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We have studied via a Green-function Monte Carlo (GFMC) method the S =
—,
' Heisenberg quan-

tum antiferromagnet in two dimensions. We use a well-known transformation to map the spin

problem onto a system of hard-core bosons that allows us to exploit interesting analogies between

magnetism and super6uidity. The GFMC method is a zero-temperature stochastic method that
projects out the component of the true ground state in a given variational wave function. This
method is complementary to previously used finite-temperature Monte Carlo methods and is well

suited to studying the ground state and low-lying excited states. Starting with even a simple wave

function, e.g., the classical Neel state, the GFMC method can obtain the short-range correlations
very accurately, and we find the ground-state energy per site Eo/J = —0.6692(2). We show that it
is important to include the zero-point motion of the elementary excitations in the ground state and

by a spin-wave analysis find that it produces long-range correlations in the wave function. Upon in-

clusion of such long-range correlations, we obtain a staggered magnetization m =0.31(2) and the
structure factor S(q)-q at long wavelengths. Using the Feynman-Bijl relation, from the slope we

deduce the renormalization of the spin-wave velocity by quantum Auctuations to be

Z, —=c/c, =1.14(5).

I. INTRODUCTION

The subject of quantum antiferromagnetism has been a
challenging problem for several decades. %ith the recent
discovery of high-temperature superconductors there has
been a revival of interest in this area. ' It was suggested
by Anderson that the S =

—,
' Heisenberg quantum antifer-

romagnet (QAFM) on a square lattice could be used to
model the interactions between the electrons in the singly
occupied d & 2 orbitals on the copper atoms. In one di-x —y
mension, it is known that the ground state lacks long-
range order (LRO), and the correlation function decays
algebraically for the S =

—,
' chain. In two dimensions, us-

ing certain sum rules and bounds on correlation func-
tions, it has been proved that the S =

—,
' XY model has

LRO and the XXZ model has LRO for an anisotropy pa-
rameter 5 & 1.78. So far, a rigorous result pertaining to
LRO in the S =

—,
' Heisenberg model (5=1) in d =2 has

not been shown. It is known, however, that the ground
state of the S =

—,
' Heisenberg QAFM on a bipartite lat-

tice in any dimension is a singlet. 6'

Recently, from a study of the Heisenberg QAFM on a
square lattice through a variety of numerical techniques,
there seems to be a growing consensus that the ground
state indeed has a staggered magnetization that is ap-
proximately 60%%uo of the classical value. It therefore ap-
pears that in two dimensions, quantum fluctuations
reduce the moment but do not completely destroy the
long-range order. Exact diagonalization has been carried
out on small clusters up to N=4X4. These results,
while they leave the question about the ground state of
the infinite system unresolved, provide a useful check for

numerical work done by other approximate methods.
Variational calculations have used trial states with LRO
built in, Gutzwiller wave functions, ' and resonating-
valence-bond states with both short- and long-range sing-
let bonds. "Finite-temperature path-integral Monte Car-
lo' ' methods have allowed lattices up to N =24X24 to
be studied. A perturbation series approach has also been
developed around the Ising limit'4's to study this model.

In this paper, we use a di8'erent method from those re-
ported previously called Green-function Monte Carlo
(GFMC) method. ' Variants of this method have been
applied to this system. ' ' ' It has several features that
make it attractive to study the problem at hand: It can
be used to study large lattices (cf. exact diagonalization
methods), it does not require an extrapolation to zero
temperature (cf. finite-temperature quantum Monte Car-
lo), it is also possible to devise an algorithm without
zero-time-step error, and, most importantly, this method
takes us beyond variational methods to obtain the exact
ground-state properties. The basic idea behind the
GFMC method is to filter out of a variational wave func-
tion O'T the component of the true ground state that is
contained in it. This can be done by operating on +T
with an operator like C= exp( rQ) To s—ee its. effect,
expand the variational state in a complete set of basis
states of the Hamiltonian II i a }=E i a ). We then find
after applying the operator n times on the variational
state

e "'"i+ }T~a,e
"' ')0} .

In the long time lirhit the ground state will dominate pro-
vided the overlap of the initial variational state with the
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ground state is nonzero, i.e., ao=(0~%'r)%0. For a
large lattice (say, more than 30 sites) it is not possible to
apply the 0 directly to the wave function many times, so
one must resort to a Monte Carlo technique. The GFMC
technique is a statistical method used to generate a set of
configurations of spins that are distributed proportional
to the true ground-state wave function.

To implement this GFMC procedure and also to gain
physical insight we exploit an exact mapping of the S =

—,
'

spin Harniltonian onto hard-core bosons on a lattice. '

An up spin is identified with a boson and a down spin
with an empty site. The staggered magnetization is
analogous to off-diagonal long-range order in the boson
problem. We note two important ingredients in the con-
struction of a good trial wave function: The presence of
short-range spin-spin correlations are incorporated via a
Jastrow pair-correlated function for the bosons. We also
show that the zero-point motion of the elementary
excitations —spin waves in the antiferromagnet and pho-
nons in the bose system —must be included in the ground
state. This is found to lead to long-range correlations in
the wave function, and we obtain the form of these corre-
lations by a spin-wave analysis. The phase of the wave
function on a square lattice is known exactly to be posi-
tive on the A sublattice and negative on the 8 sublattice.
The amplitude can be approximated by a product of pair
correlations %r = ii, & f (r, —rj ) with f (0)=0, where i
and j are the positions of the up spins. The spin waves
are shown to produce a long-range tail of the form

f (r)-1 a/r at lar—ge distances, and a is related to the
spin-wave velocity.

