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We argue that semimagnetic semiconductors are Heisenberg systems, exhibit spin-glass ordering
at finite temperature, and obey power-law scaling with universal critical exponents. A theoretical
argument is presented that supports spin-glass ordering in three-dimensional Heisenberg spin
glasses with short-range antiferromagnetic interactions.

I. INTRODUCTION

A number of theoretical studies' ~° predict the absence
of spin-glass ordering in three-dimensional (3D) Heisen-
berg systems with short-range interactions, but no
rigorous proof has been reported so far. To our
knowledge, there is no experimental support of this pre-
diction either. In contrast, there is at least one argu-
ment®” that suggests that the lower critical dimension of
Heisenberg spin glasses is as low as that of Ising spin
glasses, which is presently believed® to be less than 3. In
this paper, we first briefly discuss the models supporting
the absence of transition in 3D Heisenberg spin glasses.
Then we develop both theoretical and experimental argu-
ments that support the occurrence of spin-glass order in
3D Heisenberg systems at finite temperature.

II. THEORY

A theoretical argument against 3D Heisenberg and XY
spin-glass ordering has been reported by Schuster® who
gives a tentative proof based on the Bogoliubov inequali-
ty. An improved version was given later by Ozeki and
Nishimori.* Their conclusion, however, is not entirely
convincing either, for reasons given by the authors them-
selves, including the use of their replica trick which is not
safe.

Monte Carlo methods give a valuable hint that the
transition temperature is lower for a Heisenberg spin
glass than for an Ising spin glass with identical coupling
constants. This may be the indication that free-energy
barriers are scarce and low, but does not rule out a transi-
tion. The main weakness of the unbiased Monte Carlo
method is that it can miss the absolute minimum of the
free energy. Thus, it seems more convincing to force the
system into two different states to be compared! (with
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periodic and antiperiodic boundary conditions respective-
ly), and to determine the energy difference by the Monte
Carlo method. In practice, however, such studies offer
no decisive proof either, since the sample size is always
limited in the numerical works.

Real-space renormalization-group methods®°® are also
questionable in the case of spin glasses, because the
choice of the pertinent variables that are taken into ac-
count is rather arbitary. In particular, the pseudospin
variables (see below) have not been introduced in the re-
normalization scheme.

Let us now discuss an argument in favor of the 3D or-
dering in the systems of interest, namely classical models
described by the Heisenberg Hamiltonian

H=— 37,5, , (1)
ij

where the random coupling constants J;; between the
three-dimensional spins S; and S; localized at sites i, and
j are competing and thus imply frustration.’® A conse-
quence of the frustration is that, at low temperature,
spins try to use the dimension of the space and form cant-
ed structures®!"!? associated with metastable states. A
mathematical translation of this statement for 3D spins is
that, if S; S;, and S, are three neighboring spins, the
mixed product

§,~,~I=S,-'(SjXS,) (2)

is not zero in the ground state, but can take two opposite
values. This is easily checked in the case of a tetrahedron
of four spins if all the interactions are, for instance, anti-
ferromagnetic and satisfy appropriate inequalities. Such
a unit will be called a highly frustrated tetrahedron
(HFT). Now imagine a Heisenberg system consisting of
such HFT’s embedded in a ferromagnetic or antiferro-
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magnetic matrix. It is assumed that the HFT concentra-
tion is small, so the HFT’s do not touch each other, and
the exchange coupling J in the matrix is much weaker
than the coupling inside the HFT’s. In each HFT (la-
beled by A or u) a triangle (ijl) is chosen, and the corre-
sponding Ising variable o,=0;;=§;/|5;|==%1 is
defined. We start with J =0 and arbitrary values of the
o,’s and then switch on J at temperature T =0. It is as-
sumed that the system loses its energy progressively
without being able to jump over potential barriers. Then,
because of the weakness of J, it goes into a state where
the o,’s have the same values as before. However, be-
cause of J, this state is generally not the ground state.
The ground state is generally nondegenerate and corre-
sponds to well-defined values of the pseudospins o,, ex-
cept that reversal of all pseudospins does not change the
energy. The energy of the metastable states is a function
of the pseudospins o, and can approximately be written
as a biquadratic expression, namely

