita-
tions at other values of k as the one-magnon excitations,
and the band of higher-energy states as the bottom of the
spin-1 sector of the two-magnon continuum. Similarly,
we identify the spin-O excited states as the bottom of the
spin-0 part of the two-magnon continuum. Notice the
similarity between the spin-O and spin-1 continua. Of
course, in the thermodynamic limit, there will be no gap
in either sector since the one-magnon creation energy
must vanish at appropriate points in the Brillouin zone.

However, we generally expect the finite-size effects to
force the lowest-lying two-magnon state to higher ener-
gies than the lowest-lying one-magnon states, as is ob-
served. It is important to note that in the regions which
we have identified as non-SDW, we have found no anom-
alously low-lying spin-1 states.

(b) The energy spectrum looks rather different in the
central region of the parameter space, which we have
identified as the region with a non-SDW ground state. In
this region, there is always a reasonably large gap to the
lowest-lying spin-1 state; we view this as evidence that
there is not still another SDW state that we have failed to
identify. In fact, over much of this region, the energy
gap to the lowest-lying spin-1 excitation is significantly
larger than the gap to spin-0 excitations [see Fig. 6(a)]; At
some points there are as many as six spin-0 excited states
with lower energy than the lowest spin-1 state. The spec-
trum shown in Figs. 6(d) and 6(e) are fairly representative
of the spectra in this region. The salient features of this
spectrum are (i) there is no dramatic sign of a single-
particle branch in the spectrum; both the spin-1 and the
spin-0 spectra appear to be multiparticle continua, and
(ii) the spin-1 and spin-0 spectra actually look fairly simi-
lar to each other, although the lowest-lying spin-O states
have noticeably lower energies. Like the ground state,
the two lowest states are translationally invariant,
k=(0,1).

(7) In the region in which the expectation value of the
Klein Hamiltonian is small, we have calculated the over-
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lap of the ground state with each individual valence-bond
state, as well as with their equal-amplitude superposition
(the NN-RVB state). The results are primarily interest-
ing in the putative spin-liquid regime, as they provide a
crude measure of whether the state is truly a spin-liquid
state or actually a spin-Peierls or valence-bond crystal
state. In a valence-bond crystal state, the overlap with
the valence-bond states of appropriate broken symmetry
(e.g., the “column” state or the “staggered” state) would
be expected to be anomalously large. The results of this
calculation, which require a certain amount of care to in-
terpret, are discussed in Appendix B and partially sum-
marized in Table II; for a representative point in this re-
gime, J,:J,:J3;=1:0.61:0, the overlap with any of the ob-
vious valence-bond crystal states is an order of magnitude
smaller than the overlap with more “liquidlike” states.
We take this as suggestive evidence that this regime is not
a valence-bond crystal phase.

Beyond this summary, the results of our calculations
are shown in the figures and described in the figure cap-
tions. These are an integral part of this paper, and the
description is not repeated in the text.

B. Comparison with results
for periodic boundary conditions

We have repeated the calculations in the spin-O sector
for PBC’s as well. On the whole, the results are surpris-
ingly similar to the results with TBC’s. This increases
our confidence that the systems we have studied are large
enough to give meaningful information. Indeed, we con-
sider it surprising that the differences between the two
boundary conditions are as small as they appear to be.

In Fig. 7 we plot the energy of the ground state and
four lowest-lying spin-O excited states as a function of
J,/(J,+J,) for TBC’s (dashed line) and PBC’s (solid
line). Notice that the ground-state energies never differ
by more than a couple of percent of (J,+J,). We feel
this is remarkably small when we remember that for
J,; =0, the gap to the one-magnon state, which is also a
finite-size effect, is 0.57 J,. We conclude that the ground
state is particularly insensitive to finite-size effects, and

E/Z(Jy+J3)

Jo/(Jy + J2)

FIG. 7. The energy of the ground state and four lowest-lying
spin-0 excited states as a function of J,/(J,+J,) for TBC’s
(dashed line) and PBC’s (solid line).
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FIG. 8. The excitation spectrum of the lowest five states for
the eight-site system with couplings appropriate to the PBC'’s.
(See the description in Appendix A.) Spin-0 states are indicated
by solid lines and spin-1 states by dashed lines.

that ground-state properties are closer to their thermo-
dynamic values than might naively be imagined. This is
further supported by the fact that for TBC, the fifth-
neighbor spin-spin correlation in the J corner (see Fig. 4),
has a value 0.20 which agrees remarkably well with the
best Monte Carlo estimate?® of the asymptotic value of
this correlation function 0. 15+.04.

