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The interfacial profile of the order parameter is studied in the context of a d-dimensional Ising
model by means of Migdal’s renormalization procedure. It is found that interfaces between coexist-
ing phases are always rough, such that pinning fields are necessary to locate and shape the interface.
As a pinning field a linearly varying field (gravitational pinning) is taken, and scaling laws for the in-
terface at criticality are established. In the low-temperature regime an interface is found that shows
behavior similar to the capillary-wave model for low dimensions. Scaling forms are explicitly calcu-

lated.

INTRODUCTION

The study of the interfacial profile between two coex-
isting phases has a long tradition. Already, van der
Waals' made a theory for the profile which now has been
named the squared gradient theory. Subsequent sophisti-
cations of this theory all lead to a so-called intrinsic
profile, i.e., a profile that is independent of the field that
localizes its position. Buff, Lovett, and Stillinger?
showed, however, that for dimensions d <3 the interface
is instable against capillary waves that are excited by
thermal motion. As a consequence, the localizing field
(e.g., gravity) also shapes the profile of the interface.

This result applies equally for lattices. In an Ising
model the interface between a domain with positive mag-
netization and a domain with negative magnetization is
rough for d <3. In d =3 the interface can be smooth (or
intrinsic) below a critical temperature (the roughening
temperature),® depending on the orientation of the nor-
mal of the interface.

In the rough phase the interfacial profile depends on
the nature of the localizing field. Here we consider the
case where the field that couples to the order parameter
varies linearly in space (the gravitational situation). The
interface then settles around the value of the field where
the phase transition takes place, thus in the Ising model
where the magnetic field is zero. The magnitude g of the
gradient in the field then provides the scale or width of
the interface. Capillary-wave theory’ makes a definite
prediction of the way g enters in the profile. The mean-
squared displacement of the interface due to capillary
waves diverges as g'“ 7372 for d <3 and as Ing for d =3.
Consequently, the width of the interfacial profile diverges
for small g and the profile itself becomes a function of
zg"‘d—”/4 for d <3 and of z/(Ing)'/? for d =3, where z
is the distance normal to the interface.

This behavior holds all along the coexistence line, but
it changes over to critical behavior when the critical
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point is approached. In a varying field the interfacial
width does not diverge as does the correlation length in
the bulk, which is usually seen as a measure for the inter-
facial width. The interfacial profile is generally governed
by scaling laws involving the bulk critical exponents.*

Few calculations of interfaces exist starting with the
microscopic interaction between the constituent degrees
of freedom which lead to the picture deduced from the
semiphenomenological capillary-wave theory. In this pa-
per we calculate the interface by real-space renormaliza-
tion. The advantage is that such a calculation does not
involve any ansatz on the behavior of the equation of
state in the coexistence region which is a basic ingredient
in the standard theory of the interface. The disadvantage
is that the equations for the interface become quite in-
volved when a reliable renormalization procedure is used.
In this paper we use the Migdal procedure® in its continu-
ous form, which has the virtue of great simplicity. Al-
though limited to low dimensions, it still gives quite accu-
rate results in d =2 and more importantly the dimension-
al dependence can be obtained with d as a continuous pa-
rameter such that the behavior near d =1, where the
Migdal procedure becomes exact, can be analyzed.

The interface problem has been considered by various
authors in the context of real-space renormalization.’
The main effort has been to calculate the surface tension,
which is left out in this paper, where the interfacial
profile is the center of interest.

In Sec. I we provide the general real-space renormal-
ization equations for an interface profile. In Sec. II the
formulas for Migdal’s renormalization procedure are
given and applied to the calculation of the bulk magneti-
zation. The equations from Migdal’s scheme for the in-
terface are derived in Sec. III. The solution is discussed
in Sec. IV together with the numerical results for a num-
ber of cases. The paper closes with a discussion of the re-
sults and a comparison with the classical interface
theories.
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I. EQUATIONS FOR THE MAGNETIZATION

In the renormalization approach one studies the behav-
ior of the system under a spatial rescaling. For the study
of interfaces in the presence of an external varying field,
the scaling behavior is more complicated. We consider
an Ising system with the Hamiltonian

H[s;]=3 Hs;+K 3, 5;S; -
i (ij)

(1.1

The spin variables s; assume the values s;==+1. H, is the
magnetic field on site / and we take a field H; that is posi-
tive on one half of the lattice and negative on the other
half, such that an interface is formed at the position
where H; changes sign. The direction perpendicular to
the interface (referred to as longitudinal) is taken along
the z axis. Thus a typical H, is of the form

H,=gz, . (1.2)
g plays the same role as the gravitational acceleration for
fluid interfaces.

In (1.1) K couples nearest-neighbor spins (ij) and
measures the temperature which is hidden in K [because
throughout the paper —(1/kyT) is absorbed in the Ham-
iltonian]. Similarly, g contains a factor —(1/kzT), but
we will vary the gradient of H; to arbitrary (small) values
such that we consider g as an independent variable even
in the low-temperature limit K — co.

A renormalization transformation maps H[s;] onto a
new Hamiltonian H'[s’;] of new spins s’ on a new lat-
tice with sites i’. The lattice distance of the new lattice in
units of the old lattice distance is the spatial rescaling fac-
tor b. In general, H'[s';;] will not be of the same simple
structure as (1.1). It will contain, in addition to a mag-
netic field H; and a nearest-neighbor pair interaction K,
all kinds of further ranged and multiple-spin interactions.
In this paper we will avoid the appearance of these
higher-order interactions by using Migdal’s renormaliza-
tion procedure. For the moment we include them under
a general label K ,;, where i refers to its location and a to
the type of the interaction.

Thus we summarize the renormalization step by the set
of equations

H)=H.[H,K,],
Ko =Ky [H;,Kg],

(1.3)

expressing that the new field H/ at site i’ depends, in
principle, on all the fields H; and coupling constants K,
of the old system. We will assume, however, that the re-
lations are nearly local, i.e., the field H; at site i’ is main-
ly determined by the fields and couplings of sites i near
the site i’.