= 2 8,020, (3)
Ap

restoring an Ising picture out of the Heisenberg model,
The g’s are a function of the geometry. Terms with four
or more pseudospins are small, because they are of higher
order in J. Equation (2) ignores spin rotations and is only
appropriate to describe the relative minima of Eq. (1).
Spin rotations can easily be introduced through usual
spin-wave variables, which are obviously continuous.
Equation (2) has been derived at T =0, but is still correct
as a Landau free-energy functional at low temperature 7.
The g’s depend on T because of the effect of spin waves.
We have thus derived, in an ad hoc system of Heisen-
berg spins, the existence of metastable states character-
ized by Ising pseudospins and described by the effective
Hamiltonian of Eq. (3). It would be surprising that such
two-level systems did not exist in other more physical-
frustrated Heisenberg systems. Indeed, numerical models
did show their existence.!> While we have used the
language of pseudospins, the existence of two-level sys-
tems can be equally inferred using the language of local
Onsager random anisotropy, which, contrary to the usual
crystalline anisotropy, does not vanish in Heisenberg spin
glasses.!* Note that it makes irrelevant the concept of
isotropic Heisenberg spin glass with the absence of ir-
reversibilities.!> Moreover, in a suitably modified XY
model which, in contrast with our ad +hoc Heisenberg
model, is of the Edwards-Anderson-type, Eq. (2) can be
explicitly derived.%'? In that case, the o,’s denote vector
products of two spins instead of mixed products of three
spins. Equation (2) implies the order of the o,’s at T =0.
This order has no reason to be ferromagnetic or antifer-
romagnetic, and actually we prove in the Appendix that a
careful investigation of ad hoc models reveals the ex-
istence of competing interactions between the o,’s.
Therefore, an order of the spin glass type is expected.
The reader will perhaps wonder whether this order of
strange pseudospins implies the order of ordinary spins.
In other words, is the knowledge of the pseudospins
sufficient to determine a relative minimum of Eq. (1)
when the J’s are known as well as the orientation of two

MAUGER, VILLAIN, ZHOU, RIGAUX, BONTEMPS, AND FERRE 41

spins? One can easily convince oneself that the answer is
yes for finite systems, for XY systems, and presumably in
all cases T =0.

The above argument does not necessarily imply the ex-
istence of Heisenberg spin glasses since thermal fluctua-
tions might destroy the order. Even in the XY case where
Eq. (2) is clearly valid, the pseudospin Hamiltonian is not
of the Edwards-Anderson-type, and there are no compu-
tational or other theoretical studies supporting (or
infirming) a transition at finite temperature. However, it
would be surprising that certain frustrated random sys-
tems have spin-glass order at finite temperature, while
others have none. Thus, we speculate that Heisenberg
spin glasses with short-range interactions have the same
lower critical dimension as Ising spin glasses with short-
range interactions. If the present belief about the latter is
correct, Heisenberg spin glasses should have a phase
transition in three dimensions.

III. EXPERIMENTS

To experimentally confirm an ordering in Heisenberg
spin glasses, one must first consider materials where the
crystalline anisotropy is sufficiently small. In metals, this
situation is always questionable, because the spin-orbit
scattering of the free carriers by nonmagnetic impurities
results in large anisotropic fields.'® Among insulating
spin glasses Eu,_, Sr, S has been investigated with partic-
ular care, but then the spin-glass ordering temperature
T, is so small that anisotropic dipole interactions cannot
be neglected.!” Similar objections hold for many other in-
vestigated insulating spin glasses. For instance, in man-
ganese fluorophosphate glasses, Tg is only a few Kelvin,
while the local anisotropy is expected to be large.!® In
CsNiFeF, where T,~5 K,'® the spin-orbit interaction,
although small, is not negligible, so Dzyaloshinki-Moriya
(DM) interactions,'® for example, might be important to
establish anisotropy.

Let us now argue that the best examples of Heisenberg
spin glasses are semimagnetic semiconductors such as
Hg,_,Mn,Te, and Cd,_,Mn,Te, for intermediate Mn
concentrations 0.2 <x <0.6.2° First, the transition tem-
peratures are large: T,=8.4 K in Hg,;Mn, ;Te, while
T,=6.45 K and 12.9 K in Cd,_, Mn, Te for x =0.3 and
x =0.4, respectively.?"?? In Cd,_,Mn,Te, it has been
argued that the dominant magnetic exchange interaction
is the antiferromagnetic (AF) superexchange coupling be-
tween the Mn?" ions.?? This is also presumably the case
in Hg, ;Mn, ;Te.?* This interaction is short range: the
superexchange coupling between next-nearest neighbors
J, is antiferromagnetic like the coupling constant J,; be-
tween nearest neighbors (NN), but it is 1 order of magni-
tude smaller than J,,”* and thus does not play any
significant role.