The low-energy spin-0 excited states are also rather in-
sensitive to boundary conditions, except in the putative
quantum spin-liquid region where the lowest-lying excit-
ed state for PBC’s is anomalously low. For both choices
of boundary conditions, the two lowest-energy states in
the figure are translationally invariant (k=0) over the
whole range of parameters. In Appendix B we show that
such a boundary-condition-dependent anomalously low-
lying state can occur in the quantum hard-core dimer
model in its liquid phase. We are currently performing a
more detailed study of the nature of the excited states in
this regime to check whether this correspondence is
correct. More generally, we feel that the near degeneracy
of the ground state in the putative liquid phase for PBC’s

o
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=
(o] 0.2 04 06 08 |
Ja/(J) +J2)
FIG. 9. The overlap of the ground state with the SDW, and

SDW, states along the J; =0 line for TBC’s (dashed line) and
PBC’s (solid line).
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with J;=0 is due to the proximity of a point where the
SDW,, SDW,, and the spin-liquid phases all coincide.
Such a “triple point” occurs dramatically in the smaller,
eight-site system (Appendix A and Fig. 8). This interpre-
tation is consistent with the observation that for TBC,
where the separation between the SDW, and SDW,
phases is greater [see Fig. 3(a) and 3(b)], no such near de-
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FIG. 10. The spin-O excitation spectra for PBC’s at three
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generacy occurs. Moreover, for J;70, the ground state
is no longer nearly degenerate, even for PBC’s. (Another
possible explanation of the near degeneracy of the ground
state for PBC’s is that it reflects a true degeneracy of the
ground state in the thermodynamic limit which arises due
to the breaking of a discrete symmetry of order 2, such as
time reversal. While this is a very intriguing possibility
in light of a number of interesting suggestions* concern-
ing the existence of such a broken symmetry, based on
the results for TBC’s and for PBC’s with J;7#0, we tenta-
tively favor the interpretation previously outlined.)

In Fig. 9 we compare the overlap with the SDW, and
SDW, states along the J;=0 line for TBC’s and PBC’s.
Again, the plot shows a dramatic insensitivity of the
ground state to boundary conditions. This insensitivity is
much reduced at nonzero J;; this is not surprising as the
range of this interaction is half the size of the system, and
the two boundary conditions imply different numbers of
third neighbors. In comparing the results for nonzero J3,
we find that the differences between the two boundary
conditions are considerably reduced if we rescale J; by
the number of third neighbors, as already discussed. In
Fig. 3(a), we show the contour map for the overlap with
SDW for PBC’s. [Compare the same plot for TBC’s in
Fig. 3(b).] In Fig. 10 we show the spin-0 spectrum at the
analogous three points in the J;-J,-J; triangle as we
showed in Fig. 6 for TBC’s. As promised, all these
figures show an increasing sensitivity to boundary condi-
tions as J; is increased, but in no case do the boundary
conditions have a dramatic effect.

IV. THEORETICAL INFERENCES

We have three primary theoretical inferences which we
feel are supported by our numerical data. We list them
along with a summary of the evidence which supports
each conclusion. Each conclusion rests on the validity of
the previous one and involves additional assumptions
about the proper interpretation of the data. They are list-
ed in order of increasing uncertainty. We stress that
these are our best guesses as to the implications of our re-
sults.