The free energy of a system characterized by H;,K ; is
a functional F[H;,K ;] and transforms under (1.3) as

F[H,K,]=G[H;,K,]+F[H,K,], (1.4)

where G[H;,K ,; ] is a spin-independent constant which is
formed under renormalization. it could be considered as
part of the Hamiltonian but it is usually treated separate-
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ly because it plays no further role in the transformation
(1.3).
The magnetization can be defined as

m;=8F[H,;,K ,;]/8H; . (1.5)
Variation of (1.4) with respect to the field H; yields
8G , 8H;. , Bi
=4 — " .
™ =sH, T2 |5, %eﬁ' 5H, (1.6
e,; is the abbreviation of the derivative
e, =O8F /6K ; . (1.7)

When K; is a nearest-neighbor interaction, e, is the
average of the product of a pair of nearest-neighbor spins.
Equation (1.6) shows that the equation for the magneti-
zation has to be supplemented with an equation for e
which follows by variation of (1.4) with respect to K ;

ai’

The derivatives in (1.6) and (1.8) follow from the renor-
malization transformation (1.3) and the expression for
G[H i ’K ai ]

Equations (1.6) and (1.8) express the set {m;,e,;} in
terms of the set {m/,e,;} for the renormalized system
and the derivatives of G. Repeated renormalization gen-
erally leads to an extreme situation: very weakly coupled
systems (high temperatures) or very strongly coupled sys-
tems (low temperatures). In these extreme situations
{m;,e,;} must be determined directly from the Hamil-
tonian. We will refer to these values as boundary condi-
tions. Then, running the renormalization backwards to
the original system, the values of {m;,e,;} for the origi-
nal system can be calculated from repeated use of (1.6)
and (1.8).

To elucidate the equations we may apply them to the
homogeneous case H;=H and K ,; =K, such that we can
drop the index i/ and the summation over i. The transfor-
mation (1.3) simplifies to

H'=H'(H,K,)
K., =K,(H,Kg) .

(1.9)

The derivatives of (1.9) are related to the functional
derivatives in (1.6) and (1.8) by the rules

dH' _  OH:  am' _ _ BH;
dH *? 8H,’ aKa“§ 8K ,;

(1.10)
K| 8K, K. 8K

a a. a
oH ; 8H, ’ 93K, 21' 8K g;

If we vary, e.g., H in (1.9), we vary all the H; at the same
time and the effect is in the homogeneous case indepen-
dent of the location i’ of H;.. The transformation laws for
m and e, follow from (1.6) and (1.8) by summation of all
sites i and realizing that the number of sites NV in the old
lattice equals 9N’ with N’ the number of sites in the new
lattice
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_, 3G 3H' 9K
d, . — n! 1__+ ’ + ’
bm =N e m T e T 2 an
, (1.11)
be =N"1_a_G__ , OH' K

ok, ™ok, " %eﬁaxa '

From these relations the bulk magnetization m(H,K )
may be derived in the same spirit. Starting from a set
H,K , apply the renormalization (1.9) repeatedly until an
extreme situation is reached for which m and e are
known. Then role back the renormalization trajectory
and apply (1.9) until the original system is reached again.
Thus the bulk equation of state m,(H,K ) is found.

II. MIGDAL TRANSFORMATION

In Fig. 1 we have drawn a b X b section (for b=3) of a
d =2-dimensional lattice. The idea is to eliminate the
spins that are not on the corners. In Migdal’s approxi-
mation this is done by shifting the couplings between the
pairs in the interior to the edges. This increases the cou-
plings on the edges by a factor b¢~!. With only cou-
plings on the edges, the spins in the interior can be elim-
inated as isolated spins and the spins on the edges can be
eliminated as part of a one-dimensional chain. Thus an
effective coupling results between the corner sites. When
a magnetic field is present one can either shift the fields
together with the bonds or leave the fields on the sites.
Although the former procedure is more accurate near the
critical point than the latter, we will choose in this paper
for not moving the fields because it gives a better flow in
the high-temperature regime, which is important for the
boundary conditions.

An attractive feature of Migdal’s renormalization tech-
nique is that it has quite simple renormalization equa-
tions and that it can be carried out for arbitrary dimen-
sion d and arbitrary rescaling factor b. This last point
turns out to be very important for our renormalization
flow equations for the magnetization. In fact, any integer
b introduces inhomogeneities between sites which are
eliminated and those which are kept. Therefore we will
use the continuous form of the Migdal scheme and set
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FIG. 1. Bond shifting in Migdal’s approximation.
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b=1+dt with dt —0. Then the equivalence of all sites
remains unimpaired.

In this section we collect the formulas for the homo-
geneous case. In Sec. III the inhomogeneous case is
treated.

The shifting of the interior bonds to the edges produces

on the edges a bond strength
K,=b?"'K . (2.1)

The elimination of the sites along the edges leads to the
problem

exp[g +H (s +s')+K'ss"]
exp[H(s;+ - s5_4)

+K, (ss;+ - s8] . (2.2)

The expressions for g, H,, and K’ in terms of H and K,
can be readily evaluated for arbitrary b by the transfer
matrix method. For the reader’s convenience we have
worked out the general expression in the appendix. For
b—1, we have to order b —1=d{t,

g~¢g(H,K)dt ,
H,~H(H,K)dt ,
K'~K+[(d—1)K+K(H,K)ldt ,

(2.3

with g, H, and K given below, using (2.1) in the last
equation.
The new field H' on the corner sites is given by

oH

H’=H+2dezH+dt-§ . 2.4)
We arrive at the following flow equations:

M —sanm,K) e

%%=(d—l)K+K(H,K). '

The “time” ¢t measures the scale along the renormaliza-
tion trajectory. The relation N =b%N’ between original
and renormalized number of sites becomes, in continuous
form,

N(t)=e 4N , (2.6)

where N(z) gives the number of sites at time (or scale) ¢
and N the starting number of sites.