Our main conclusions for the S =
—,
' Heisenberg Hamil-

tonian based on a Green-function Monte Carlo method
on lattice sizes up to N =12X12 and finite-size scaling
are as follows.

(i) The ground-state energy per sites is
Eo/J = —0.6692+0.0002. This result is obtained even
when the classical Neel state with an energy E~= —0.5J
is chosen as the initial trial wave function.

(ii} The ground state is found to have ion -range order
with a staggered magnetization given by m =0.31+0.02
in units in which the classical Neel state has m =0.5.
This value is obtained only upon a proper inclusion of the
long-range correlations in the wave function.

(iii) We find that the spin-wave velocity is

c/c, =1.14+0.05, where c, =v'2Ja is the classical spin-
wave velocity about the Neel state. The structure factor
at long wave lengths is S(q)-q and from the slope we
deduce c by a generalization of the f-sum rule or
Feynman-Bijl relation to the lattice

Some of these results were first reported in a short pa-
per 20

This paper is organized as follows: In Sec. II, we re-
view the mapping of the S =

—,
' Heisenberg spin Hamil-

tonian on a square lattice onto a hard-core boson model.
In Sec. III, we discuss trial wave functions for bosons by
drawing close analogies with He. We start by describing
wave functions with short-range pair correlations arising
from the hard-core nature of the bosons. We also discuss
the effect of the zero-point motion of the elementary exci-

tations in the ground-state wave function. The computa-
tional method —variational Monte Carlo (VMC) and
Green-function Monte Carlo are discussed in Sec. IV. In
particular, we describe a projection operator appropriate
for a lattice and the sampling of the Green function. Our
algorithm differs from previous GFMC calculations that
were adapted to continuum systems. Importance sam-
pling is introduced in the random walks to reduce the
variance. The estimators for the energy and correlation
functions are also discussed in Sec. IV. Section V con-
tains our results for the ground-state energy, staggered
magnetization, and the diagonal and off-diagonal spin-
spin correlation function. In Sec. VI we discuss our re-
sults for the spin-wave velocity calculated from the
finite-size scaling of the ground-state energy and from the
long-wavelength behavior of the structure factor and
momentum distribution function. We also comment on
the modification of the f-sum rule on a lattice. In Sec.
VIII, we give a brief discussion of the estimation of errors
in the Monte Carlo procedures and conclude in Sec. VIII
with a few remarks. In the Appendix, we describe the
Ewald summation technique to handle long-range corre-
lations in the wave function.

II. MODEL: TRANSFORMATION TO A BOSON MODEL

The Hamiltonian for the S =
—,
' Heisenberg quantum

antiferromagnetic is given by

H =J g S; S) = —g (S;+Sq +S; S+ ) +J g S;*S',
& ij & & ij & & ij &

(2.1)

where the coupling J is positive and connects only spins
on nearest-neighbor sites of a square lattice. We use
periodic boundary conditions along both x and y direc-
tions. ' The classical Neel state (with up spins on the A

sublattice and down spina on the 8 sublattice) minimizes
the S S' term in (2.1), but is not an eigenstate of the
Hamiltonian because the xy term mixes spins on the A
and 8 sublattices. We transform the Hamiltonian in (2.1}
to a boson model. The spin-raising and -lowering opera-
tors on different sites commute and are thus identical to
boson operators with the identification b;f =S;+ and
b;=S;, where b; (b;) is a boson creation (destruction)
operator on site i. In addition, note that S =S;+S;
so that the z component of the spin gets identified with
the boson number operator, i.e., S =n, —

—,', where

n; =b; b;. However, S;+—anticommute on the same site,
which implies that (b; } =0. This shows that the bosons
have a hard core whereby a site cannot be occupied by
more than one boson. (In general, for a spin S operator, a
site can be occupied by at most 2S bosons. ) This analogy
between the spin variables and the hard-core boson vari-
ables was first presented in the context of He by Matsu-
bara and Matsuda, ' though in that study a boson system
was transformed to a ferromagnetic spin problem. The
boson transformation discussed above is identical to the
Schwinger representation for S =

—,'. The latter is a more
general representation in which each spin is replaced by
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two species of bosons a and b and is applicable to arbi-
trary S with the constraint S =(n„+nh )/2.

With the aforementioned transformation, the first term
in the Hamiltonian in (2.1) that exchanges two spins of
opposite signs on adjacent sites is identified as a hopping
term for bosons. Usually, we associate a negative sign
with the kinetic energy operator because by hopping a
boson can get delocalized and thereby reduce its energy.
This is achieved by a unitary transformation (that leaves
the commutation relations unchanged) in which the spins
in the original Hamiltonian (2.1) on the B sublattice are
rotated as follows: SJ"~—S"., S".~—SJ, and SJ'~S'.
In terms of the boson operators on the B sublattice, we
have, b ~ bj an—d b ~ b. —

Thus with the transformation S;+=c;b; and S =n; —
—,
'

to (2.1), where s; =41 on A /B sublattices, we have

where f is a function of the relative distance between bo-
sons i and j located on the sites of a square lattice. The
pair-correlated wave function in (3.1) is symmetric under
the exchange of any two-particle coordinates and also
possesses particle-hole symmetry. It has the advantage
that it depends on a single function f and is simple to
compute with. The hard-core condition requires that

f (0)=0, and, for large separation between the bosons, f
tends to unity by convention. For intermediate values of
the separation, the function f can be determined by a
variational calculation by minimizing the energy, or, as
will be discussed in Sec. VI, by maximizing the overlap
between the ground state and trial wave functions.