(a) There exists a parameter range of the frustrated
Heisenberg model which does not have an SDW ground
state in the thermodynamic limit; the ground state does
not spontaneously break spin-rotational symmetry.
There is a large region of the phase diagram in which the
overlap of the exact ground state with any of the obvious
candidate SDW states is small. In this whole region,
there is no anomalously low-lying spin-1 excited state,
and the spin-spin correlation function is very short
ranged. The computed susceptibility falls at roughly the
same place that the overlap with the SDW trial states
falls, implying that the decreasing overlap really does sig-
nal a transition to a new phase. Finally, a crude indicator
of the effect of finite size on the extent of this intermedi-
ate regime can be obtained by comparing the results to
the solution on a 2X4 lattice (see Appendix A). There,
the “intermediate phase” occurs at a point where the en-
ergies of SDW, and SDW, cross. At the same coupling,
a third state, presumably the intermediate (liquid) phase
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ground state, becomes degenerate with the other two
ground states. Thus, the region of intermediate phase ap-
parently grows from a point for eight sites to a small in-
terval for 16 sites.

(b) In the non-SDW region of the phase diagram, there
exists a region in which the ground state is a liquid: The
ground state does not have spontaneously broken transla-
tional symmetry (i.e., spin Peierls) order. The overlap
with the equal amplitude NN-RVB is large in part of this
region. We have explicitly checked the overlap of the ex-
act ground state with each individual valence-bond state
and find no evidence that any particular valence-bond
state is preferred, as it would be in a valence-bond crys-
tal. (We expand upon this point in Appendix B.) More-
over, the transition from the SDW to the non-SDW state
appears to be continuous (second order), at least in some
regions, as seen in the susceptibility curves in Fig. 5; a
transition from an SDW to a spin-Peierls phase would be
expected to be first order on symmetry grounds. Note,
however, that for the 20°-curve in Fig. 3(d), there is a
point at which the overlap with SDW, begins to drop
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smoothly, which we have identified as the transition from
the SDW state to the liquid state, followed considerably
later by a sharper drop, which seems to indicate a fur-
ther, possibly first-order, transition. [This drop is more
dramatic in the 20°-curve of Fig. 3(e), which shows the
overlap with NN-RVB.] This further transition might ei-
ther be a transition from the liquid state to a spin-Peierls
state or from one liquid state to another (e.g., NN-RVB
to second-neighbor RVB). Further evidence that in this
region the ground state is liquid (as opposed to crystal-
line) comes from the absence of anomalously low-energy
spin-zero excited states. If the system had spin-Peierls
order in the thermodynamic limit, then for a finize-size
system we would expect it to have three nearly gapless
excited states of appropriate symmetry which herald the
emerging broken translational and rotational symmetries.
This is not found.

(c) In the liquid phase there exists a region where the
overlap with the nearest-neighbor RVB state is large, and
where the spectrum and correlation functions behave as
expected of a SR-RVB state. This suggests that there ex-

TABLE I. Solution of the eight-site system. The eight-spin system has been split into sublattices 4 and B, each of which is further
split into sublattices a and B. S indicates the total spin on the relevant sublattice and (S,S’) indicates the pair of states S S’ and S'S;

n is the degeneracy, E,, E,, and E; are the eigenvalues of the basic operators (S , +S)% S ntSs

2> and SAa2+SAB2+SBa2+SBBZ’ re-

spectively, that appear in H, and Epgc and Eqpc are the energies of the J, =0 16-site system with PBC’s and TBC’s, respectively,
where J;=Jand J,=1—J. Any entry in the table that is blank is the same as the entry immediately preceding it.

((SAQSAB) (SBaSBB)) (SASB) SA+B n El Ez E3 EPBC ETBC
00 00 00 0 1 0 0 0 0 —3J
00 01 01 1 4 2 2 2 0 —2J
00 11 00 0 2 0 0 4 —2J —3J