On the other hand, the main anisotropic exchange in-
teraction is a DM-like interaction arising from a virtual
coupling between the d states of the Mn®" ions and the
electron states of the valence band.?* This anisotropic in-
teraction, just as the isotropic exchange, is short range,
and it can thus be restricted to the NN coupling constant
D, only. It is, however, 1 order of magnitude smaller
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than J,. For example, in Cd,_,Mn,Te, |D,/J,|=0.054,
independent of x.2* The same order of magnitude is ex-
pected in Hg,_,Mn,Te, although D, has not been ex-
plicitly calculated in such compounds.?* Therefore, this
anisotropic part cannot be responsible for the spin-glass
freezing process. Another source of anisotropy is the di-
polar interaction. Since this dipolar coupling d =0.013
K (Ref. 23) is even smaller than D, it a fortiori cannot
produce any order at T,. However, contrary to the pre-
vious anisotropic- and anisotropic-exchange contribu-
tions discussed above, the dipolar coupling is long range,
and one can wonder whether a combination of the ex-
change and dipole interactions might not be effective.?
For instance, the isotropic exchange might be the dom-
inant mechanism at length scales smaller than some value
&, while dipole interactions would be effective for larger
lengths. However, this scheme does not work because
the effective dipole interaction between cells of size &
should be of order Y& *(£%2)*=y. Here, y is the
strength of microscopic dipole interactions (of the order
of 1 K), y&~3 is the dipole interaction at distance &, and
£3/? is the average total spin of a cell of size £. Thus, the
effective dipole interaction is expected to be independent
of the scale, and negligible at all scales. Note this argu-
ment is wrong in the presence of ferromagnetic short-
range order, since the cell spin might be larger than £3/2,
Such an order, which exists for example in Eu,_,Sr, S, is
absent in both Hg;_,Mn,Te and Cd,_,Mn,Te con-
sidered here.

We thus decide to consider Hg,_,Mn,Te and
Cd,;_,Mn,Te (0.2 <x <0.6) as Heisenberg spin glasses,
in which the spin-glass freezing occurs from purely anti-
ferromagnetic short-range interactions. Those are, in
essence, archetypes of the spin glasses envisioned in Ref.
11. With this regard, it may be desirable to discuss the
value of T, with respect to J, in these materials. An es-
timation of the magnetic energy per magnetic ion, in the
mean-field approximation (MFA), is E,, = —zJ,S?, where
z =12x is the average coordination number. The reduc-
tion of 7, by the quantum-spin fluctuations, not taken
into account in the MFA, can be characterized by the ra-
tio

r,=T,/E,=T,/(z|],|S?),

indexed by the number of spin components n (three for
Heisenberg  systems). Since J;=-—5.7 K in
Cd,_,Mn,Te,”® we find r;=0.05 and 0.08 for x =0.3
and 0.4, respectively. Note the x dependence of r; comes
from the nonlinear variation of T, as a function of x, a
consequence of the short-range nature of the exchange in-
teraction.?® To our knowledge, no theoretical estimate of
r; is available. On the other hand, Ogielski and Morgen-
stern’’ have determined that T, /|J,|=1.22 for the case
of Ising spins on a square lattice (S =1, z=6), hence
r;=0.2. We thus find r, /r;=2.5 and 4 for x =0.3, and
0.4, respectively.?® Therefore, although 7, is significantly
smaller than 7, in agreement with the Monte Carlo pre-
dictions,! both parameters have the same order of magni-
tude as is expected from our theoretical arguments and
Eq. (2) in the preceding section.
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Let us now characterize T, as an ordering tempera-
ture. The best experimental test of the spin-glass transi-
tion is the observation of scaling laws. Critical activated
dynamic scaling has been recently proposed for semimag-
netic semiconductors.”’ Such a scaling is plausible in
random-field systems where the transition is believed to
be governed by a zero-temperature fixed point. In disor-
dered antiferromagnets, however, the random field van-
ishes in the limit of small applied magnetic fields where
the scaling properties are investigated. Therefore, the
semimagnetic semiconductors we are considering here
are not random-field systems. Nevertheless, there is no
proof that activated dynamics should not occur in spin
glasses; therefore, we found it desirable to test the ac-
tivated dynamics in our materials. Although the experi-
mental data can be interpreted in terms of activated scal-
ing for each sample separately, the critical exponents ob-
tained from such a scaling were found to be different in
various samples such as Hg,,Mn, ;Te, Cd,,Mn, ;Te,?!
and Cd, (Mn, ,Te.? This inconsistency is at odds with
the expected universality of the critical exponents, which
rules out the activated-dynamic scaling in these materi-
als. To the contrary, we have found that the experimen-
tal data can be interpreted in terms of power-scaling laws
with universal exponents for these various samples. In
dynamic scaling, the imaginary part of the ac magnetic
susceptibility y"'(w) at frequency w has been found to
satisfy a law of the form?!