The functions ¢, H, and K derived in the appendix are
given by the following expressions:

g(H,K)=K +1tn(1—e ™ *)+(coth2K)U(H,K)

H(H,K)=(tanhH)U(H,K) 2.7
KH,K)=—U(H,K),
with U (H,K) given by
_1—e X 1+q(H,K)
VK= o™ 1 —gHK) o

g (H,K)=[tanh’H +e ~*K(1—tanh?H)]'/2 .
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The next step is to construct the flow equations for the
magnetization from the general expressions (1.11). We
observe first that only nearest-neighbor couplings play a
role and thus the sum in (1.11) over the type a runs only
through the d orientations of the bonds. In the homo-
geneous case all d orientations are equivalent and for
each of them the second equation (2.5) applies individual-
ly. The function G in (1.11) is built up from d chains per
new site. So for b—1
N'"'G=dg(b—1)=dg dt . (2.9

We can calculate the derivatives in (1.11) from (2.5) and
(2.9) for dt —0 as

196 _,9 ,, 1 oG _ 9
N om YoH®™ Wk, k™
dH' _ 3H O0H' __ 0H
S = | T2 ardt oK. 2559 > (2.10)
K 3K oK, aK’
== = +d—1+——dt| .
an aH™ 3K, O |! T4t
For the values of m’ and e’ we put
m’=m+in—dt,
at
.11)

de
! .
e'=e+ a1 dt

Inserting (2.10) and (2.11) into (1.11) yields for dt —0,

om

—at_Zd(mwTH) , (2.12)
de . '
Ez(e_TK) N
with
7,=% 0,9 K _pk. 2.13)
ox ox dx

In order to solve m and e from the coupled set of equa-
tions (2.12), we must provide appropriate boundary con-
ditions. In Fig. 2 we have sketched the flow lines of the
transformation (2.5). Due to the symmetry in H it
suffices to consider only H >0. Migdal’s scheme, in its
continuous form, works only in the ferromagnetic case
K >0. Note that H>0 and K <0 in this quadrant.
Therefore H is always increasing and for K there is a
competition between (d —1)K and K. For large H the
function U becomes large for finite K and therefore any
trajectory bends ultimately down to K =0, except the
axis H =0, which exhibits a critical point at K satisfying
(d—1)K,+K(0,K,)=0. (2.14)
Using the simplification H =0 in (2.8) we find for (2.14)

(d —1)K,= —isinh2K IntanhKX, . (2.15)

For d=2_this implies the exact critical value
K,=1In(V'2+1) since Migdal’s scheme preserves duality
for d=2.* For K > K, the coupling constant grows and
for K <K, it decreases. Near H =0 the trajectories fol-
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A

FIG. 2. Sketch of the flow lines of Migdal’s transformation
without shifting the magnetic fields.

low this trend.

Thus we must specify first of all the behavior of m and
e in the small-K regime where the trajectories end. As
this is a free system we have

m =tanhH, e=tanh’H, (K—0). (2.16)

We now inspect the flow equations in this regime and find
m—Ty=(m—tanhH)+O(K InK) ,
e—Tx=AIn[(1—tanh’H)K ]

+2tanhH(m —tanhH )+ O(K InK) ,

(2.17)

with

A =2(m —tanhH )tanhH — (e —tanh?H) . (2.18)

One sees that to order K InK the values (2.16) make the
flow of m and e zero. Thus the boundary conditions
(2.16) are compatible with the flow. It becomes insensi-
tive to the time (or scale) on which the flow is reversed to
calculate m, whenever the small-K region is reached.

It is also possible to impose directly a boundary condi-
tion at large H and arbitrary K for those trajectories that
reach this zone. In this region the expressions for the
flow simplify to

. _e—l €_4K —2H
m—Ty="——+——(=1+2m —e)+0(e "),

, . (2.19)
e—Ty=e—1+Kg(—14+2m—e)+0(e2H),
with

Ky=e *[—2H +1+In(1—e " %5)] . (2.20)

So we see that m =e =1 [which matches with (2.16) for
H — o0 ] remains invariant in the region H large, K finite.
Once this regime is reached by the trajectory it makes no
sense to continue the flow. Calculating the m and e
upstream, it would yield a large stretch where the
m =e =1 values would be preserved.

Finally, we can impose a boundary condition at the
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large-K, finite-H region. Here the flow simplifies to the
expressions
d

m—TH-:(l—e)S‘E

H

+ —2K
2tanhH Ole )

(2.21)

e—Ty=(e—1)+0(e ).

Again the values m =e =1 are preserved in this regime.
This explains also the spontaneous magnetization along
the H =0 axis for K > K,.. For H=0 the expressions (2.7)
reduce to

§(0,K)=K +cosh’KIn(1+e ~%X)

—sinh?K In(1—e "),

. (2.22)
H(0,K)=0,
K(0,K)=1sinh2K IntanhkK ,
while we find for T for H—0,
m—Ty=m |1 —2%%
=m[1+sinh2K In(tanhK)] . (2.23)

In this limit H —0, m is no longer coupled to e. We then
have to solve

am

o dm[1+sinh2K In(tanhK )] (2.24)
in combination with the flow equation for K
aa—lf =(d —1)K +Jsinh2K In tanhK . (2.25)

For K — o the flow of m stagnates, and in view of the
previous considerations, we must put m =1 in the limit
H —0. One may eliminate ¢ from (2.24) and (2.25) in or-
der to get a direct equation for m as function of K,

Om _ dm[1+sinh2K In(tanhK)]
3K  (d —1)K + 1sinh2K IntanhK ’

(2.26)

which allows the solution
m g, (K)

_ -—fde' d[1+sinh2K'In(tanhK")]
=X J ¢ ®® (@— 1K'+ Lsinh2K 'In(tanhK’) ’

(2.27)

in which the boundary condition mg,(e)=1 is built in.
For K — K, the integral diverges and m, vanishes as
(d=yy) /vy
my(K)~|K —K,|“ """ T=|K—K,|P, (2.28)
as should be expected for the magnetization, with the ex-
ponents yy and y; given by

yy=—d sinh(2K,)In(tanhK,)=2d(d — 1)K, ,
(2.29)

yr=d —2(d — 1)K, /sinh2K,=d —y, /(d sinh2K_) .