01 1 2 2 —J —2J
02 2 6 6 J 0
01 01 11 0 4 0 4 —2+2J —2+J
1 2 —1+J —1
2 6 1-J 1-2J
01 11 01 1 2 2 6 —2J —2J
11 0 0 4 —2+J —2+J
1 2 —1 —1
2 6 1-2J 1-2J
12 1 2 8 —3+4J —3+4J
2 6 —1+2J —1+2J
3 12 2—J 2—J
11 11 00 0 1 0 0 8 —4J -3J
01 1 2 2 2 —3J —=2J
02 2 1 6 6 —J 0
11 0 0 4 —2 —2+J
1 2 —1-=J -1
2 6 1-3J 1-2J
12 1 2 2 8 —3+3J —3+4J
2 6 —1+J —1+2J
3 12 2—2J 2—J
22 0 1 0 12 —6+8J —6+9J
1 2 =5+ —5+8J
2 6 —3+5J —3+6J
3 12 2J 3J
4 20 12 8 4—2J 4—J
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FIG. 11. Schematic representation of the terms in the dimer FIG. 12. The 19 independent dimer configurations on the
Hamiltonian: (a) is the pair-flip term on a plaquette, (b) is the system with TBC’s. All other dimer configurations are related
dimer repulsion on a plaquette, (c) is the pair flip around the to these by symmetry. The letters labeling the configurations
torus, and (d) is the dimer repulsion corresponding to (c). are used to refer to them in Table II.

TABLE II. Overlap with valence-bond states. Here we tabulate the overlap of the ground state for
J:J,:J3=1: 0.61:0 with TBC, with the various valence-bond states shown in Fig. 12. The letters in the
first column refer to the labels in the figure. The second column contains the sum of the squares of the
overlaps with the pictured valence-bond state and all distinct valence-bond states that are related to it
by symmetry. The third column lists the number of distinct valence-bond states related by symmetry.
The fourth column lists the winding numbers of the corresponding dimer state, where the first entry
refers to the twisted direction and the second to the periodic direction. The fifth column lists all other
dimer configurations that can be obtained by a ring flip.

Degeneracy
Dimer label Overlap related Winding numbers Ring flip

A 0.0115 2 (2,0)

B 0.0309 32 (1,0)

C 0.0351 32 (1,0)

D 0.0755 2 (0,0)

E 0.0907 16 (0,0)

F 0.1150 16 (0,0)

G 0.0508 16 (0,0)

H 0.1043 16 (0,0)

I 0.1093 16 (0,0)

J 0.1008 16 (0,0

K 0.1820 8 (0,0 L
L 0.1774 8 0,1) K
M 0.2311 16 0,0) N,0
N 0.2165 32 0,1 M,0
o 0.2133 16 (0,0) N.M
P 0.5267 2 (0,0) Q,R,S
Q 0.5010 8 0,1) P,R,S
R 0.4796 2 0,2) P,Q,S
S 0.4994 4 (0,0) P,Q,R
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ists a liquid phase which is adiabatically related to the
nearest-neighbor RVB state, and which can reasonably be
identified as a SR-RVB phase. The overlap with the
NN-RVB state is large in the liquid region adjacent to
the SDW, phase. Furthermore, the excitation spectrum
shown in Figs. 6(d)-6(g) is qualitatively similar to what
we expect for a SR-RVB state based on studies of the
quantum hard-core dimer gas (which is a simplified mod-
el of the SR-RVB state): (i) The basic quasiparticle excita-
tions appear to be massive (finite gap) spin-J “spinons.”
Thus both the spin-1 and the spin-0 excitations are basi-
cally two-particle excitations and, if we ignore spinon-
spinon interactions, are expected to be quite similar. This
is consistent with the observed similarities between the
spin-1 and spin-O excitation spectra shown in Figs.
6(d)-6(g), and the fact that they are both dominated by
what appear to be multiparticle continua. (ii) The
lowest-lying excitations of the quantum hard-core dimer
gas are’ collective excitations, “resonons.” As discussed
in Appendix B, the low-lying spin-0 excited states in the
spin-liquid regime can be interpreted as resononlike
modes in a finite-size dimer gas.

