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C. R. Willis and R. Boesch
Department ofPhysics, Boston Uniuersity, Boston, Massachusetts 02215

(Received 2 October 1989)

We apply the collective-variable projection-operator approach based on the Dirac-bracket theory
of constrained Hamiltonian systems to the calculation of the Helmholtz free energy of discrete non-

linear Klein-Gordon systems in the ideal-kink-gas limit. The kinks in the continuum nonlinear
Klein-Gordon systems in the ideal-gas limit behave as free particles and the phonon density of
states changes due to the presence of the kink. In discrete nonlinear Klein-Gordon systems the
kinks are no longer free but see a potential V&(X) where X is the center of mass of the kink. The
phonons satisfy the discrete-lattice dispersion law with a discrete density of states, which differs

from the continuum density of states, which also changes in the presence of the discrete kink. We
find that when lo (the effective size of the kink) is greater than about five lattice spacings that the
effect of discreteness is to lower the rest energy of the kink by less than 1%. For 10-~ the rest en-

ergy of the kink is lowered further and the potential V&(X) starts to make a contribution giving rise
to the presence of the periodic Peierls-Nabarro potential well. For lo (m the Peierls-Nabarro well

becomes deeper and the kinks start to become trapped and when lo ~ 2 all kinks with velocities less
than one third of the speed of sound become trapped. In the strong-trapping region the rest energy
of the kink is reduced by about 8-10%%uo.

I. INTRODUCTION

The effect of discreteness on physical systems that are
governed by equations of the nonlinear Klein-Gordon
type, such as the sine-Gordon (SG), double sine-Gordon
(DSG), and P equations, etc., range from small correc-
tions of the continuum solutions to completely different
phenomena which do not appear in the continuum. Ex-
amples of the latter case are trapping in the Peierls-
Nabarro (PN) well, radiation from moving kinks in lat-
tices, ' and a host of phase transitions of the
commensurate-incommensurate type. A particularly im-
portant problem is the classical statistical mechanics of
discrete nonlinear Klein-Gordon equations. Currie
et al. developed an ideal-gas phenomenology for contin-
uum nonlinear Klein-Gordon equations based on the par-
ticlelike behavior of kinks at low temperatures where the
density of kinks is low. They found agreement between
the thermodynamic and static correlation functions ob-
tained phenomenologically and the same quantities calcu-
lated by the exact transfer integral method. Recently
Trullinger and Sasaki examined the question of the
effects of discreteness on the results of the transfer-
operator method employed by Currie et al. and ob-
tained the lowest-order discreteness corrections to the
continuum approximation of the transfer integral equa-
tion. Our purpose in this paper is to apply the Dirac-
bracket theory of constrained Hamiltonian systems to the
ideal-gas phenomenology of nonlinear Klein-Gordon sys-
tems. Our formalism is valid for the case where the kink
size is as small as one or two lattice spacings where the
effects of discreteness are so large that the trapping of the
kink in the PN potential well plays an important role.
For convenience in presentation we will treat explicitly
the case of the discrete SG kink although the present ap-

proach applies to the discrete DSG, P, or any other
kink-bearing system.

In discrete nonlinear Klein-Gordon theories the energy
of the kink depends on location of its center of mass. In
continuum theories it does not unless perturbing poten-
tials are present. In either case it is useful to exploit the
particlelike nature of the kink by representing the loca-
tion of its center of mass by the collective variable X.
One of the advantages of a Hamiltonian collective-
variable theory is that the parameter X is promoted to be-
ing a canonical variable with conjugate momentum Pz.
In the continuum case X is cyclic and the Hamiltonian
depends only on P~. However, in discrete nonlinear
Klein-Gordon theories the collective variable X moves in
a nonconstant potential V(X) which we obtain in Sec. II.

In a series of recent papers we have investigated the
effects of discreteness on nonlinear Klein-Gordon equa-
tions using the projection-operator approach to collective
variables which we have shown to be rigorously
equivalent to the Dirac-bracket theory of constrained
Hamiltonian systems. We used this approach to derive
the exact equations of motion for the center of mass X of
a discrete SG kink and the frequency of its small oscilla-
tions copN in the PN well and obtained essentially exact
agreement with simulations. We have also calculated
the spontaneous emission of radiation from a discrete SG
kink and obtained remarkable agreement with simula-
tions. We found that a trapped kink radiates phonons
very slowly (with a power-law decay rate) except for
several phonon bursts which are emitted by the kink
when an harmonic of the PN frequency passes into the
phonon continuum which permits that harmonic to
resonate with phonon states thereby producing radiation.
The average energy loss per cycle is typically less than
0.1%. For the untrapped case, the radiation rate is deter-
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II. HAMILTONIAN FOR THE DISCRETE
SINK-GORDON EQUATION

The Hamiltonian for the discrete SG equation

Q~
—bzQ&+ — sinQ& =0,

I0
(2.1)

mined by harmonics of the frequency 2m v ( v is the dimen-
sionless ratio of the velocity of the particle to the speed of
sound). The radiation rate decreases discontinuously
when an harmonic of 2aU passes out of the phonon band
and can no longer radiate phonons. The kink therefore
loses energy until it becomes trapped. For the purpose of
the present paper we note that the radiation rates for un-
trapped kinks are greater than the radiation rates for
trapped kinks but still are small except for kinks moving
near the speed of sound. The radiation rates in all cases
go to zero for lo ))n experimentally as exp( —mla) where
2m llo is the slope of the kink at its center and lo is a
rough measure of the size of the kink. Therefore, since
we consider a nonrelativistic dilute gas of kinks in the
present paper, we are able to neglect radiation effects.