In Fig. 3 we have drawn the curve for the spontaneous
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FIG. 3. Spontaneous magnetization (d =2) vs (K /K_.)—1 for
(a) the exact Onsager-Yang solution, (b) Migdal’s renormaliza-
tion with shifting of the magnetic fields, and (c) without shifting
the magnetic fields.

magnetization as derived from (2.27) for d =2. Compar-
ing it with the exact Onsager-Yang curve® one sees sub-
stantial deviations. These can be improved by shifting
the fields together with the bonds for which one finds
m g (K)

1+sinh2K’In(tanhK’)
(d —1)K'+1sinh2K'In(tanhK ") ’

(2.30)

=exp— f:dK'

which is also drawn in Fig. 3.

Solving the flow equations (2.12) and (2.13) as indicated
above yields the (bulk) magnetization m,(H,K) as a
function of H and K for the whole H,K plane. Most in-
teresting is the behavior of m,(H,K) as a function of H
for K near the critical value K,. We have plotted in Fig.
4 three curves for m,(H): with K slightly larger than K,
equal to K, and slightly below K.. The figure shows how
rapidly the curves change with K.

1 L L
0.4x10°  06x10%° 08x10° 10x10°

H

1
0 02x10°

FIG. 4. Bulk magnetization m,(H,K) (d =2) as a function
of the magnetic field H for (a) K =1.001K,, (b) K=K_, and (c)
K=0.999K..
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The magnetic equation of state m,(H,K) has a scaling
behavior in the variables H and =K —K_ for small H
and 7,

my(H,r)=r" "#Tg(H7r 217T) | 2.31)

Such a scaling behavior follows directly from the nature
of the flow equations in the neighborhood of the critical
point. For H and 7 small, the flow equation (2.5) reduces
to

oH
—_ = H ,
% 2.32)
ar_ ‘
a T
and the magnetization equation (2.12) becomes
am
¥=(d—y,{)m , (2.33)

where we have assumed that terms of order H may be
omitted. We will show below that, indeed, m >>H. The
scaling form (2.31) satisfies (2.33) with the use of (2.32).
The precise form of the scaling function 7 is not fixed by
the form of (2.33) and (2.32) but must be obtained from
the procedure outlined above.

The critical curve is the one in which m varies most
rapidly with H as one sees in Fig. 4. Its shape can be de-
duced from (2.31) for 7—0 and the requirement that the
asymptotic behavior of 7 for large argument just com-
pensates the power of 7 in front of 7,

my(H,00~H' " #"7n=g1/5 (2.34)

As § is large one finds, indeed, m >>H as was assumed in
(2.33).

III. INHOMOGENEOUS SYSTEMS

We consider now the case where the field H —and con-
sequently the coupling constant K —depends on the posi-
tion in the lattice and derive the appropriate flow formu-
las for the Hamiltonian and magnetization. It is assumed
that continuous functions H(z) and K (z) exist depending
on the longitudinal coordinate z. The earlier used nota-
tion H, will be changed into H(z, ) where z, is the longi-
tudinal position of site n. Bonds will be positioned based
on the location of the middle of the bond. So transverse
bonds have the same z as the sites which they connect
while the longitudinal bonds have a z interpolating be-
tween the two sites.

The bond moving will be carried out in the same way
as in the homogeneous case. This is less justified for the
transverse bonds than for the longitudinal bonds. A lon-
gitudinal bond is moved (parallel to itself) to an
equivalent position. A transverse bond is shifted, howev-
er, to a higher or a lower field area and extra errors are
associated herewith. We note that always equal numbers
are moved in opposite directions such that these extra er-
rors tend to compensate. Moreover, bonds are moved
preferably only when the field gradients are still small
such that the inhomogeneity does not introduce substan-
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tial errors in the bond moving process.

As the longitudinal and transverse bonds behave
differently in the renormalization process, we distinguish
them by an index / and ¢. The shift of the longitudinal
bonds is equal in all d —1 (transverse) directions leading
to an effective bond K[(z) along the longitudinal edges

Kf(z)=b"'K/(2) . 3.1)

Along the transverse edges the effective coupling receives
reenforcement from d —2 transverse directions and from
the longitudinal direction. So we have

i,
Ki(z)=b S
J=—b-172

K,(z4)) . (3.2)

We will encounter frequently sums of this type. For
sufficiently smooth functions f(z) we may expand
f(z+j) around z and obtain

(b—1)/2 1
> flz+j)=bf(z)+—(b+1)b(b—1)
j=—(b—-1)72 24

2
x 32 3y
9z?

The renormalized fields and couplings must now be
calculated by eliminating the (b —1) intermediate sites
along the edges. For the transverse bonds this is almost
identical to the homogeneous case because all the bonds
and fields along the edges are of equal strength. The only
difference is that the renormalized coupling is located at
a new position z'=z /b and that the effective coupling is
calculated differently by (3.2) and (3.3). Writing for

b=1+dt
, . ok,
K/(z/b)=K,(z)+dt o & | (3.4)
we find in the same way as in (2.5)
K, (z) aK'(Z)+(d—1)K( )
a - a e
R(H K+ L IKZ) 3.5)
+K(H(z),K(z 12 3.2 . .

The first term on the right-hand side is a rescaling term
originating from the renumbering of the sites in the re-
normalization process; the last term stems from the ex-
pansion (3.3).

For the longitudinal bonds we are faced with the de-
cimation of b—1 intermediate sites along a chain in
which the field (and also the coupling) varies. Although
it is easy to carry out this decimation for arbitrary integer
b, we have not been able to give the general formula for
b—1. We limit ourselves to the case that the variations
inside a cell are so small that we may replace bonds and
fields by their value in the middle of the edge. Then the
calculation of the renormalized longitudinal bond is the
same as in the homogeneous case apart from the rescaling
terms. So we find
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K)(z) _ 3K(z)
ar oz

+(d—1K,(z)+K(H(z),K(z)) .

(3.6)

Such a flow equation misses terms of the type of the last
term in (3.5). To be consistent we must omit it then also
in (3.5) and restrict ourselves to inhomogeneities weak
enough that second derivatives can safely be ignored.
The distinction for the flow of the coupling constants be-
tween longitudinal and transverse then disappears and we
work for both with the equation

E)K(z)= dK(z)

o 32 1)K(z)+K(H(z),K(z)) .