V. CONCLUSIONS

We conclude with a few comments concerning the rela-
tion of the present results to the SR-RVB approach to
high-temperature superconductivity. We have found evi-
dence for the existence of a SR-RVB phase in a
sufficiently frustrated Heisenberg model. While there is
strong evidence derivable from a careful analysis'® of ex-
periments in La,CuO, and YBa,Cu;O s that the un-
doped CuO plane is describable by a quasi-two-
dimensional Heisenberg model with a SDW ground state
(SDW,), there are theoretical reasons?”! for believing
that even low hole concentrations introduce a large
amount of effective frustration into the model. More-
over, there is ample experimental evidence that doping
levels as low as x =2-3 at.% in La,_,Sr, CuO, destroy
the long-ranged SDW order. There is preliminary evi-
dence?® that above x =5 at. %, where the samples begin
to be superconducting, the spin-spin correlation length is
about 10-20 A, or 2-5 lattice constants. Note that this
is also roughly equal to the inferred” superconducting
correlation length, §,~15 A. Thus, it seems reasonable
to postulate that doping introduces sufficient frustration
into the system to stabilize a SR-RVB state. The short
correlation lengths are then easily understood, since for
the NN-RVB state the spin-spin correlation length is es-
timated!! to be about one to two lattice constants, while
if fourth-neighbor valence bonds (the next-shortest
valence bonds that connect different sublattices) are in-
cluded, the correlation length is about seven lattice con-
stants. It is hard to imagine any low-energy state of a
Heisenberg model with dominantly nearest-neighbor an-
tiferromagnetic exchange that has simultaneously such a
short correlation length and correlations substantially
different from the SR-RVB state. Of course, this may
simply reflect the limits of our imagination.

A preliminary report of this work was presented previ-
ously.?® We recently received copies of unpublished work
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by Hirsch and Tang’' and by Dagotto and Moreo®
which have some similar results.
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APPENDIX A: ANALYTIC SOLUTION
OF THE EIGHT-SITE SYSTEM

In this appendix, we solve the eight-site (2X4) system
with twisted boundary conditions around the short direc-
tion and arbitrary J,, J,, and J; couplings; on a system
this small, TBC’s are essential to reproduce the nearest-
neighbor coordination number (4) of the infinite lattice.
The model can be solved analytically and is of interest for
two reasons: It gives some insight into finite-size effects,
and the 16-site (4X4) system at J, =0 reduces to two
noninteracting eight-site systems with particular values
of the couplings.

The eight-site system with TBC’s is easily solved be-
cause the nearest-neighbor J; couplings simply couple all
the spins of one four-site sublattice ( 4) to all the spins of
the remaining four-site sublattice (B). Calling the total
spin on the sublattices S , and Sy, this part of the Hamil-
tonian can be written as

H,=1J,[(S,+Sz)*—8% —S3].

To write the next-nearest and third-nearest neighbor in-
teractions, we need to subdivide each four-site sublattice
further into two-site subsublattices (¢ and ). Then, in
an obvious notation, the total Hamiltonian is

H=1J,[(S,+S5)?—S% —S})
+LJ,[8% +8F — (8%, +8% 5 +85,+S55)]
+1J;3[(8%,+8% 5+ 85, +S35)—6] .

Here J, is the coupling to the ith nearest neighbor. (On a
finite system, another possibility is to assign one J, coup-
ling per minimal path to the ith nearest neighbor; this as-
signment reflects the coordination number of the infinite
lattice.) The mapping of the 16-site problem with J, =0
onto the eight-site problem is accomplished by expressing
the eight-site J,, J,, and J; couplings in terms of the 16-
site couplings as follows: (J,,J,,J3)3=(J,,J3,0);4 for
PBC’s on the 16-site lattice, and (J,,J,,J3)
=(J,,J3,J3),6 for TBC’s on the 16-site lattice. Note that
for TBC’s on the 16-site lattice, the alternative assign-
ment of couplings is not just a rescaling. Our solution is
given in Table I.

Though the table is the complete solution, it is not par-
ticularly illuminating. We plotted all the energy eigen-
values for the two special cases that correspond to the
J,=0 16-site system (Fig. 8 for the five lowest states in
the PBC case) and found the following interesting
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features: (1) For both systems, the ground state is always
a spin-0 state that switches abruptly from one SDW state
to the other as J varies, and is degenerate with a third
spin-0 state at the transition. Thus, in the ground state,
the “liquid phase” has shrunk to a point. This suggests
that the liquid phase is not a finite-size artifact, but on
the contrary, becomes more evident as the size of the lat-
tice increases. (2) The excited spectra are analogous to
the spectra on the full 16-site lattice: For the system that
corresponds to PBC’s on the 16-site system, for J well
away from the “phase transition” (the switch in the
ground state), the first excited state is a spin-1 state (a
magnon), but near the transition, the lowest excited states
are spin-0 states. For the other system, the situation is
similar except that the states are more degenerate. In
particular, for J >J,, the ground state is fourfold degen-
erate; we believe this merely reflects the small size of the
system and the small number of interactions.