An important physical manifestation of discreteness
with which we shall be concerned in the present paper is
the modification of the continuum kink energy. We show
below that discreteness not only superimposes a periodic
modulation on the continuum energy but also lowers the
dc value. We will refer to the lowering of the dc value as
the X-independent discreteness correction to the kink en-

ergy.
The relative importance of the X dependence of V(X)

in the dilute-kink-gas phenomenology depends crucially
on the size of the kink lo. In our units (which we will
define in the next section) we find that for lo »m. the X
dependence vanishes as exp( —

m lo ). For lo —m the expli-
cit X dependence of the PN well contributes only about
2-4% of the shift in the kink rest energy due to discrete-
ness, and for I0 (m the X dependence is responsible for
trapping the kinks with nonrelativistic velocities in the
PN well and thus dominates the discreteness effect's con-
tribution to the system's free energy.

We obtain in the limit I0))m the result of Ref. 6 in
which the X-independent lattice discreteness corrections
in the transfer method for kink-bearing chains was evalu-
ated. For 10) 7T we use a perturbation theory developed
in Ref. 9 for discrete kink systems to calculate analytical-
ly the X-dependent contributions to the free energy. For
I0 & m where we do not have analytic expressions for the
X-dependent contribution, we obtain the necessary infor-
mation from simulation. For /0-2 where discreteness
effects are relatively large we find that the bottom of the
PN well is about 8 —10% below the creation energy of
the continuum SG kink, and consequently the probability
of creating a kink is increased by about the same factor.

In Sec. II we obtain the discrete SG Hamiltonian in
terms of the collective variables. We obtain the
Helmholtz free energy of the dilute gas of SG kinks in
Sec. III. In Sec. IV we evaluate the free energy using a
perturbation theory that treats the discreteness as a small
perturbation. We evaluate the free energy nonperturba-
tively in Sec. V and discuss our results in Sec. VI.

where 62h& ——hi+ &+h& &

—2h& is
2

H= —,'gP; + ,'g—(Q;+,—Q;) + —g(1—cosQ;),
i

(2.2)

where P; =Q; and Q& is the displacement of the 1th parti-
cle from the Ith substrate potential well in units of the
substrate wavelength. The Hamiltonian in terms of col-
lective variables X, P, q&, and p& defined by

Qi(X(t), t) =fi(X(t))+qi(t) (2.3)

1s

P20= + —,
'

P; + V(X),
2M(X) [1—b (X)]

(2.4a)

where

V(»=-,'g(f;+i f;+q +i —q)'—
2

+ —+[1—cos(f, +q, )],
I0

(2.4b)

and where

and

b(X)= Q—f "q,
J

(2.4c)

M(X)=g(f J)
J

(2.4d)

The prime denotes the derivative with respect to the ar-
gument. The definition of the displacement f, is

f;(X(t))=f, (-,')+ J P, (X'(t'))dX', (2.5a)

where f;(—,') is the exact ground state of the discrete SG
system (X=

—,
' at the bottom of the PN well) and satisfies

2

f;+,+f;, 2f; — — s—inf; =0
0

(2.5b)

a(X) is a Lagrange multiplier and a(X)f, (X) is the force
needed to hold the kink at X. When X=

—,
' then a( —,

'
) =0

and Eq. (2.5c) becomes the eigenvalue equation
2

g, ( —,
' )cosf, ( —,

'
) —&,g, ( —,') =~0~/, ( —,

' ), (2.5d)
0

where ~~ is the lowest eigenvalue of the excitations above
the ground state. Equation (2.5d) is Eq. (2.1) linearized
about the exact ground-state solution f, ( —,

' ). As 10 &)m.,

g;( —,
'

) becomes the Goldstone mode of the continuum SG
and co& O. coh, is the PN frequency of the small oscilla-

and g; is the solution of the following equation:
2

f;(X)cosf;(X)—b2g;(X)
0

=tv'(X)g;(X) —a(X)f;(X) . (2.5c)
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tion of the kink about X=—,'. The q& in Eq. (2.3}represent
the functions which must be added to fr in order to ob-
tain the exact dynamical solution QI.