As a start, the function f is approximated by
r

H = ——g (b; b/+b;bjt)+ J g n;n +Ez .J
&ij } &ij }

(2.2) 1, otherwise,

(3.2)

III. CHOICE OF TRIAL %AVE FUNCTIONS

A. Pair-correlated wave functions

A basic problem confronting a variational calculation
is a good functiona1 form for a trial wave function. To
construct a wave function for the many-body interaction
boson system, we start by including short-range pair
correlations. As discussed in Sec. II, the interactions be-
tween bosons are of a hard-core nature; therefore the
problem cannot be handled by perturbative techniques.
We resort, to a variational method to study this problem
and use trial wave functions first suggested by Bijl and
Jastrow for hquid He and nuclear physics

VT(R)= g f(r; —r.), (3.1)

In this equation, Ez = JZN/8—is the energy of the clas-
sical Neel state, where N is the total number of sites and
Z is the coordination number for the given lattice (Z =4
for a square lattice). The second term in (2.2) is interpret-
ed as a repulsive interaction between bosons on adjacent
sites. In the Neel state the total z component of the spin
is zero. The xy part of the Hamiltonian introduces quan-
tum fluctuations in the Neel state that must be included
to obtain the correct ground state. Since the xy term
only exchanges spins on difFerent sublattices, (S')«, is

conserved. We will therefore work in the (S*)„,=0 sub-

space, which implies that the number of bosons Nb is half
the number of sites. The computational methods de-

scribed in the following sections can be used to study an
arbitrary value of S,. In the next section, we discuss pos-
sible variational wave functions for (2.2). The "Marshall
sign rule" is a statement about the phase of the ground-
state wave function of the Heisenberg Hamiltonian. It
implies that the many-body boson wave function can be
chosen to be non-negative everywhere in the ground
state. 23 We will see later that this property of the wave

function will be crucial in applying the GFMC method to
this problem.

with a single variational parameter f(5)=f, at the
nearest-neighbor site 5. This choice of f builds in short-

range correlations in the wave function. It is easy to see
that if the amplitude for finding a boson at the nearest-
neighbor site is zero, i.e., f &

=0 we get a state with per-
fect diagonal LRO in which one of the sublattices is occu-
pied by bosons and the other one is empty. In terms of
spins, this a Neel state with sublattice magnetization
along the z direction. On the other hand, if f, =1, the
state has 0+diagonal LRO and describes a Neel state in
the xy plane. For values of f (5) intermediate between
zero and unity, the Jastrow wave function usually de-
scribes a superQuid possessing off-diagonal LRO but no
diagonal LRO.

The presence of off-diagonal order can be deduced
from the expectation value of the amplitude to create a
boson at site 0 and destroy a boson at site /. For the wave
function in (3.1) it is found that (bob& )~ const+0. The
nonzero value of the correlation function at large dis-
tances is related to the condensate fraction of the
super6uid. In terms of spins, the off-diagonal correla-
tions describe the correlation between the x and y corn-
ponents of the spins and the constant is associated with
the presence of sublattice magnetization in the xy plane.
The depletion of the condensate due to repulsive interac-
tions between the bosons is analogous to a reduction in
the sublattice magnetization by quantum fluctuations.
The absence of diagonal LRO can be deduced from the
behavior of the density-density correlation function that
vanishes at large distances between the bosons, i.e.,
(non& )~0. In terms of spins, it implies that the stag-
gered magnetization in the z direction is zero.

B. Inadequacy of short-range functions

As discussed earlier, the variational wave function in
(3.1) can describe a solid or a superfluid, i.e., depending
on the value of the parameters, the state may or may not
possess diagonal LRO. In either case, the longitudinal
excitations of the system are phonons with a linear
dispersion. It was suggested by Feynman and Bijl
that the excitation spectrum can be obtained from the
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structure factor in the true ground state by the relation

COq— (3.3)
&(q)

'

where Eq q Thus at long wavelengths, a linear disper-
sion to -q, implies a linear dependence of S(q) on the
wave vector.

In the state described by (3.1), if the pair function
f (r, —r, ) deviates from unity only locally around a given
boson, as in (3.2), it can be shown that the structure fac-
tor SsR for such a wave function goes to a nonzero can-
stant at long wavelengths. From the Feynman-Bijl rela-
tion this implies that the excitation spectrum is quadratic
in q. Such a spectrum, even though gapless, is not con-
sistent with a ground state that supports phononlike exci-
tations or spin waves in the analogous antiferromagnetic
spin system.