APPENDIX B: RELATION OF THE
SPIN-LIQUID STATE TO THE DIMER MODEL

In Ref. 3 it was pointed out that the states in the
nearest-neighbor valence-band subspace of a spin-{
Heisenberg model are in one-to-one correspondence with
the states of a hard-core quantum dimer gas on the same
lattice: The dimer states are orthogonalized versions of
the corresponding valence-bond states. Thus, to the ex-
tent that the low-lying states of frustrated spin system lie
in the nearest-neighbor valence-bond subspace, the sys-
tem is approximately equivalent to a dimer gas. It was
further argued in Ref. 3 that the effective dimer Hamil-
tonian has short-range interactions, and certain proper-
ties of an ultra-short-ranged version of this model were
derived. In this appendix we compare in gross terms the
expected behavior of the dimer model on a 4X4 lattice
with appropriate boundary conditions to the ground-state
and low-lying excited spin-O states of the frustrated
Heisenberg model in the putative spin-liquid regime. The
results, while preliminary, are highly suggestive. We in-
tend to carry out a more extensive comparison at a future
date.

1. The quantum-dimer model

The quantum-dimer model is a Hamiltonian which
operates on the (orthonormal) dimer states. We consider
here the shortest-range model (shown schematically in
Fig. 11) which consists of a sum of all terms which
operate on a pair of adjacent dimers. The first two terms
in the Hamiltonian are the same as the model discussed
in Ref. 3: The pair-flip operator (with coupling J) flips a
pair of parallel dimers on a plaquette from horizontal to
vertical or vice versa [Fig. 11(a)]. The nearest-neighbor
dimer repulsion (with coupling ¥) counts the number of
plaquettes which have a pair of parallel dimers [Fig.
11(b)]. For the small systems we have considered, there
are two other comparably short-ranged interactions
which also involve a pair of dimers, in this case arranged
along a single closed line around the effective torus (in the
periodic direction for TBC’s and in either direction for
the PBC’s): The ring-flip operator (with coupling J') flips
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a pair of dimers along such a ring which circles the sys-
tem [Fig. 11(c)], and a potential energy term (with cou-
pling V') which counts the number of such rings which
are tiled by dimers [Fig. 11(d)]. We can define a winding
number in the dimer state space as in Ref. 3, in which
case the J' term changes the winding number by one,
whereas all the other terms leaving the winding number
invariant. The analogs of J' and V' in the thermodynam-
ic limit are exponentially small interactions involving
cooperative ring exchange of dimers along rings that en-
close the entire system. We have not included a ring-
exchange term in the Hamiltonian involving resonances
between dimer configurations which have different wind-
ing numbers in the twisted direction, such as between
configurations 4 and D in Fig. 12; such terms are
longer-range interactions involving the motion of at least
four dimers. In our view, the absence of resonance terms
in the twisted direction is the primary reason that the re-
sults for TBC’s differ from those for PBC’s in the liquid
phase (see the discussion following).

The various terms in the model favor different sorts of
ground states. Large V favors a valence-bond-crystal
ground state; for V positive a “staggered” state, such as
A in Fig. 12 is favored while negative V favors a “column
state” such as D or P in the figure. J favors resonance be-
tween different configurations in the same winding num-
ber sector, such as M and P in Fig. 12; J thus favors a
more liquidlike state. J' and V' are analogous to J and V
in that J' favors a resonating liquidlike state with compa-
rable amplitude on configurations such as P, Q, R, and §,
while V' favors various specific single dimer
configurations.