The introduction of collective variables for the kink (X
and its conjugate momentum P) increases the number of
degrees of freedom of the system by two. To conserve the
number of degrees of freedom of the original system
(Q;,P; }we need to specify two constraints and they are

C&
——g f,'(X)q;(t)=0, C2=—g f,'(X)p;(t)=0, (2.6)

where p; is the momentum conjugate to q; and the prime
denotes the derivative with respect to the argument. For
the proof and a full discussion of the equivalence between
the Hamiltonian equations of motion for Q; and P; from
Eq. (2.2) and the collective-variable equations of motion

for X, P, q;, and p; from Eq. (2.4a) see Ref. 7. Also see
Ref. 8 for a complete discussion of the function f;, calcu-
lation of the PN frequency copN, and an analysis of vari-
ous perturbation approaches to the discrete SG system
and their dependence on /o. In the preceding equations
and the rest of the present paper we are using dimension-
less units Q; =2m.x; /a, x; is the displacement of the ith
particle from the ith trough of the substrate potential, a
is the period of the substrate potential, the dimensionless
time is r= t&p/—nt where p, is the force constant of the
springs, nt is the mass of a single particle, and the
effective coupling constant /o (which is a measure of the
size of the kink) is given by /o—:pa /(2W) where W/2 is
the amplitude of the substrate potential.

In the ideal-gas phenomenology of SG kinks we treat
the phonons to second order so on expanding Eq. (2.4b)
to second order in q; we obtain

tern as a function of Z] the partition function for the
single-kink sector, and Z0, the partition function for the
zero-kink sector. Their result is

:-=Zoexp(2e~"Z, ), (3.1)

where Z& —=Z& /Zo. The factor of 2 arises from kink and
antikink contributions. p is the chemical potential which
we can set equal to zero for the case (which we are con-
sidering} where the period of the substrate is the same as
the period of the elastic chain; P=(kT) '. The free ener-

gy Gis

G—:—kT in==Go —2kTZ& . (3.2)

G0 is the free energy of the phonons in the absence of any
kinks. When we divide Eq. (3.2) by the length L of the
system we obtain

g =go —kT(n ) where (n ) =2Z, /L— (3.3)

k/o
h, (k) =m —2 tan

lkl
(3.4)

Their result for (n ), (where the c denotes the continu-
um) in our units is

and (n ) is the density of kinks and antikinks. Currie
et al. showed that the low-temperature statistical
mechanics of continuous nonlinear Klein-Gordon kink
systems required knowledge of interactions between the
excitations of the nonlinear Hamiltonian. The required
knowledge was shown to reside in the phase shift func-
tion h(k) which for the continuous SG is

v"'(x)= v, + v"'+ v, ,

where
'2

Vx =——,
' g (f;+, f, ) + ——g ( 1 —cosf; ),

i

'2

l 0

V;„,=—g (f;+, f;)(q;~~ —q;)+——q;sinf;
/ 0

(2.7a)

(2.7b)

(2.7c)

(2.7d)

27Te
( n ),= (PEtt )'~ exp( PEtt ), —

217 o

where Ez =8n //o is the rest energy of the kink and
'2

/ok

(3.5a)

db, ,
cr, —= — k ln 1+

2n o+ dk
(3.5b)

The form of Eq. (3.5b) is a consequence of the dispersion
law of the continuum SG equation

2

to (k)= —+k' .
I0

The replacement of V(X) by V' ' assumes the anharmon-
ic interaction between phonons is negligible. We want to
keep Vx to all orders in n //o so that we can include non-
linear oscillations and trapping in the PN well. The an-
satz V' ' for V is reasonable because as we shall show the
energy changes due to discreteness are a small correction
to the rest energy of the kink.

III. HELMHOLTZ FREE ENERGY
OF THE DILUTE GAS OF SG KINKS

Currie et al. derived the expression for the grand
canonical partition function = for the dilute-gas kink sys-

(Note the speed of sound is one in our units. ) The form
of Eq. (3.5a) with Eq. (3.5b) follows from the fact that the
frequency dispersion law is the same in the absence of the
kink as in the presence of the kink and the only net eSect
in the statistical mechanics is a change in the density of
states h, (k} of the phonons between the cases where the
kink is absent, Z0, and the case where a kink is present,
Z, . As long as the dispersion law in the discrete case is
the same in the absence of the kink as in the presence of
the kink (and if there are no other direct interactions be-
tween phonons and kinks) we will be able to obtain the
same expression exp(od) for the phonon contribution
where now ad depends on discrete dispersion law
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'2

co (k)= — +4sin k

Io 2
(3.7)

Consequently when we combine Eqs. (3.3), (3.5a), (3.8),
(3.9), and (3.10) we obtain

and h, (k) in Eq. (3.5b) is replaced by the phase shift
b,z(k) of the discrete SG.