+(d—

(3.7)

For the magnetic field we have 2(d —1) contributions
from transverse directions and 2 from longitudinal direc-
tions. The latter are located at z+(b/2) and z— (b /2)
when we consider a site at position z. So we have the
flow equation for b =1+dt,

0H(z) _ aH(z)

3 P 1)H(H(z),K(z))

+2(d —

+H(H(z—1),K(z—1))

+H(H(z+1),K(z+1)) . (3.8)

To be consistent with (3.7) we must ignore the fact that in
the longitudinal contributions the fields are not at the
same value of z as in the transverse terms. Expanding
these terms around the point z, only contributions of
second order in the gradients or second-order derivatives
survive; the linear terms cancel. As second-order deriva-
tives are left out in (3.7), we reduce (3.8) also to

0H(z) =,
at

dH(z)
oz

+2dH(H(z),K(z)) . (3.9)

The flow equations (3.7) and (3.9) are reliable as long as
the variation of H(z) and K(z) with z is weak.

The derivation of the flow equation for the magnetiza-
tion m(z) is more delicate because we must be prepared
that the variation of m(z) with z is stronger than that of
H(z). Another difference is that one obtains, in general,
different equations for different positions in the cell
shown in Fig. 1. For example, the field on the corners
enters in a different way in the renormalized field H' than
the fields on the edges or in the center of the cell. To ap-
proach this problem carefully we rewrite the general
equations (1.6) and (1.8) using the continuous functions
H(z) and K(z). As in the transition to the homogeneous
case we sum the equations now over the d —1 transverse
directions. This leads to
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iot . bF \ SH'(2)
TP 2‘ " SH ()

+d—er(z) 2Ki2)
¢\Z SH(z)
" ', SKII(Z’)
2 SHm |
d—1 __ oz m'(z’ SH'(z')
b9 e (z) 5K,<z)+§ 3K e) (3.10)
8K/(z')

(’)

»

K,(z)

be e (z)—~—§g—+2 m(z") 22

8K,(z) 0K,(z)
telz) 8K/(z')
“2SK () |
where g=(N')"'“"1/4G and the variation with respect
to K,(z) refers to one of the transverse orientations. Pos-

sible cross terms between the transverse e, and longitudi-
nal e, are absent because the flows of longitudinal and
transverse bonds are uncoupled.

In (3.10) it matters whether z is taken at a corner site
or at intermediate points. In order to make the b —1
limit we calculate averages over these equations and ap-
ply (3.3)

(b—1)/2
b9 'm(z +j)
j=—b-172

3%’m(z)

1
—pd - T4 ...

(3.11)

For m(z) and e,(z) we make such averages by taking z at
a corner of a cell and for ¢,(z) we take z in the middle of
a longitudinal chain. The derivation of the flow equation
for the transverse e,(z) is the simplest, as the terms in the
average (3.11) refer to derivatives with respect to exactly
the same K,(z+j), which build, according to (3.2), the
effective transverse bond K/(z). So all the terms in the
average contribute an equal amount since H'(z') and
K/(z') depend only on K/(z) with z'=z /b. Putting these
points together we have

2
d (b+1)(b—1) Oelz)
b® le(z)+ 24 P +
—pd—1 o8 z |8H'(z/b)
8K(z) b | 8Kfz)
tey |2 |2K12/b) (3.12)
b | 8Kf(z)

As before, we set in the limit b —1
"z /b= N 6e,(z)+ae,(z) d (3.13)
e/(z/b)=e,(z) z 3% 3 t, .
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and use the expressions (2.3). Then we obtain for b —1

de,(z) 8e,(z)+ (2)
a7 oz | F
1 d%e,(z)
~Te)+ |35 (3.14)

T,(z) has the same definition as in (2.13) but now evalu-
ated with the fields H(z) and K(z) and with m(z) and
e,(z) substituted for m and e.

The equation for the longitudinal e¢;(z) follows from
(3.10) by averaging over all the bonds along a longitudi-
nal chain [see Fig. 5(a)]. As before we approximate the
evaluation of the derivatives inside the chain as if there is
no variation with position, i.e., we evaluate them at the
value z in the middle of the chain. Then we obtain in
analogy with (3.14)

de;(z)  delz) .
Y =z 3 e(z)—L,(z)
1 82e’(Z)+ (3.15)
12 322 ’ '
with L (z) defined as
L'K(z)——g—(z )+ [m(z—1)+m( z+‘)]——(z
+e,(z)—a—K—(z (3.16)

In contrast to Tyx(z), Ly(z) couples to m(z—1) and
m(z+1) at the ends of the longitudinal bond.

The equation for m(z) has a mix of these transverse
and longitudinal ingredients. The transverse contribu-
tions are straightforward, as all happens at the same z.
For the longitudinal contributions we have the complica-
tion that half of the average is over the left chain and the
other half over the right chain [see Fig. 5(b)]. We show
in Appendix B that in the limit of vanishing gradients of
the field, the sum of the derivatives with respect to the
fields of the left half or right half gives equally one-half of
the total derivative. Consequently, we arrive at

om(z) =Zam(z)
ot oz

—[(d—1)Ty(z2)+1Ly(z— 1)+ 1Lz +1)]

+dm(z)

lam
12 dz2

(3.17)

We see from (3.16) and (3.17) that these flow equations
are nonlocal. In particular, m(z) and ¢;(z) are coupled
to the values at shifted positions. By writing in (3.16)

1 3% m(z) -

4 3z’ ’

(3.18)

m(z—%1)+m(z+1)=2m(z)+—

we may replace Lg(z) by
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K (z-1) K{(2) Kf(z+D)
(@) ¢
z-bl2 z z+bl2
z-1 7 z+1
b) —x
z-b z 7+b

FIG. 5. Illustrative chain segments used in the averaging of
(a) e;(z) and (b) m(z). Crosses correspond to corner sites.