As noted in Ref. 3, a special coincidence occurs for
V=J and J' and V'’ equal zero (and, by analogy, for
V'=J' and J and V equal zero): The ground state is
severalfold degenerate and each ground state consists of
an equal amplitude superposition of all dimer
configurations which are connected to a given seed
configuration by repeated pair flips, i.e., all configurations
with a given winding number (see Table II). For V slight-
ly less than J, these ground states cease to be degenerate;
the energy of each state is equal to —(J — V) times the
average number of nearest-neighbor dimer pairs (pla-
quette “flipables”) in the original ground state. By analo-
gy, for J'=V", the ground state is highly degenerate with
each ground state consisting of an equal amplitude super-
position of all dimer configurations which are related to a
given seed by repeated ring flips (see Table II). Similarly,
for V' slightly less than J', the degeneracy is lifted, and
the energy of each of these ground states becomes
—(J'—V') times the average number of ring flipables in
that state.

2. Ground-state correlations at J,:J,:J; =1:0.61:0
with TBC’s

We have computed the overlap between the ground
state and the various individual valence bond states for
J:J,:J3=1:0.62:0 with TBC’s. The result is shown in
Table II for 19 representative valence-bond states, where
the numbers refer to the valence bond states pictured in
Fig. 12. All other valence-bond states are related to these
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19 by some symmetry of the lattice. In the table we also
list the number of distinct valence-bond states related by
symmetry to the pictured state, the winding numbers of
the dimer configuration, and which dimer configurations
are connected by a ring flip around the periodic direction.
Note that the sum of the squares of the amplitudes is
significantly greater than 1; this is a consequence of the
nonorthogonality of the different valence-bond states.

We observe that the overlap with the pure valence-
bond crystal states, 4 and D, are significantly suppressed
relative to more liquidlike states. This supports the thesis
that the state here is not a valence-bond crystal. Note,
however, that configuration P, which looks like a rotated
version of D, is one of the configurations with maximum
overlap. We understand this result by noting that all the
configurations (P,Q, R,S) which are related to P by a ring
flip have almost equal amplitude (to within 5%). More-
over, in each multiplet of states that are related to each
other in this way, notably (1,J), (K,L), and (M, N, O), the
same observation applies. This can be understood in the
dimer model if we suppose that J’' and V'’ are the largest
interactions and V" is slightly less than J'. Moreover, the
multiplets of states have amplitudes which scale roughly
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with the average number of ring flipables in each set:
(I,J) has one, (K,L) and (M,N,0O) have two and
(P,Q,R,S) has four. We can estimate the relative size of
the effective interactions J and J' by noting that the am-
plitude in P is roughly twice the amplitude in M, so
J~(J'—V'). The smallness of the amplitudes of the
configurations A4, B, and C, which have nonzero winding
number in the twisted direction, supports the assumption
that longer-range dimer interactions are negligible.

Since the ring flip is so important, it is easy to under-
stand why the excitation spectrum is different for the
TBC’s and the PBC’s in this regime. Unfortunately, this
result also emphasizes the fact, implicit already in the
difference between the two boundary conditions, that the
result could be significantly affected by finite-size effects.
Nonetheless, we find that the suppression of the pure
valence-bond crystal states, and the fact that resonance of
both the plaquette and the ring varieties are the dominant
interactions, provide strong evidence that any tendency
of the system to form a valence-bond crystal is rather
weak, and corroborative, although circumstantial evi-
dence, that the ground state is a spin liquid.

*Current address: Department of Physics, UCLA, Los Angeles,

+ California.

Current address: Department of Physics, University of Califor-
nia, Berkeley, CA 94720.

IP. W. Anderson, Science 235, 1196 (1987); G. Baskaran, Z.
Zou, and P. W. Anderson, Solid State Commun. 63, 973
(1987); P. W. Anderson, G. Baskaran, Z. Zou, and T. Hsu,
Phys. Rev. Lett. 58,2790 (1987).

2S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B
35, 8865 (1987); Europhys. Lett. 6, 353 (1988).

3. A. Kivelson and D. S. Rokhsar, Physica C 153-155, 531
(1988); D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61,
2376 (1988).

4V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987); R. B. Laughlin, ibid. 60, 2677 (1988); Science 242, 525
(1988); (unpublished). See also E. J. Mele, Phys. Rev. B 38,
8940 (1988). For a more general discussion of 7 and P violat-
ing spin-liquid states see X. G. Wen, F. Wilczek, and A. Zee,
Phys. Rev. B 39, 11413 (1989).