We have shown' the collective-variable approach for
the center of mass variable X and P for the continuum
SG gives exactly the same result as Eqs. (3.5a) and (3.5b).
In order to calculate the free energy of the discrete kink-
antikink gas we need to calculate Z) (the partition func-
tion in the single-kink sector) in the dilute-kink limit, i.e.,

Z, =fe ~ 5 gf&q, 8 gf,'p, dXdP
. J . J

Xg dq;dp, , (3.8)

00 p p2
dP exp

2 M(X)[1—b(X)]
' 1/2

M (X)2m.
(3.9)

where H' ' is obtained from H, Eq. (2.4a), by replacing
V(X), Eq. (2.4b), by V' '(X) given by Eq. (2.7a). The only
effect of the constraints in Eq. (3.8) is to cause the vari-
ables q; and p; to be expressed as linear combinations of
only the phonon normal modes which are given by the
nonlocalized eigenfunctions of Eq. (2.5d), i.e., the q; and

p; have no component in the f ' direction. Denoting the
components by q(, )

=—C, and p(, )
=—C2, where C, and C2

are defined in Eq. (2.6), we have q~, ) =p~, )
=0 and the

corresponding eigenfrequency is co(&) =copN.
The P integration in Eq. (3.8) is

In the region lo ~ m where discreteness effects are most
important we do not have analytic solutions for the
discrete SG and we have to resort to numerical methods
or simulations as we do in the next section. In the near
continuum region where lo & m the effects of discreteness
are smaller but they make observable corrections to the
continuum theory. Fortunately we can calculate the
corrections analytically. In order to motivate the per-
turbation theory we consider the equations of motion for
X derived in Refs. 7 and 9:

x=- ' yf- - +x f- + 'v'x'
M

n qn
(4.1)

(3.11}

where ( & ), is the density of kinks and antikinks in the
continuum SG case Eq. (3.5a) with o, Eq. (3.5b) replaced
by o'z Eq. (3.10). In the limit lo»n, V)r(x)~E)r,
M(x)~Ez, and crz~a, and thus the discrete SG ap-
proaches the continuum SG result. We show in the next
section that M(X) differs very little from Eg . As a result
the discreteness enters in essentially two places, 0.

& and
the X integration in Eq. (3.11). In the next section we in-
vestigate Eq. (3.11} using perturbation theory, i.e., the
limit where lo »m.

IV. PERTURBATION THEORY
FOR THE DISCRETE SINE-GORDON SYSTEM

In the case where V~
' is an even function of q;, we find

that (b(X)) averaged over the q s vanishes and the in-
tegral over P in Eq. (3.9) is [2nM(x)kT]'~ . Further-
more, if V,„,in Eq. (2.7a) vanishes or is negligible then
when we divide Z& by Zo the integral over the phonon
coordinate in Z, is the same as the integral Zo except for
the fact that the density of states is different in the two
integrals due to the presence of the kink. Thus the
collective-variable approach' gives the same factor e as
was first obtained by Currie et al. in the continuum case
except their o „Eq.(3.5b) is replaced by o z where + 0 ~ ~

2 1 -())-(4) 2 1 -(1)-(6)
=4) Myfn frl +6) Myfn fn

n n

where V(X) is given by Eq. (2.4b) and f„(X)
=4 tan 't exp[a(n —X)/lo]I (which is the soliton solu-
tion of the continuum SG evaluated at the lattice points}.
When we set in Eq. (4.1) all q„=Owe obtain

db, q(k)
dk

2m o+ dk
2

lo 2 kX ln 1+ — 4 sin
1T 2

(3.10)

where we used

d 2f

de

1 dU
M dX

2

S1
Eo

(4.2a)

(4.2b)

where b,&(k) is the phase shift in the discrete SG equa-
tion, whose properties were determined in Ref. 11. They
found three ranges of behavior: (1) for ka ((1,
b,z(k) =h, (k); (2) for intermediate values of k the
discrete SG is refiectionless but b~(k) differs quantita-
tively from h, (k); and (3) for ~ka n~ ((1 the Bril—louin-
zone edge in the discrete SG is no longer reflectionless
but b,z(k} can be obtained analytically.

~2f. =f.+)+f. ) 2f. ——

d 4! d 6! d
(4.2c)

and the notation f '„'indicates d'f„(X)/dX'. [The func-
tion f„(X)of the present paper is 2m times the f„ofRefs.
7 and 9.] Our perturbation theory consists of keeping



4574 C. R. WILLIS AND R. BOESCH 41

only the terms f '„'and (2/4! )f '„'on the right-hand side
of Eqs. (4.2a) and (4.2c) which is effectively an expansion
in (m. /lo) since each succeeding term is a factor of
(m/I. o) smaller. Thus the lowest-order term on the
right-hand side of Eq. (4.2a) is

1 2
U = ———

0 2 4

1

9

d 2f
2

dn
dn

2
1 m pEz .

72 Ip
(4.5f)

where

, g—f'„"f'„'=g B„sin(2n.nX),
n n

(4.3)

4~'n2 1B„=— 2n +
3 sinh(nolo}

(4.4)

where we used the fact that the potential U is periodic in
X and we evaluated the coef6cients B„in the Fourier
series. [Note Eq. (4.4) includes a minus sign correcting
the expression for B„which appears just below Eq. (4.3)
of Ref. 9(a).] Consequently, the potential U(X) is

U(X)=E»+ Uo+ g C„[1—cos(2nnX)],

where

B„
C =

277n

2mn 2 1
4

3 sinh(n carlo)
(4.5b)

where the second equality is obtained by shifting indices
in the first term and replacing the second term by using