X' (0, T)=tPF(wryr™ %), 4)

where v is the critical exponent for the correlation length
&, z is the dynamic exponent relating £ and the relaxation
time 7« £? and 7, is a microscopic-relaxation time. ¢ is
the reduced temperature: t =7 /T, —1, with T, the zero-
field static spin-glass-ordering temperature. The values
of zv and S for Hg, ;Mn,, ;Te and Cd,, ;Mn, ;Te obtained
from this scaling are reported in Table I. Moreover, the
same function F has been obtained for both materials, as
expected for universality. In the limit o7<<1, the
asymptotic form of Eq. (4) can be written

X', T)=wrg 8. (5)

This dynamic scaling has also been tested in the same
range of observation times 107> s <t =27/w<1 s for
both samples. The values of zv—f3 yielded by this scal-
ing, also reported in Table I, are consistent with the
values of zv and B derived from the full scaling of y'’ ac-
cording to Eq. (4). To explore the scaling law given by
Eq. (5) closer to T,, an investigation of x"'(w,T) has been
achieved up to longer observation times, allowing a test
of the validity of Eq. (2) in Cdy (Mn, 4Te, in the full range
107° s<t,,<3X10® s, corresponding to an explored
critical range of reduced temperatures 7X1073
<t <0.2.%22 This study also yields an exponent zv—p in
agreement with the other values in Table I, including re-
sults obtained in Cd,_,Mn,Te, for different manganese
concentrations.’® (An overestimated value of zv has been
reported in Ref. 29, for reasons which have been dis-
cussed elsewhere.’! How good the fits of the data to Eq.
(4) and (5) can be appreciated in Fig. 2 of Ref. 21 and Fig.
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TABLE I. Critical exponents in Cd,_,Mn, Te and Hg,_,Mn, Te Heisenberg spin-glasses. The un-
certainties of the exponents are for the entire range of values quoted in the text.

Compound zv zv—B y B $=v+B
Cdy_ssMng 4sTe* 10 =2
Cdy (Mng (T 8.8 +0.9 3.340.3 0.940.2
Cdy ;Mny ,Te 9.25+0.5 8.85+0.45 0.8+0.1 4 + 1
Hg, ;Mn, ,Te* 9.5 +0.5 8.5 +0.5 0.8+0.1 35=—1

2Reference 26.
"Reference 22.
‘Reference 28.
YReference 21.

7 of Ref. 22 respectively, for Hg,_,Mn,Te and
Cd,_,Mn, Te compounds. In an applied field H, in the
limit @7 << 1, the generalized scaling law of Eq. (5) is?!

X' =0t [t(H) P *G[H**/t(H)] . (6)

In-field dynamic measurements?! at observation times up
to 100 s have shown that this scaling law is satisfied in
Hgy,,;Mn,;Te and Cdy;Mn,;Te in the range
0.06<t <0.1, allowing us to deduce the crossover ex-
ponent ¢ (see Table I).

To investigate unambiguously the occurrence of the
spin-glass-phase transitions, the most relevant scaling is
eventually the static scaling of the nonlinear magnetiza-
tion:

M, (t,H)=t'"*P/2E(H /1#/?) . (7)

This scaling has been tested in Cdy (Mn, 4Te, yielding the
exponents B and y (see Table I).32 Taking the scaling re-
lation =B+ into account, the results reported in
Table I give evidence that there is a self-consistency of
the various and independent determinations of zv, 8, and
¢ or y in the 3D Heisenberg spin glasses.

IV. CONCLUSION

Through various studies of semimagnetic semiconduc-
tors, we conclude that the 3D Heisenberg spin glasses do
order. The phase transition has been well characterized
by both static and dynamic scaling laws, with universal
critical exponents. We note the argument that the
Heisenberg systems [Eq. (1)] can be described by the Ising
Hamiltonian [Eq. (3)] implies that the critical behavior,
i.e., the critical exponents, should be the same in insulat-
ing spin glasses, whether they are Ising or Heisenberg
spin glasses, with short-range magnetic interactions.
Indeed, we note the critical exponents relevant for the
Heisenberg systems in Table I are in good agreement
with the values determined in other systems mentioned in
this paper, such as ¥y and B in amorphous manganese
fluorophosphate and aluminosilicate,’® and zv in
Eul_,‘Sr,cS,17 in particular, although these systems may
not be Heisenberg spin glasses. The present theory does
not anticipate that metallic spin glasses with long-range
Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions
should behave like Heisenberg insulating spin glasses
with short-range antiferromagnetic interactions. We can

notice, however, that the experimental data reported so
far do not reveal the existence of different classes of
universality among spin glasses.