To see that SsR indeed shows such an incorrect behav-
ior, note that (3.2) is analogous to the partition function
of a classical system of particles interacting via a pair po-
tential P(r; ) and at a temperature T such that

placements u and momenta. Since the density fluctuation
p-V-u, we can write the Hamiltonian for the collective
coordinates representing the sound mode by

Ht„= —,
' g m [p(q}p( —q)+tug(q)p( —q)],

q(q
(3.5)

m qCOqg exp — p(q)p( —q)
q(q 2

(3.6)

Performing the Fourier transforms in (3.6) in two dimen-
sions, we get

where coq=eq at long wavelengths and c is the velocity of
spin waves and p(q)=g;', exp(iq r) .Also, since the
density is related by a divergence to the displacement
field, m -1/q . A cutoff' in momentum space q, has
been imposed as (3.5) describes the excitations of the bo-
son system only in the long-wavelength limit. The
harmonic-oscillator wave function arising from these spin
waves is of the form

(kz T) 'P(r) =2 lnf (r) .

a
q'LR e"p

,. „.[r, —r, f

(3.7)

SsR(q ~0)=a +bq (3.4)

where a =ao/(1 —ao) and b =a2/(1 —ao). Hence
SsR(q=O)%0 for a quantum bose system described by
(3.2}.

C. Zero-point motion of elementary excitations

The analysis given shows that the Jastrow wave func-
tion with only short-range pair correlations produces a
structure factor that is inconsistent with phonons or spin
waves as the elementary excitations. This points to the
necessity of including the zero-point motion of elementary
excitations in the ground-state wave function. In the
context of He, a scheme to include phonons in the wave
function was suggested by Reatto and Chester. We give
a brief description of their method and apply it to the an-
tiferromagnet in two dimensions.

The Hamiltonian for spin waves described as harmonic
oscillators is usually written in terms of the normal dis-

(The factor of 2 arises because the classical partition
function is related to the square of the wave function. )

Since for most reasonable values of the parameters in
(3.1) the system does not show diagonal LRO, we analyze
the structure factor of a classical liquid interacting with
pair potentials. The structure function can be related to
the Ornstein-Zernike direct correlation function c (q),
which varies on the scale of the pair potential by
S(q) =[1—poc(q)] . Using the rotational and inversion
symmetries of a square, it can be shown that a long wave-
lengths c (q) must be of the form

[poc(q)] '~ao+azq +
as q~O, where po=Xb/A. This implies that the struc-
ture factor is

In Sec. VI we relate a to the spin-wave velocity. We thus
find that the inclusion of the zero-point motion of spin
waves produces long-range pair correlations in the
many-body wave function.

An improved variational ansatz for the ground-state
wave function is to multiply (3.2) and (3.7). The function

f in (3.1) is now approximated by

0, if r=O

fLR(r)= f„ if r=5 (3.8)

otherwise,

Ep =
—,'toqmqN~S(q) . (3.9)

However, by the virial theorem, E is the ground-state
energy =fuu~/2 This show t. hat S(q)-q in the long-
wavelength limit.

A wave function similar to (3.7) was studied by Huse

where a= exp( —a). Both wave functions (3.2) and (3.8)
include only pair correlations; however, in (3.8) in addi-
tion to the short range correlations on the order of a few
lattice spacings, we have included a I/r tail arising from
the zero-point oscillations of the phonons. For the long-
range part, we have approximated

f(r, —r, )=f (~r; —r, ()

on the lattice. We emphasize that the 1/r tail in the
wave function in (3.7) directly implies a linear q depen-
dence in the structure factor. A simple way to see this is
to note that the potential energy E in (3.5) can be related
to the static structure factor

&(q) =( I/& )(p(q)p( —q) )

by
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and Elser with the long-ranged function taken to be of
the form V (r) = exp( —a/r~). Treating P as a variational
parameter they obtained a value of =0.7, which is close
to the value of P=1.0 that we find based on a spin-wave
analysis. The Fourier transform of V(q) in two dimen-
sions V(q)-q ' ~'. Let SsR(q) be the structure factor
in (3.4) of the reference system described by (3.2). The
effect of including V(q) on the structure factor is evalu-
ated within linear response to be

1 1 V(q}
Wq) SsR(q

(3.10)

IV. COMPUTATIONAL METHODS

We see that since SsR(q) ~ const%0 at long wavelengths,

S(q) =2/V(q) -q
as q~0. From the compressibility sum rule, we have
~-S(q)/co(q)-q' ~. Thus for P=1 the system has a
finite spin compressibility. For all other values the sys-
tem is either incompressible a=0 (P(1) or it diverges
(P& 1).

In the following sections, we will present results for the
energy and other correlation functions in states both with
and without spin waves to study the effect of long-range
correlations in the wave function.

to a neighboring site with equal probability. The move is
accepted with probability q given by

VT(R')
q= min 1,

% T(R)

This process is repeated many times to generate a collec-
tion of about 10 configurations. The first few hundred
configurations are discarded as these may be influenced
by the choice of the initial configuration. The equilibrat-
ed configurations are used to calculate various averages
and correlation functions described in Sec. V.

B. Green-function Monte Carlo

The GFMC method is a very accurate method to ob-
tain the ground-state and low-lying excited-state proper-
ties of many-body interacting systems. In the past it has
been applied successfully to the ground-state properties
of helium, both He and He. It has also been used to
study the interacting electron gas and small molecules. '

Green-function Monte Carlo (GFMC) is a general
scheme for finding the largest eigenvalue of an operator.
A trial eigenvector is subjected to a time evolution whose
effect is to enhance those components of the solution with
the larger eigenvalues of the operator. To do this, we
define an iterative procedure to obtain the wave function
at the nth time step, given its value at the preceding time
step by

A. Variational method 4'"'= [1 T(H —w) ]—4'" (4.3)

O'T(R )
P(R) =

gs+T(R)
(4.2)

and IR =r, , r2, . . . , r~ ) is a particular configuration of
b

bosons. P(R) is interpreted as a probability. The opera-
tor 6 in (4.1) can be a diagonal operator, e.g., the poten-
tial energy or the density-density correlation function, or
it can be an off-diagonal operator like the kinetic energy.
The variational principle guarantees an upper bound for
the energy. Notice that the expectation values require an
evaluation of N-dimensional summations. If N is large
(~30), Monte Carlo methods are required for estimat-
ing these summations.