—,'$(f,'} = —$(1—cosf;) . (4.5c}
i

We obtained Eq. (4.5c) by integrating Eq. (4.2b) and ap-
plying the boundary conditions f,'~0 as i~koo. Ex-
panding the second difference using Eq. (4.2c), retaining
up to and including fourth-derivative terms, and convert-
ing sums to integrals with f;~f(x) we obtain

'f ---— +— + 'f-2df 2df
2! d~2 4! d~4

(4.5d)

and so

r

p 1 m pVz =E~ — —Ez +X-dependent terms .
0

I

(4.5e}

For Ip &)m the coefficients of the X-dependent terms in
Eqs. (4.5a) and (4.5e) go to zero as exp( nolo) and-
therefore we make the identification

According to Eq. (4.5a) the crests of the periodic PN bar-
rier are positioned at X =n where n =0,+1,+2. . . . In
order to evaluate Uo in the limit lo »m we approximate
V» given by Eq. (2.7b} by replacing f; by f; to obtain

V»= —,'g(f, 4. , f;) + ——g(1—cosf;)
l i

=-,'gf;(2f; —f;+i —f;-i}+-,'g(f I)

Vi, ~TQQkqiki,(2) & 2 2 (4.6)

where the q~k] are the phonon normal modes in the ab-
sence of the kink. The frequency Qk is

'2
4 I/2

0„= —+k +
I, 12

1+k +
Iii lo

'2 -4 1/2

12
(4.7)

J r

where k—:k(IO/m ) and since in our units a =1 the usual
term (ka), etc. just becomes k2. Equation (4.7) without
the k term is just the dispersion law for the continuum
which comes from the first term on the right-hand side of
Eq. (4.2c). The second term of Eq. (4.2b), the fourth-
derivative term is responsible for the k term. The ex-
pansion of the dispersion law for the discrete harmonic
lattice, Eq. (3.7), to k gives exactly Eq. (4.7). Conse-
quently, to first order in the discreteness correction, it is
consistent to replace Eq. (4.7) by Eq. (3.7). We find that
in the continuum limit V;„„Eq.(2.7d) vanishes. The
first-order correction due to discreteness does not vanish
and is linear in the q s which means the phonon potential
energy is centered not on zero but on a value shifted by
the presence of the kink. However, the final contribution
of V;„,to the free energy per particle is proportional to
exp[ —,'(2/4!) (n./I )I0f) where If is an integral of f '„'
over the eigenfunction of the linearized continuum SG
operator which can be carried out analytically. However,

The energy shift Up is the amount the kink rest energy is
lowered below the continuum rest energy of the kink, i.e.,
it is the X-independent kink-rest-energy shift. Up is the
same lowering of the kink rest energy as was obtained in
Refs. 6 and 2. The kink rest energy Ez results from in-
tegrating first and last terms in Eq. (4.5d) and Uo arises
from integrating the second term Eq. (4.5d). Equation
(4.5a) for U(X) is V» of Eq. (2.7b} evaluated to the first-
order correction to the continuum, i.e., replacing the
left-hand side of Eq. (4.2c} by the first two terms on the
right-hand side of Eq. (4.2c). E»[1—(m/Io) /72] is the
energy of the top of the PN barrier, in the limit lo »n,
i.e., for 10=4 we obtain Uo= —0.0554 from simulation
and Uo = —0.0538 from Eq. (4.5f) which gives an error of
2.9 lo. As lo becomes large the PN well vanishes leaving
only a dc shift in the kink energy. The analytic expres-
sion for Up approaches the simulation value slowly, i.e.,
for 10=8 (where simulation shows that the PN well has
essentially disappeared and only the dc shift remains) we
find Up differs from the simulation dc shift by as much as
1%.

Next we evaluate V' ' to the same order by using the
first two terms of the identity Eq. (4.2c) in Eq. (2.7c) for
the finite difference term g, (q, +,—q, )2. The result is
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the term in square brackets is always less than 10 in
the range of validity of our perturbation theory, i.e.,
10 ))~ and thus V;„,can be neglected in our perturbation
theory about the continuum. Consequently, the phonon
contribution to the free energy is exp(ad) where crz is
given by Eq. (3.10).

In the expression for C„,Eq. (4.5b), we see that
C„-exp(—nn. lo) and thus the C„decay very rapidly
with n, therefore it is suScient to keep the first term C1,
and thus the expression for VK becomes

'2

V (X)=E 1—0 1
K K 72 l

L
0

~PN

2'

2

~PN

2' cos(2n.X ) (4.9)

where bpN/2= ~C, ~

and kpN=2M0(copN/2m ) is the
depth of the PN well. In our units Mo=Ez because the
speed of sound is equal to one. We can express our per-
turbation theory result for V~(X) as

Vx(X) =Ex+ Uo+ [cos(2nX) —1],
2

(4.8)
When we substitute Eq. (4.9) for Vz(X) in Eq. (3.11) for
V(X) we obtain

r

(n) d=( fi'), exp pro —+
2~

2 1/2
' —f dX exp PEx — cos(2m.X }
, 1 L M(X) 0 ~PN

L 0 M0 277

'2
=(fi'), exp PE+ — +0 1 PN

'72 l0 2m

'2-
0 PN

Io pE

'2
8 lnIO

1+ b'M

M0
8 PE[.