5M. Kohomoto and Y. Shapir, Phys. Rev. B 37, 9439 (1988); M.
Kohomoto, ibid. 37, 3812 (1988); P. L. Iske and W. J.
Caspers, Physica A 142, 360 (1987).

61. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988); J. B.
Marston and I. Affleck, ibid. 39, 11538 (1989); G. Kotliar,
ibid. B 37, 3664 (1988); A. Ruckenstein, P. Hirschfeld, and J.
Appel, ibid. 36, 857 (1987).

7C. Gros, R. Joynt, and T. M. Rice, Z. Phys. B 68, 425 (1988).

8J. Otima and D. D. Betts, Can. J. Phys. 56, 897 (1978).

9J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988); D.
A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988); D. A.
Huse, Phys. Rev. B 37, 2380 (1988).

108, Chakravarty, B. I. Halperin, and D. Nelson, Phys. Rev.
Lett. 60, 1057 (1988).

11S..D. Liang, B. Doucot, and P. C. Anderson, Phys. Rev. Lett.
61, 365 (1988).

12(a) 1. Affleck, T. Kennedy, E. H. Leib, and H. Tasaki, Phys.
Rev. Lett. 59, 799 (1988); (b) Commun. Math. Phys. 115, 477
(1988); (c) see also D. P. Arovas, A. Auerbach, and F. D. M.
Haldane, Phys. Rev. Lett. 60, 531 (1988). Actually, the ex-

istence of a gap was only proved in one dimension. Exponen-
tial decay of correlations was proved for a two-dimensional
model in (b), which we take to be very strong evidence for the
existence of a gap.

13p, W. Anderson, Mater. Res. Bull. 8, 153 (1973); P. Fazekas
and P. W. Anderson, Philos. Mag. 30, 432 (1974); B. Suther-
land, Phys. Rev. B 37, 3786 (1988).

14, Pauling, The Nature of the Chemical Bond (Cornell Univer-
sity Press, Ithaca, 1960).

15D. S. Rokhsar (unpublished).

165, A. Kivelson and D. S. Rokhsar, Phys. Rev. Lett. 61, 2630
(1988); V. Kalmeyer and R. B. Laughlin, ibid. 61, 2631 (1988).

7L, B. Ioffe and A. 1. Larkin, Int. J. Mod. Phys. B 2, 203 (1988);
Phys. Rev. B 37, 5730 (1988).

18D, Huse (private communication).

19p. Wiegmann, Phys. Rev. Lett. 60, 821 (1988); (unpublished).

20p, J. Klein, J. Math. Phys. A 15, 661 (1982).

213, Chayes, L. Chayes, and S. A. Kivelson, Commun. Math
Phys. 123, 53 (1989).

22F, D. M. Haldane, in The Quantum Hall Effect, edited by R.
Prange, and S. Girvin (Springer-Verlag, New York, 1987), p.
303.

23W. Marshall, Proc. R. Soc. London, Ser. A 232, 48 (1955).

243, Chakravarty, B. I Halperin, and D. Nelson, Phys. Rev. B
39, 2344 (1989); P. Chandra and B. Doucot, ibid. 38, 9335
(1988).

258, Tang and H. Q. Lin, Phys. Rev. B 38, 6863 (1988).

26]. D. Reger, J. A. Riera, and A. P. Young, (unpublished). See
also Ref. 11.

27Y. Nagaoka, Phys. Rev. 147, 392 (1966); M. Inui, S. Doniach,
and M. Gabay, Phys. Rev. B 38, 6631 (1988).

28R, Birgeneau et al., Phys. Rev. B 38, 6614 (1988); 39, 2868
(1989).

29See, for example, A. Kapitulnik, Physica C 153, 520 (1988).

303, Sondhi, F. Figueirido, A. Karlhede, S. Kivelson, and M.
Rocek, Bull. Am. Phys. Soc. 33, 558 (1988).

313, E. Hirsch and S. Tang, Phys. Rev. B 39, 2887 (1989).

32E, Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 (1989).