The first step is to generate a collection of boson
configurations that are distributed according to the prob-
ability in (4.2). We use the Metropolis algorithm to gen-
erate the configurations. Starting with an initial
configuration of Nb bosons on the sites of an N =L XL
lattice labeled by I R I, a new configuration R ' is generat-
ed as follows: A boson is picked sequentially and moved

Given a trial wave function for the ground state
+T(R), e.g., the wave function in (3.1} with f defined in
(3.2) or (3.8), the expectation value of an operator in this
state is given

(e),= = yP(R) g (R ~e~R')
(q T)b/eT& +T(R')

T T R R' T

(4.1)

where

where u and r are parameters chosen such that the pro-
jection operator 6 in square brackets satisfies certain
properties to be discussed later. In terms of the exact
eigenstates of the Hamiltonian H~a) =E,~a) (4.3} can
be written as

4'"'= g [1 ~(E —w—)]"~n)(a~4' ') . (4.4)

As the projection operator is applied successively, (4.4)
shows that the ground state starts dominating, and the
excited states decay exponentially if the constants w and
r have been chosen appropriately. As n~~, 4'"' ap-
proaches 40, the exact ground-state wave function, pro-
vided the overlap of the initial trial state 4' ' with the
true ground state is nonzero. The projection operator
must satisfy the following conditions in order to filter out
the excited states after many iterations. (i) The largest ei-
genvalue of 6 corresponding to the ground-state energy
of H must be equal to unity. This implies that m —Ep.
(ii) All the other eigenvalues of G corresponding to the
excited states of H must have absolute values strictly less
than unity. This gives an upper bound on the value of
the time step to be r ~ 2/(Em, „—w), where E,„ is the
maximum eigenvalue. For the Heisenberg model
E,„=NJ corresponding to the maximum potential ener-

gy we therefore choose the "time step" r=1/NJ. If r
does not satisfy these conditions, the excited-state com-
ponents of the initial solution, even if present in very
small amounts, get amplified and eventually dominate the
distribution function.
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It is important to note that the choice of G in (4.3) does
not involve a small time step error. The unique solution
to (4.3) is the exact ground state as long as r is less than
its critical value. For a continuum problem, however, it
would be necessary to modify 6 to either
exp[ —~(H —w)] or [1+~(H+w)] ' since there is no
maximum eigenvalue. Working with the projection
operator in (4.3) for a lattice problem has the obvious ad-
vantage that it is simple to evaluate. It might also be
thought that the method is slow as N~ao since then
~—+0, but as we will show in the following sections, the
computer time per move of a single boson is independent
of N.

to an unoccupied neighboring site. However, if a reason-
ably good guess for the wave function is available, it is
much more efFicient to guide the probability density ac-
cording to this wave function, called a guiding wave func-
tion O'G. Such a procedure leads to a significant reduc-
tion in the variance as first introduced by Kalos' and is
known as importance sampling. The diffusion of random
walks is thus biased, and regions of configuration space
that are deemed "important*' according to the guiding
function are sampled more often. To introduce impor-
tance sampling in (4.5), change the probability density at
the nth time step to F'"'=4'"'%o. Equations (4.5) and
(4.6) are modified to

I Sam.pling the Green function
F'"'(R)= QG(R, R')F'" "(R'),

R'
(4.7)

Green-function Monte Carlo is a stochastic method to
sample the projection operator or Green function in (4.3).
It recasts the eigenvalue problem as a random walk pro-
cess, whereby the mopt probable regions of space are
sampled more often. To see how such a search through
configuration space is achieved effectively using Monte
Carlo methods, rewrite the integral equation (4.3) in the
position basis of the bosons. We then have

4'"'(R)= g G(R, R')4'" "(R'),
R'

(4.5)

where the Green function 6 that propagates a
configuration R ' to R is given by

G(R, R')=(R i[1 r(H —w)]—iR') . (4.6)

The ground-state wave function for a Bose system and
the pro agator G are both non-negative by inspection.
Thus 4 "'(R) can be treated as a probability density We.
begin with a set of configurations distributed according to
4' '(R ') =4T(R '), i.e., the probability of finding a partic-
ular configuration R' at time t =0 is given by some
known trial wave function. Each configuration is treated
as a random walker in configuration space and the total
number of walkers at each time t =n ~ is described as the
population in the nth generation. Our aim now is, given
the initial set of random walkers distributed according to
4' ', to generate the next generation of walkers distribut-
ed according to 4"', where the new generation of walk-
ers is obtained from the preceding generation by evolving
each configuration with the Green function in (4.6). The
propagation of a random walker from a point R' in
configuration space to R involves two basic processes. (a)
Diffusion: These moves are governed by the kinetic ener-
gy operator that hops a boson from one site to another.
(b) Branching: In the course of the random walks if a
configuration evolves into a region with a high potential
energy, such walks are terminated with some probability.
On the other hand, if a starting configuration evolves into
a configuration with a low potential energy, such favor-
able configurations are multiplied.

where the Green function is now given by

G(R,R')=Co(R)(R ~[1 r(H ——w)]~R') 1

G

(4.8)

=P(R,R')m (R,R') . (4.9)

Some of the previous work' has not included importance
sampling in the diffusion of the random walkers leading
to higher variance of the ground-state energy, as will be
discussed in Sec. V.