2~

'2 (4.10)

where Io is the modified Bessel function. The term pro-
portional to hM/Mo is due to the X dependence of the
mass where

M(X)
M0

1/2g A„cos(2n.nX)

1+
M0

with

A11+ cos(2m X}
0

=1+ cos(2mX)
AM

0

' 1/2

(4.1 1)

hM 2mnl0
and

M0 2M0 Mo sinh( n m.lo )

T
T 2

(n) =(n) exp PE — +0 1 m ~PN
d c ' K 2'

2-

(4.12)

Since the term b,M/Mo =0.002 for 10=4, we see that the
X dependence of the M is negligible and we can set
[M(X}/Mz]' equal to one in Eq. (4.10). Furthermore,
at 10=4, copNI(2n)is 1.18X1.0 so that the modified
Bessel function is Io[PEK(1.4X10 )]=1 for reasonable
values of the parameter pE„.(The parameter pEx has to
satisfy the condition pEz »1 to justify the dilute-kink
approximation). Finally we find that

for the first-order perturbation theory treating discrete-
ness as a small perturbation to the continuum. For l0 =4,
which is the region where the perturbation starts to break
down, we find that bpN/U0=2(copN/2m) /[ —,', (m/lo) ] is

about 3.5%%uo. As lo increases the term (cop&/2m) de-
creases much faster than U0 so that the only correction
due to discreteness is exptpEz[ —,', (m/10) ]) as found in

Refs. 2 and 6. Thus for l0))m. we find of the two effects
due to discreteness, namely, the X-independent reduction
of the kink free energy U0, and the X-dependent PN po-
tential, only U0 is important for large 10 as far as statisti-
cal mechanics is concerned. At 10=m. the X-dependent
potential effects are just starting to become important. In
the next section we show that as 10 becomes less than m.

there is a rapid growth in the magnitude of the X-
dependent effects and they become larger than U0.

V. NONPERTURBATIVE TREATMENT
OF THE FREE ENERGY

In the nonperturbative region where l0 (n. we simplify
Eq. (2.7a) for V' '(X) by replacing f;(X) by f,.( —,

'
) in all

terms where a linear or quadratic term in q,. appears.
Then V;„,=0 rigorously because f, satisfies the exact
ground-state equation,

f;+,+f;, 2f; — —sinf;=0 . —
0

(5.1)

Equation (5.1) should be contrasted with the equation
"r) f„/Bn —(m. /Io) sinf„=0 which is satisfied by the
function f„(X)=4 tan ' [exp[a(n —X ) /lo ]J that we
used in Sec. IV. Since V;„,=0 the Hamiltonian consists
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of a sum, H =H& +H~. The phonon Hamiltonian is

~p 2 g (P (k) +~kq (k) ) ~

k

(5.2}

where co (k) s given by Eq. (3.7). Since we have assumed
that the dispersion law for co(k) is the same in the pres-
ence as in the absence of the kink we are able to evaluate
the phonon free energy even though we do not know the
phonon modes of the discrete SG analytically. H~ actual-
ly contains a term p~1~+copNq~1~ which comes from the
bound state but the constraints in Eq. (3.8) require p~, ~

and q~, ~
to be zero. Thus we anticipate the cancellation

in Eq. (3.8) due to the constraints by the prime on the
sum that restricts the sum to the phonon modes. Conse-
quently the final contribution of the phonons to the free
energy is exp(crd ) with crd given by Eq. (3.10). The P in-

tegration is given by Eq. (3.9} as before. Exact simula-
tions show that the discrete corrections to M(X) for
10&2 are, surprisingly, small and so we neglect the
discreteness corrections to M(X) for all cases. Conse-
quently, we are left with Eq. (3.11) with Vx(X) given by
Eq. (2.7b).

When substituting Eq. (5.1) into Eq. (2.7d) in order to
make V;„,vanish, we must ask the important question of
whether or not the coupling terms in f; and q; can be re-
placed by f; and q, . The two important physical effects
contained in the correlations between f, and q; that are
not contained in f; and q; are radiation of phonons and
the dynamical dressing of the kink by phonons. We dis-
cuss first the radiation effect.

As la decreases below m more particles become trapped
in the PN well (for 10=2 all nonrelativistic particles are
trapped}. We have found in simulations that the radia-
tion from trapped particles is weak, e.g., for 10=2.7 the
kink lifetime was greater than 2000 oscillations of the
kink even when it started at the top of the well. For un-
bounded orbits that are just untrapped the radiation is
larger than the trapped case but still perturbative. The
energy radiated by relativistic particles is a consequence
of the presence of the PN well which is the X-dependent
correction to Uo. For relativistic particles with lo m the
correction amounts to only a few percent giving rise to a
shallow PN potential well. Highly relativistic particles
for 10 & m radiate nonperturbatively but in this paper we
consider only nonrelativistic particles. Therefore the ra-
diation effects not taken into account by using f; and q;
instead of f; and q; are negligible for the cases we consid-
er.