Ly(z)=Ty(z)+ 12’15( )az(,’)';(zz“r--- . (319
and insert this into (3.15) yielding
de;(z) de;(z)
T "i 3, +e,(z)—Tk(z)
1 d%(z)
12 3z
12?( )azé’;‘f’ +oo L (320)

This makes the longitudinal flow equation for ¢;(z) nearly
the same as the transverse equation (3.14). The last term
in (3.20) is of minor importance, being odd in the magnet-
ic field and thus vanishing for small fields. We will sim-
plify the flow equations for e;(z) and e,(z) even further
by omitting all nonlocal terms. As a first approximation
this is justified because e¢;,(z) and e,(z) become very
smooth functions of z across the interface. In both
phases ¢; and e, have the same value and all variation is
induced by the variation of m(z), which has opposite
values in the two phases. Thus we replace (3.14) and
(3.20) by one equation

de(z) =zae(z)
at a9z

In the same spirit we simplify (3.17) by ignoring all
nonlocality except for the variations of m(z). Then (3.17)
can be written as

+el(z)—Ty(z) . (3.21)

om(z) am(z) _ am
* - % Flm) TH(Z)]+ ot nonloc ’
(3.22)
with the nonlocal term
Om = —1—_l.aﬁ d’m
A onior [ 12 20H" ] Pyt (3.23)

In contrast to dH /3K, the derivative dH /dH is even in
the field and has a finite value for H —0.

The equations (3.21) and (3.22) from the basis for our
calculations. They need the solution of the flow (3.7) and
(3.9) for K(z) and H(z) as an input. In (3.21) and (3.22)
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all nonlocal effects are omitted except those associated
with the spatial variation of m(z), which is the charac-
teristic of an interface. Since the nonlocal term (3.23) is
expressed in the second derivative of m(z) (leaving out
higher derivatives), the validity is restricted to smoothly
varying m(z).

IV. SOLUTION OF THE FLOW EQUATIONS

The analysis of the flow equations (3.21) and (3.22)
proceeds by a transformation which eliminates the spatial
rescaling term. We define #i

m(z,t)=m( Aze',t) , 4.1)

and similarly K R ﬁ, and 2. Inserting these definitions
into (3.22) yields

om (v,t)

o =d[Ai(v,t)—Tylv,1)]

(4.2)

1 13H |d3m,t)
w?

In all the other equations (3.7), (3.9) and (3.21) only the
rescaling term drops and for any v

v=Aze', 4.3)

these equations are the same as the local equations (2.5)
and (2.12).

The amplitude A is introduced for calculational con-
venience. It must reduce the increasing exponential e in
front of the nonlocal term in (4.2). For definiteness we
write out T as given by (2.13)

T,,(v,z)=ﬁ+zm(u,t)—g%+a(u,t)Q"£ (4.4)

oH o0H ’
where the derivatives dg /0H, etc., are evaluated at the
field H(v,?) and coupling constant K (v,1).

If we were to ignore the nonlocal term in (4.2) we
would obtain the local solution for m(z,t). It would re-
sult as follows. Starting from the initial field distribution
given by (1.2)

A(w,0)=H(v/4,0)=gv/A ,

4.5)
R(,00=K(v/4,0)=K ,

the values ﬁ(v,tf) and f(v,tf) are computed for
sufficiently large ¢, with v as a fixed parameter. At ¢, the
boundary conditions for #i(v,t,) and &(v,t,) are imposed
as indicated in Sec. II. With the (local) equations for
m(v,t) and é(v,t) the values at t =0 are computed and

m(z,0)=nri( Az,0) (4.6)

yields the desired magnetization. The whole operation
amounts to the insertion of the form (1.2) into the bulk
equation of state m,(H,K)

m(z,0)=m,(gz,K) . 4.7)

This sets the scenario for the influence of the nonlocal
term in (4.2), which we will call the diffusion term be-
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cause of its role analogous to the diffusion process. We
distinguish the cases where K 2K initially.

A. High-temperature regime K <K,

For K <K, the initial values (4.5) are mapped onto the
line K =0. The point v =0 (or A =0) is the slowest in ap-
proaching A=0, K=0 as is indicated in Fig. 6. During
the renormalization process the gradient in A (v,?) with
respect to v increases, but for sufficiently low initial g the
gradient can be kept small such that A (v,t) remains
smooth when the small-K regime is reached. Then the
boundary condition (2.16) applies,

ﬁ‘z(v,tf)=tanh[ﬁ(v,tf)] ,

4.8)
e(v,t;)=tanh’[B(v,1,)] .

Flowing back, the solution of (4.2) will follow the local
solution since the diffusion term can be made arbitrarily
small by letting g—0. From (4.7) one sees that the
second derivative is of order g2. When K approaches K,
a conflict arises, however, because the point v =0 on the
H =0 axis takes longer and longer to reach K =0.

B. Critical case K =K

For K =K, the initial values start to spread along the
flow line which starts horizontally in the fixed point
H=0, K=K, and along the fixed line K =0 (see Fig. 6).
We will call this flow line the critical flow line. It meets
the line K =0 at a relatively high value of H (~3 for
d =2). Thus the points for finite v, ending at K =0, have
practically 7 =&=1 as boundary values. The part along
the critical flow line has to provide the smooth transition
to /=0 for v=0 (or H=0). In the small-K regime the
variation of A with v along the critical flow line is rapid
no matter how small the initial g is. Thus we run out of
the validity regime of the flow equations for which
smooth variation with respect to the spatial variation is
assumed. In practice we have handled this difficulty as

FIG. 6. K and H values at the start (horizontal lines) and cor-

responding values at the end (curved lines) of the renormaliza-
tion.
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follows. We solve the differential equations by taking a
discrete set of points v=0,1, ... (the distances in v are
irrelevant because the gradient g can be varied and only
gv matters). The flow of A and K is carried out until for
v=1 a sufficiently small K is reached. Then the bound-
ary conditions (4.8) are imposed and # and € are flowed
back to t =0. This flow backwards works only when 4 is
well chosen. For 4 =1 any noise in /# is amplified im-
mediately in the diffusion term due to the large exponen-
tial in front of it. For A=e / the diffusion term
behaves well, but the important information for m(z,0)
in (4.6) is hidden in the small-v behavior of #(v,0) for
which no points exist. Values of the order 4 =10e v
lead to stable results insensitive to 4 and ¢, for a wide
range of A and t,. This works for values of K close to
K..
For small =K — K|, the magnetization obeys the scal-
ing law
m(z;g’T)_;g(d—yH)/(yH+1)

Vipg+1)

—y /g +1)
X mi(zg ,rg T/UHETT

’ 4.9)
with y, and y; given by (2.29). Such a scaling law fol-
lows from the observation that the diffusion term works
only in the final stages of the renormalization process and
most of the time the local equations apply.