3. Optimal choice of multiplicity

As seen from (4.9), only the product of the transition
probability and multiplicity is predetermined; we there-
fore invoke an additional requirement to define these
functions. We assume the optimal breakup of 6 into P
and rn is that which leads to the smallest mean-squared
branching t,'(m —(m)) ). Thus from (4.8) and (4.9) we
have for the transition from an old configuration R ' to R,

m (R,R ') =
I 1 a[EL(R ') —w]—I = 1

(4.10)

and

As n ~~, the probability density approaches
F*=4 p% G where 4p is the true ground-state wave func-
tion.

To implement the diffusion and branching processes in
the propagation of the random walks, we write 6 as a
product of a transition probability P(R, R') and a multi-
plicity function m(R, R ). The actual multiplicity is
M = L m (R,R')+g J where L J denotes that the
integer part is to be taken (truncation) and y is a random
variable uniformly distributed in [0,1]. We make M num-
ber of copies of configuration R that become members of
F'"+". If M equals zero, that random walk is discarded.
The average contribution is

G(R, R')= J dyP(R, R') L m (R,R')+y J
p

2. Importance samphng

As described earlier, the dynamics of the Green func-
tion allows each particle to move with equal probability

C(R)I1 r[U(R') —w]I—, if R =R'
P(R,R')= . (4.11)

C(R)(rJ/2)+o(R)/+o(R'), if R =JV(R').
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The constant C(R) is determined by normalizing the
transition probability, i.e., from the condition
gl(P(R, R')=1. In (4.10) EL =H%G/O'G is the local en-

ergy with respect to the guiding function. At the optimal
value of P, the multiplicity rn (R,R ') is found to only de-
pend on the old configuration R'. As the guiding func-
tion approaches the ground-state wave function the mul-
tiplicity approaches unity. In (4.11),

U(R'1 J(R=' z n;n, R'I
&I'j&

is the potential energy in configuration R' and the second
line in (4.11) is obtained from the effect of the kinetic en-
ergy operator in (2.2). The set JV(R') is the "neighbor-
hood" of R' and consists of all those configurations that
can be obtained from R '

by moving any of the bosons by
one site in each of the four directions. Notice that for
R AR, the transition probability is proportional to
%G(R)/+G(R'), which shows that the hopping of a bo-
son is in the most likely direction as determined by the
guiding function.

4. Some technical points

Our sampling of the Green function involves the fol-
lowing specific features.

(i) We start with an initial set of 1000 configurations or
walkers I R

'
J sampled from a distribution F' '(R ')

=%G(R '), where %G is the guiding function.
(ii) For each configuration in the initial generation, we

construct a transition table of the 4Nb+1 possible new
configurations according to (4.11},where Nb is the num-
ber of bosons. We then sample P from this table, which
gives us the boson to be moved and the direction of the
move. After each move, the transition table is updated.
To keep the update process efBcient, the guiding function
must be simple; we use a single-parameter Jastrow func-
tion in (3.2) with f, chosen at the optimal value.

(iii) The multiplicity of a configuration is calculated ac-
cording to (4.10). However, we defer branching until
later. Multiplicities are accumulated for K moves (i.e.,
we obtain a product of multiplicities in the K moves) and
then perform branching on the accumulated weight. The
value of K is chosen such that the rms value of the multi-
plicity is around 2. A larger rms value of the multiplicity
is undesirable, since that implies that one is following
walkers with low weight. On the other hand, too small a
value would result in slower algorithm because of the
overhead involved in branching. We used K=10Nb so
that on average each boson was moved ten times before a
new configuration was generated.

(iv) In (4.11) we sample the number of times the ran-
dom walk will remain at the same position from a Pois-
son distribution as

n =1+ L lny/lnP(R, R') J
An expectation value is then weighted with the number
of times the walk remained at R'. This is a considerable
improvement in the algorithm, since for large N the walk-
ers remain longer and longer at the same position. Then
an off-diagonal move is sampled from (4.11).

(v) The population is defined as the total number of
walkers in a generation, and its growth and decline is
controlled by the constant w. We adjust the value of w

over a sufBciently long period of about 200—300 genera-
tions in order to stabilize the population to within
1000+200. Quite often a small initial sample size or a
poor trial wave function, can lead to a sharp rise or de-
cline in the population, but with some care a constant
population can be quickly achieved.

The iteration of (4.7) is continued for approximately
1000 generations until the required variance is achieved.
The first 200 generations, when the population has not
yet stabilized, are discarded. The list of configurations
obtained after the initial transient period are distributed
according to 40%'6, the product of the desired ground-
state wave function and a known guiding function, and
are used to evaluate the required expectation values dis-
cussed in the next section.

(„)E"=—1— +w.
g & p

(4.12)

This estimate has a larger variance than the mixed esti-
mate described later, however, it provides a useful check
on the algorithm. (If the value of w is adjusted while sta-
bilizing the population, that must be taken into account. }

The second method to calculate the energy is from the
local or mixed estimate. This involves taking the expec-
tation value of an operator between the ground state 40
and a trial state %z. The mixed estimate is defined by

(4.13)

By applying the Hamiltonian to the left on 40, we obtain
the true ground-state energy. In the nth generation, the
mixed estimate is given by

g O'"'H+r gF'"'W'Et ['Pr]
E„+z

y @(n)y y F(n) gr
(4.14}

where the summations are over all configurations,
EL [0 z]=H@rl+r is the local energy of 0'r. The ex-
pression in (4.14) is given for random walks with a guid-
ing function, therefore we also get a weight factor
W(R)=+&(R}/%G(R). While a simple function %G is
used for guiding the walks. a more accurate and compli-
cated function %'z is used to calculate the averages.