The second effect that depends on kink-phonon in-
teractions is dynamical dressing. Since we use the exact
ground state f, and the exact shape mode there is no
dynamical dressing for small oscillations. For highly
nonlinear oscillations the magnitude of the dynamical
dressing of f; ( ,' ) is small. Furthermore w—e partially com-

pensate for the neglect of the dressing in our model by us-
ing the exact coPN calculated in Ref. 8 and by taking the
exact value Uo from simulation. We verify our statement
about the trapping velocity by calculating the trapping
velocity from the condition —,'MV =kpN=2M(copN/277)
which gives for the trapping velocity the condition

V„,~ =co&&ln .For 10=2, V«,z =0.333. In our units the
velocity V is dimensionless and 0.333 means a velocity of
one third the speed of sound. The average thermal veloc-
ity U„=1(pMO)' is small because the dilute-kink limit
requires PMO )& l.

Although we have used the property that f,.( —,
'

) satisfies

Eq. (5.1) in order to argue that V;„,=0 it is important to
retain the full X-dependent function f, (X) .in Vx(X) so
that we can include the nonlinear behavior of the kink in
the PN well including trapping which plays an important
role as we see below for lo (m. Therefore we retain f;(X}
in Vx(X) even though we do not have a way to justify the
ansatz by an analytic expansion in a small parameter. In
Sec. IV we similarly assumed the full dispersion law for a
discrete chain even though our expansion in the parame-
ter (n/lo} only justified retaining the terms up to k .
Evaluating Vx(X) in Eq. (2.7b) exactly would require a
large amount of computation, however we know Vx(X) is
a periodic function of X so that

Vx(X) = Ud, + g b„(lo)cos(2irnX) .
n=1

(5.3a}

Further we know that b„decreases rapidly with increas-

ing n. Consequently we assume that we can terminate
the series in Eq. (5.3a) to obtain

p PN
Vx(X) =Ex+ Uo —Mo 2'

PN

2~
cos(2m X)

CQ

CD

CD

C
QQ

c CD0
~~

E ~
4 CD

I

CO

CD
I I

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Lo

FIG. 1. The solid curve represents the quantity (copN/2m)

and the dots represent the quantity —Uo/Ek. The dashed line
indicates the zero of energy.

(5.3b)

and we will take Uo from simulation, Fig. 1, and we use
the exact ~PN. Since Uo is exact and the exact coPN is
determined by all harmonics (with the n ) 1 terms giving
relatively small corrections) we have partially compensat-
ed for the terminating of the series at n =1. In Eq. (5.3b)
we made use of the fact that for a single harmonic,
cos(2n.X), the depth of the potential scales as the square
of the PN frequency. When we substitute Eq. (5.3b) in

Eq. (3.11) and use the definition of the free energy per
unit volume Eq. (3.3), we obtain
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g —gp= k&(+d )

k—T(2mPEx )
i —ep In 1 t x~' "0'i

p

'pg 1

XIp I d, (5.4)

where a(lp) = —Up/Ex+(copN/2m ) and bpN is the
depth of the PN well.

VI. DISCUSSION OF RESULTS
0.0 1.0

I

2.0
I

3.0
I

4.0

TABLE I. The parameter a(10) for various values of 10.

a(10)

1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.0878
0.0641
0.0406
0.0251
0.0166
0.0119
0.0090

We first compare the results of the perturbation theory
of Sec. IV with the results of simulation. The details for
finding copN from simulation are given in Ref. 8 and the
details for finding Up from simulation are given in Ref. 3.
For lp=4, the constant Up/Mp= —

—,', (m/lp) is 2.9%
smaller than the essentially exact simulation results. The
quantity (rppN/2n ) (which is equal to iC, i/Mp) is 4.4%
larger than the simulation result, see Fig. 1. Furthermore
the simulation result for the ratio of bpN/Up is 3.2%.
The argument of the modified Bessel function,
PEx(copN/2~), is 1.4X10 PEir. The Parameter PExP

has to be greater than one to justify the dilute-kink phe-
nomenology and a typical value would be around ten.
Consequently we can replace Ip by 1 for lp & 3. In sum-

mary, for lp &&m the first-order perturbation theory
which treats discreteness as a small perturbation has only
two effects. First the phonon function 0, is replaced by
o d and the kink rest energy E& is reduced to
Ex[1—

—,', (m/4) ] making it slightly easier to create a

kink which is exactly the result found in Ref. 6. Al-
though the perturbation theory starts breaking down
around lp =4, the trend observable in perturbation
theory, i.e., a(lp) remaining monotonic (see Table I} re-
gardless of the change in sign of Up, persists in the exact
simulations. For lp &2.5 the well depth hpN is actually
larger than the shift of the top of the PN well, Up, see
Fig. 2. For the entire range of validity of the perturba-
tion theory, 1p & 5 the constant shift Up is negative, i.e.,
the PN well is depressed below the kink rest energy. For
lp 1.7, Up is positive and thus the top of the PN well is
greater than Ez as shown in Fig. 2. However, the param-
eter a(lp)—:—(Up/Ex)+(copN/2m) is always positive
(see Table I) and is a monotonic increasing function as lp

decreases. a(lp) increases by a factor of 10 when lp de-
creases from lp =4 to lp = 1, i.e., from 9 X 10 to
9X10 '.