Thus the local equations are of the form (2.30) and
(2.25), which we translate to

é&: —§l=

=gyg+1), S=yr7. 4.10)
The local equation for m reads as (2.31)

Imiz,t) _,dm(z,t) g\ ymz,t), @.11)

ot oz

and one sees that (4.9) obeys (4.11) for any /. The pre-
cise form of m follows from the boundary condition and
from the final stages of the renormalization flow where
the diffusion term is active.

In Fig. 7 we have plotted the critical curve (r=0) to-

2.5 T T T T
T=1
2.0 ]
1.5+ T=0 b
i~
IZ 1.0 - n
T=-03
0.5 7
o 1 L I I
o) 1 2 3 4 5
z
L g —d) /yg +1)

FIG. 7. Scaled magnetization m=g H# * 'H ' g
__ yy+n . = yp/ygth
zZ=g z for three scaling parameters 7=1g and
d=2.
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. _ —yr/yy+1)
gether with one for 7=7g "7 °#

7=—0.3 for d =2.

=1 and one for

C. Low-temperature regime K > K,

As indicated in Fig. 6 the initial data (4.5) for K > K,
develop after some time in a curve which runs from small
H and large K to small X and large H. In the local ap-
proximation one would use for all values 7 =&=1. This
leads to a discontinuity for H =0 since m = —1 for H <0.
As our flow equations are inaccurate for discontinuous
mi(v,t) we must see which boundary conditions are com-
patible with the flow. Fortunately the flow simplifies con-
siderably in the regime of large K. With (2.21) and €=1,
we find that (4.2) reduces to

I (v,t) _ _ A%e* 3*m(v,1)
ot 6 w?

which has the solution

) (4.12)

—(v—0')2/4Q(1)

A —_ *® Ie A ’

A@,0=[" dv Vo W), @1
with

Q=1 A" —e?) . (4.14)

Equation (4.13) tells us how #i(v,z) behaves when
m(v,t;) is given for some distant time f,. When ¢, and ¢
are far apart, the value of Q(z) becomes independent of ¢
and thus #i(v,t) approaches a fixed distribution, involv-
ing the still arbitrary constant

Q=14%". (4.15)
We can turn this around and say that 4 equals
A=V12Qe 7. (4.16)

We can safely assume that the interface profile m(z,z,) is
sharp when KX is large and the gradient in H(z,?) of order
unity. For large ¢ the gradient grows as

g(t)=eldthig 4.17)
since 9H /3H =1 for large K. So we estimate that

e—'f:gl/(d+l)_ 4.18)
Now combining (4.6), (4.16), and (4.18) we find

m(z,0)=m(V12Qzg!/¢*V,0) . 4.19)

This expression shows that m(z,0) is a function of the
combination zg!/?*!) which means that the interface
profile is rough; it spreads over a wider and wider region
when g —0. The effective width of the interface behaves
as

—1/(d+1)
b

w~g (4.20)

which has to be compared with the capillary-wave theory
yielding

—(3—d)/4

w~g 4.21)

For d =1 the two formulas agree to order d —1
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N —

FIG. 8. Magnetization m vs 2=g!/"“ "1z for K=2K, and
d=2.

(4.22)

Apart from this qualitative behavior we have still to fix
Q. We do this by considering the d =1 theory where the
exact profile is known.” For d =1 the Migdal procedure
is exact, but the flow equation (4.2) is still an approxima-
tion. The exact solution is recovered from (4.13) for

#i(v,t,)=sgnv (4.23)

and
o=1.

So we adapt this choice (4.23) and (4.24) as a proper com-
bination for the description of the low-temperature inter-
faces.

In Fig. 8 we have plotted a low-temperature interface
in d=2 and K=2K, as it is calculated from (4.2) and
(4.23) with the choice (4.16) and (4.24) for A.

(4.24)

V. DISCUSSION

Using Migdal’s renormalization procedure interfacial
profiles are calculated for nearly critical and for low-
temperature conditions. The profiles are obtained from
an extension of the calculation of the equation of state,
i.e., as the magnetization for a system in which the mag-
netic field varies linearly in space. The gradient g of the
magnetic field is taken arbitrarily small and as a result
the interface is also slowly varying in space, but generally
not on the same scale as the field.

Above the critical temperature the resulting magneti-
zation profile is the bulk magnetization following locally
the varying field. Thus the scale on which the “interface”
varies is g ! just as that of the field [see (4.7)].

The nearly critical

interface varies on a scale
—/(yg+1)

where y, is the magnetic critical exponent.
The interface has a scaling form (4.9) which interpolates
between the high- and low-temperature behavior.

Below T, we find an interface of a width g /{4 *1) [see
(4.20)] which resembles the smearing out of the interface

due to capillary waves. We comment on the discrepancy
with the capillary scale g ~*~%/# further below.

For the interesting cases the interface varies more rap-
idly in space than the field that induces the interface. We
have taken advantage of the slow variation of the field by
ignoring the nonlocal effects in the flow of the field. Non-
local effects are, however, essential in the interface forma-
tion near and below the critical point.

In this calculation we have used the continuous rescal-
ing formulation of the Migdal bond shifting technique.
The main reason is that for an integer rescaling
(b=2,3,...) Migdal’s renormalization leads to irregu-
larities in the interface due to the fact that a distinction is
made between sites which are removed and those which
are kept. For example, for b=2 a difference between
even and odd sites is introduced, which is an artifact of
the shifting procedure since it disappears for d =1. One
can smooth out this noise by more refined shifting tech-
niques, but we feel that such a sophistication does not
lead to a more convincing theory. For b—1 the
equivalence between the sites is restored in a natural way.

The continuous Migdal procedure has the drawback
that it cannot be implemented when the field gradient
starts to be of order unity. This presents a problem at the
end of the renormalization process where larger field gra-
dients appear. As the order parameter varies faster than
the field, the final stages of the renormalization are clear.