C. Ground-state properties

1. Energy

There are two methods of calculating the energy: It
can be obtained from the behavior of the population
P„=gF("'(R; ) as a function of the time step n, where the
summation is over all configurations in the nth genera-
tion and F'"'=4'"'+G. The rise or fall of P„provides a
growth estimate for the energy Eg"' in the nth generation.
From (4.7) and (4.8), it can be shown that
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2. Correlation functions

For a general operator 8, only the mixed estimate can
be obtained by the GFMC method given by

(e,[B[e,)
( )

Note that since the operator is sandwiched between two
different states, and since in general 40 is not an eigen-
state of 6, we have a mixed estimator. The mixed esti-
mate can be corrected to give a true estimate, called the
extrapolated estimate. By assuming that the difference
between the trial function and the ground-state wave
function is small it can be shown' that

(e),=2(e) —(e),+O(e, —e, )',
where the average with respect to V is the variational
Monte Carlo result defined in (4.1). As seen from (4.14),
if a weight factor is included, it is possible to choose the
trial function to be different from the guiding function.
We use a simple guiding function with short-range corre-
lations (3.2) so that the configurations can be generated
efficiently. More complicated wave functions, e.g. , those
described in Sec. III C in Eq. (3.8) are chosen, while
evaluating the correlation functions so as to minimize the
error from the mixed estimator.

The staggered spin operator at a site i is defined by
S;=c;S;. The total staggered magnetization operator is
M =( I/X)g, S, . In the classical Neel state the value of
M=0. 5. However, for an S =

—,
' antiferromagnet the

quantum fluctuations are large and the moment m,
which is the magnitude of the expectation value of the
staggered magnetization, is reduced from its classical
value. A finite value of m would indicate the existence
of antiferromagnetic LRO in the ground state. We would
like to emphasize that this does not contradict the singlet
nature of the ground state. Consider, for example, the
Neel state with the staggered moment m pointing along
the z direction. If we measure the spin-spin correlation
along the z direction it would decay to 0.25, equal to the
square of the staggered moment. As prepared, the corre-
lations along the x and y directions will decay to zero.
Now by applying the rotation operator, the Neel state
can be made rotationally invariant, and therefore a sing-
let. If we now measure the correlations, it will be found
that the correlations along x, y, and z decay to a con-
stant=0. 25/3. Thus it is possible to construct states that
are rotationally invariant and at the same time have a
broken symmetry.

As described earlier, the Jastrow wave function in (3.1)
possess off-diagonal LRO but does not have any diagonal
LRO. This introduces an anisotropy in the correlation
functions. This is of no real consequence since we are in-
terested in the total magnitude of the moment. An alter-
native way to understand this is to assume that the rota-
tional symmetry of the magnet is broken by the applica-
tion of a small symmetry breaking field, and the ampli-
tude of this field is then taken to zero after taking the
infinite "volume" limit. In the experiments on the lan-
thanum and yttrium high-temperature superconducting

compounds in their antiferromagnetic phases, the mo-
ments on the copper sites are observed to lie in the xy
plane. Thus in an experimental system, the rotational
symmetry is automatically broken.

I. Variational results

We start with the trial wave function given in (3.1) and
(3.2) with a single variational parameter f~. The energy
per site as a function of f, is obtained by VMC and is
shown in Fig. 1 for a 12 X 12 system with periodic bound-
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f~
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cI 0.85 0
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0.60
I
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FIG. 1. The energy per site E vs f, for 1V=12X12 obtained
using VMC. The circles (dashed-dotted curve) are ca1culated
using (3.1) and (3.2). The energy of the classical Neel state
E&=0.5J is lowered by approximately 26% at the optimal
value of f, =0.58. The squares (dotted curve) gives the energy
with a second parameter fz, the amplitude at the next neighbor
site, included in (3.2). The effect of long-range correlations in
states (3.1) and (3.8) is seen from the triangles (a=1) and dia-
monds (a=2), where a is related to the coefficient of the 1/r
term.

V. RKSUI.TS

A. Energy

The classical Neel state with an energy per site
EN= —0.5J contributes approximately 4 of the ground-
state energy of the Heisenberg Hamiltonian. We next
calculate the additional 25% contribution denoted by b,E
by variational Monte Carlo (VMC) and by Green func-
tion Monte Carlo (GFMC). The total ground-state ener-

gy per site is then E0 =E~+hE.
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ary conditions. As mentioned previously, the classical
Neel state in the xy plane is obtained for f, =1.0. The
effect of reducing the variational parameter from unity is
to introduce pair correlations in the wave function. The
energy is the thereby lowered by almost 25% from Ett; at
the optimal value of f, =0.58, the energy is

b E/J = —0.1481+0.0004

or

Er"/J= —0.6481+0.0004 (N=12X12) .