APPENDIX: ISING PSEUDOSPINS
IN A HEISENBERG MODEL

The best way to demonstrate the possibility of Ising
pseudospins in a Heisenberg model is to start with a mag-
netically ordered periodic system and introduce a single
impurity. Then a second impurity can be introduced in
order to study the interactions and prove that they are
competing. This program will be carried out in this Ap-
pendix. Since two impurities certainly do not destroy the
periodic order, we will not prove that a spin glass arises.

The magnetically ordered system will be chosen such
as to make the proof as easy as possible. It is convenient
to choose a magnetic order that has already spin com-
ponents in two space directions. Thus the appearance of
a third component will give at once a nonvanishing value
of the mixed product §;; defined by Eq. (2). For this
reason, we choose a two-dimensional triangular lattice
(large circles in Fig. 1) with antiferromagnetic interac-
tions J between nearest neighbors. This argument will be

¢ oo &
¢ ¢ >
o § o-d°§ o

\
\e
\

FIG. 1. Interstitial impurities (small circles) antiferromagnet-
ically coupled with an antiferromagnetic triangular lattice. The
S, components of the solid and dashed small circles are fer-
romagnetically coupled. Those of the solid and dotted small
circles are antiferromagnetically coupled.
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given at 7 =0 so thermal fluctuations do not destroy
long-range order. The ground state consists of three sub-
lattices with magnetizations making angles 27 /3 in a
plane, hereafter called the (S,,S, ) plane.

Disorder is then introduced through additional spins
randomly distributed at interstitial positions at the center
of the triangles (small circles in Fig. 1). These spins in-
teract through antiferromagnetic interactions J’ with the
neighboring big circles. It will be first assumed there is
only one interstitial impurity (small circle drawn on solid
line in Fig. 1). Its magnetization will be directed along
the S, axis, e.g., with a positive sign. Thus, the mixed
product §;; is now nonvanishing if i, j, and / designate,
for instance, the three neighbors of the impurity. These
three spins form what will be called the “first shell”
around the impurity (solid line triangle in Fig. 1). Their
magnetization has a negative S, component (due to J').
The spins of the “second shell” (dashed line) that are
common neighbors to two spins of the first shell have a
positive S, component with an absolute value smaller
than the spins of the first shell. Presumably, the corner
spins of the second shell also have a positive S,, because
they have a neighbor in the first shell and one in the
second shell; the latter has a positive S, and the former a
negative S, with a larger absolute value. A similar argu-
ment suggests that the spins of the third shell (dotted
line) have a negative S,, at least the ones that are not at
the corner. This qualitative discussion might be replaced
by an exact argument for classical spins, but the
mathematics, although elementrary, would be rather tedi-
ous, even in the linear-spin-wave approximation, which
can be used only if J'J << 1.

The interactions between two impurities can now be
discussed. If an additional impurity is introduced at the
dashed small circle in Fig. 1, it tends to have its S, oppo-
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site to its neighbors, which are mostly on the first shell,
i.e., with a negative S,. Thus, it has a positive S, . If the
second impurity is introduced, not at the dashed small
circle, but at the dotted small circle instead, then the
neighbors are mostly on the second shell and therefore
likely to have a positive S,. To summarize, the z com-
ponents of two impurities at nearest-neighbor positions
(solid and dashed small circles in Fig. 1) are ferromagnet-
ically coupled while those of two impurities at fourth-
neighbor positions (solid and dotted small circles in Fig.
1) are antiferromagnetically coupled. It is easily deduced
that the Ising pseudospins defined by &;;/|£;;| for each
triangle surrounding an impurity are coupled antifer-
romagnetically for nearest neighbors and ferromagneti-
cally for fourth neighbors. The interactions between
second, third, and fifth neighbors might be discussed in
the frame of a serious calculation, which, as stated above,
would be rather complicated. These interactions are ex-
pected to be weaker, since there is one neighbor in the
first shell, and two in the second shell; two is greater than
one, but the second shell is less magnetized than the first
shell.

Thus, the existence of competing interactions between
Ising pseudospins is established for the model of Fig. 1.
It is expected that such interactions are still there for any
concentration of impurities, so the minima of the energy
can be obtained by minimizing a Hamiltonian function of
these pseudospins. This Hamiltonian can be represented
by the first term of Eq. (3), plus three-spin terms, four-
spin terms, etc., which presumably do not play an essen-
tial role. The absolute minimum will presumably be a
spin glass for appropriate impurity concentrations. It is
not forbidden to assume some correlations in the impuri-
ty distribution, favoring or not nearest-neighbor pairing.
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