When the field varies of order unity the interface is
practically sharp. Qualitative features as the width of the
interfaces are insensitive to the details at the boundary.
The quantitative form does depend on the precise mo-
ment when the field gradient is considered strong enough
to impose a step function as interface. Even in d =1,
where Migdal is exact, this ambiguity remains for a con-
tinuous Migdal transformation. For d =1 we do know,’
however, the precise interface and from the d =1 behav-
ior we have deduced the criterion (4.24) to fix the inter-
face in all dimensions d.

The above-mentioned difficulties with discrete and con-
tinuous Migdal transformations may be considered as
technical in the sense that they will disappear when a
more sophisticated renormalization procedure is taken.
More serious is the discrepancy between the low-
temperature behavior (4.20) found in this paper and the
capillary-wave behavior (4.21). As the bond shifting is
the only uncontrollable error, one could again blame it
for this mismatch. However, the exponent of the low-
temperature width of the interface is directly related to
the fact that the magnetic exponent equals the dimen-
sionality yy;=d for T=0. This property of the discon-
tinuity fixed point will not be changed in a better trans-
formation.

The source of the discrepancy must be located in the
character of the nonlocal term (3.23) in the flow equation
for the magnetization. This diffusion term overestimates
the effect of the nonlocality in the flow. The amplitude of
the diffusion must vanish in a certain way for T—0 in-
stead of approaching a constant value as it does now.
Then a sharp profile is maintained longer on the way
back from the high gradient regime, leading to a nar-
rower width for the interface than found in this paper.
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Then also the special role of d =3 should become clear
and the roughening transition for d =3 should emerge.®
This is the object of further study.
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APPENDIX A

The basic one-dimensional reduction relation is given
by the formula (2.2), which can be written in the transfer
matrix form with the aid of a matrix

Ry =exp(K,ss'+3H(s +s')) (A1)
as
explg +K'ss'+(H; +1H)(s +s)]1=(R%, , (A2

where R is the b power of the matrix R. The eigenval-
ues of R are given by

)Li=eK”coshH[1j:q(H,Ke )]

with

g(H,K,)=[tanh’H +e ~*K(1—tanh’H)]'? .  (A3)
R is diagonalized by a matrix B

D.=(B'RB), =M\, , (A4)
which is explicitly given by

By =(1+r2)"12[r8 +5'(s —8,)] . (A5)
BT is the transposed matrix and 7 equals

|

> exp[K[(z

s sy =%1

+1)ss;+ - +Kfz+b—

Dsy_s'+H(z+1)s, +
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2K, . €
r=e °‘sinhH |1+ 1+-£ 3 . (A6)
sinh“H
So we find for (R ®),;.
(R b)ss'z(BD bB T)ss’= 2 Bss”}"?”BsZ:s’ . (A7)
Pz

Now we may take the limit b =1+dt.
Expanding the decimation equation (A2) in dt using
(A7), (2.3), and

Ab.=A.(1+dt Ind) (A8)

we get to zeroth order (for possible values of s and s')

M =, +a /(140D ,

e Ke=r(Ay—AL) /(1472 (A9)
e M= (a, +rA ) /(141
and to first order, using the zeroth-order result,
s+ K42 = rA InA L +A_InA_
§ r +A_ ’
AilnA, —A_InA_
g —K = A1l0
§—K T , (A10)
st R —2fl= AylnA L +72A _InA_
& Ap+ria_ ’

from which g, K, and H can be solved. Inserting the ex-
pressions for A, and r and some straightforward algebra
lead to Egs. (2.7).

APPENDIX B

We want to show that
(b—1)/2 5

SH(z+j)

l bil s D
== (B
= 2 = 8H(z+))
in the limit b—1. Shifting the bonds leads to effective
coupling constants Kf(z)=b?"'K,(z).

Decimation of the resulting one-dimensional chain
defines g, K/, H', and H' by

“+H(z+b—1)s,_,]

=exp[g(z'+3)+K/(z'+1)ss'+H'(z')s +Hiz’+1)s']. (B2

Variation of the field H(z +j) gives

bg(z'+3)  6K[(z'+3) 8H'(z') . SH'z'+1)
. ~—s5 —s —5'=(s; )y » (B3)
8H(z+j) 8H(z+j) SH(z+j) SH(z+j) J
with
S s;exp[K[(z +§)ss; + Ki(z+b—21)s,_s'+H(z+1)s;+ - +H(z+b—1)s,_]

sprsy o =%l

(sj )SS'E

> exp[Kf(z+1)ss; +

sy sy =1

Kf(z+b—2L)s, _;s'+H(z+1)s,+

, (B4)
+H(Z+b_1)sb__1]
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and therefore

8g(z'+l)_1 y 8K,(z+1)_1 y
SH(z+j) _Zsz Sj st SH(z+j) 4 g 5545 55
8H(z') _ 1 SH'z’+1) _ 1 o,
SH(z+j) Szm Yar 8H(z+]) 4§S(Sf>“"

Replacing all coupling constants and fields by the K, H at the middle of the edge and introducing the transfer matrix

=exp[K;s;s; 41+ 7H(s;+5;41)]

SiSi4+1

allows us to write

s.R
S, 18,88, 4

_ 5, U Sb*lsl
(Sj Vo= R, 'R, . (B6)
1 b—1
A suitable basis transformation B will diagonalize R: R =BDB7T with D,.=A 8 .. This makes
S  B,Al B,{s]BS,A” ~iBL
rts.==%1
(5;)=—> (B7)
a 2 BS"AfBr?'
r==%1
Summation of the equations in (B5) over j leads ultimately to the summation
noo n (A, )
S AJALTI=AL (n8,+(1-8,) 3 |-=| |, n=b—1lor(b—1)/2
ji=1 j=1 A,
— A 5, + (15, 2r | L A/A) (B8)
I "TA, | 1=A, /A,
—n AL |8, +(1=8,) A /A) | the limit b1
nA; |5, "= A, /A , in the limit b—1 .
This last equation holds only in the limit b — 1 since
A" 1 1+nl h 0(b—1 B9
A, —expnnAt =~ nnAt,wenn—>(—>). (B9)

Thus the summation is proportional to n and therefore (B1) holds.
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