Next we show that the term Ip[PEx(copN/2n ) ] can be

FIG. 2. The (normalized) Peierls-Nabarro potential as a
function of X. The dot-dashed curve represents lo =2.5 and the
solid curve l0=1.5. Crest and trough values are calculated us-

ing Eq. (2.4b) where we replace f;+q, by the exact kink
configuration from simulation. We then fit the crest and trough
values using a single cosine term to produce the figure. The
dashed line represents the continuum kink rest energy 8m /lo.

replaced by one with a renormalized a(lp} for the impor-
tant region 2 &lp & 3, while for lp &2 the full functional
dependence of Ip must be kept. The function
Ip(z)=1+z /4 for small z and thus for small z we can
express Ip[~Esc(upN/2n)] as exp(. [PEx(copN/277) ] /4 J.
When we substitute the preceding expression for Ip in

Eq. (5.4) we obtain

' I [PE (co /2m) ]=e
(6.1}

where

Q(lp ) = Up/Ex + (copN/27l') [1 +PE@(copN/271) /4]

Thus the net effect is that Ip can be replaced by one and
the PN frequency term (copN/2n) is increased. For
lp =2 and PEx —10 the term (copN/2n ) is multiplied by
1.2 constituting a correction that lowers the kink rest en-
ergy. For lp &2, it is necessary to retain the functional
dependence of Ip.

All of the statistical thermodynamics is contained in
the Hel~holtz free energy and changes due to discrete-
ness are contained in crd, in the constant a(lp ), and in the
modified Bessel function Ip(PEFN/2). The relative lower-
ing of the kink rest energy due to discreteness, Up/Mp,
dominates the relative effect of the PN well, (copN/2m ),
for most lp, e.g., at lp=3, (copN/2n. ) is only 17% of
Up /Mp ~ However, for lp (3 the effect of the well in-
creases rapidly in relative importance so that at lp=2,
the (copN/2m) term is more than twice as large as
Up/Mp.

In terms of the microscopic variables, X and P, for
lp &5 the kink behaves effectively as a free continuum
particle with a reduced mass. For 3.5 & lp & 5 the particle
sees a weak periodic PN potential which is less than 1%
of the renormalized kink rest energy, with very little
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trapping and very weak radiation. As lo decreases below
3.5 the depth of the PN well, lkpN, increases and more
and more particles are trapped and for lo ~2.5 the well
depth becomes larger in magnitude than the kink energy
renormalization. The radiation plays a much larger role
than before but the trapped and near trapped particles ra-
diate only a small fraction of their PN potential energy.
By lo-2 all particles with velocities less than one third
the speed of sound are trapped and oscillate with a very
small radiation rate. Kinks for which lo-2 moving with
velocities very near the speed of sound rapidly radiate
and become trapped, radiating weakly after trapping.
The phenomenon of trapping of ultrarelativistic kinks for
la&2 requires large particle-phonon correlations which
we explicitly excluded in our approximations in Secs. IV
and V.

In conclusion, with classical mechanics discreteness
constitutes a small correction to the continuum SG
dilute-kink phenomenology except for kinks with lo (3
where trapping and radiation become important. How-
ever, for nondilute-kink problems such as kink struc-
tures on surfaces where the temperature is relatively
lower and where there is a mismatch between surface and
substrate one finds that pinning plays an important role
at larger values of lo than 3. When two solitons of the
continuum SG collide with each other they emerge from
the collision with only a change of phase. The collision
of SG kinks in a discrete lattice can cause the exchange of

energy between the kinks and with the lattice undergoing
such phenomena as pinning and depinning by means of
collisions because in the discrete case the kink-kink in-
teractions are taking place in the external field V~(X) of
the lattice. Consequently the two particle effects which
are corrections to the ideal discrete kink limit will have
appreciable observable effects. The treatment of the
Dirac-bracket theory of constrained Hamiltonian systems
of the ideal-gas phenomenology of the nonlinear discrete
SG system applies using the center of mass X in exactly
the same manner in the discrete P, DSG cases as well.
Both the P and DSG have internal oscillations that can
be represented as additional collective variables so the ex-
change of energy between the internal variables, the kink
center of mass, and the lattice lead to interesting phe-
nomena that have important physical applications.
Quantum mechanics limits the applicability of the classi-
cal mechanics of the present paper when the uncertainty
in position, ~, satisfies ~&a, where a is the lattice
spacing and where ~-A(P/Mo)'~ at temperature T.
Consequently, at sufficiently low temperature ~&&a.
The other temperature condition PMo» 1 is a low-
temperature requirement. For a wide range of masses we
are able to satisfy both the diluteness condition PMo » 1

and the condition a »R(P/Mo)'~ required for the valid-
ity of classical mechanics in the ideal-kink-gas phenome-
nology of the discrete SG.
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