i2 8
-0.64

-0.66

6
II
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I

& I par. YMC
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We next introduce a second parameter in (3.2), by
defining f (r; —

r~ ) =f2 for j on the next neighbor sites
along the diagonals with respect to i. The optimal values
of the parameters in this two-parameter space are
f, =0.5 and f2 =0.85. The energy is now lower than the
energy obtained with a single parameter by a few percent.
It may seem that by introducing more variational param-
eters we may eventually get a very good estimate for the
energy. However, there are two problems: (i}The search
through a multidimensional parameter space very quickly
becomes rather involved and it becomes necessary to use
steepest descent methods to minimize such a function.
(ii} More importantly, as we will see frotn our GFMC
analysis, it is quite unnecessary to put in more parame-
ters, because the GFMC method gives a very accurate en-

ergy even when the trial function is a Neel state.
It was argued'3' that the energy per site must scale asL, where L is one edge of the lattice. The variational

estimates of the energy for both one- and two-parameter
wave functions are shown in Fig. 2 for lattice sizes up to
N=12X12. When extrapolated to the infinite system,
the energy per site for short-range Jastrow functions with
one variational parameter is

E~"/J = —0.6474+0.0003

and with two parameters

-0.66

-0.70

0.000 0.005 0.010
1/L'

0.015 0.020

FIG. 2. The ground-state energy per site E as a function of
I. '. The squares are the VMC results at the optimal value of
f~ and with f2 = 1.0, i.e., with only a single variational parame-
ter. The triangles are evaluated at the optimal values off, and

f2 by VMC. The circles are obtained by the GFMC method us-

ing (3.2) as the initial and the guiding wave function. The
GFMC results are, however, insensitive to the choice of both
these functions as discussed in the text. The extrapolated excess
energy E —0.5J obtained by the GFMC method is lower than
the one-parameter result by = 13%.

Er '/J = —0.6559+0.0002 .

There is one curious fact about the size dependence of
the energy: As one goes to a larger system the energy per
site increases. One might expect the opposite trend be-
cause it could be argued that the exact wave function for
a 4X4 system can be treated as a variational wave func-
tion for an 8 X 8 system and therefore the exact energy of
the SX8 system must be lower than the 4X4 system.
This reasoning is not correct because of periodic bound-
ary conditions. By introducing extra bonds at the boun-
daries, the potential energy is increased and that leads to
a net increase in the energy per site as the system size is
increased. We solved, analytically, a simpler problem of
4, 6, and 8 sites in one dimension with periodic and Sxed
boundary conditions and 6nd that the exact result
E0= —0.443J is approached from above with Sxed
boundary conditions and from below with periodic
boundary conditions.

2. Egect of long range correlatio-ns

Next let us include long-range correlations in the wave
function and see its e8ect on the energy. There are now
basically two parameters as seen from (3.8): f, charac-
terizes the depletion of probability from regions where
two bosons are on adjacent sites and a is related to the
coefficient of the 1/r correlation in the wave function.
The energy as a function of these variational parameters
is shown in Fig. 1. Notice a considerable reduction in the
one-parameter variational estimate of the energy by
=7% obtained upon including the long-range part in the
wave function. As discussed in the Appendix, we use the
Ewald summation technique to treat the long-range term.
This involves starting with the integral representation of
the 1/r term and dividing it into parts: The short-
distance part is treated in real space, whereas the long-
distance part is written in terms of small momentum con-
tributions and treated in k space. These two regions are
separated by a cutofF k, chosen such that the contribu-
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tion in real space is small at the edge of the cell. The en-

ergy is not a strong function of k„provided the
aforementioned condition is satisfied.

3. GFMC results

In Fig. 2, the GFMC results are presented for the ener-

gy of lattice sizes up to 12X12 with periodic boundary
conditions. The scaling behavior of the energy versus
L, fits very well and the extrapolated value of the ener-

gy is found to be

Eo/J = —0.669220.0002 . (5.1)

If J =0.2 eV, an accuracy of 10 corresponds to 0.1 K.
The excess energy obtained by the GFMC method is

significantly lower by =13% than the one-parameter
variational estimate of the energy. It is important to note
that if we were to compare the total energy with the Neel
state contribution EN included in it, we would come to
the conclusion that the GFMC result differed from the
variational energy by only =3%. However, since there is
a large background term in the energy from the Neel
state it is much more meaningful to compare the excess
energy. The GFMC estimate is also lower than the two-
parameter variational energy by almost 7%.

In Table I, we show the values for the ground-state en-

ergy obtained by a simple variational calculation using a
one-parameter Jastrow wave function and contrast it
with the dramatic improvement found by the GFMC
method for lattice sizes up to 12 X 12. In the last column
we give the results of Gross et al., ' obtained by a projec-
tion method similar to the GFMC method, and find that
our results are consistently lower for all the lattices stud-
ied. There importance sampling has not been used,
which can lead to big fluctuations in the energies of the
different random walkers and it is possible that these fluc-
tuations have not been fully accounted for. As discussed
in Sec. VII, correlation between the data points, in gen-
eral, leads to an underestimate of the error bars. Barnes

et al. ' have also used a random walk method to calculate
ground-state energies. In their method the weights for
each configuration are accumulated for successive time
steps without branching. This approach carries along un-
favorable configurations with weights close to zero and
can give poor statistics.

We find that while the variational estimates of the en-

ergy are greatly affected by the inclusion of long-range
correlations in the wave function, the energy obtained by
the GFMC method is independent of the wave function.
In other words, the mixed estimator in (4.14) for the ener-

gy reported in the fourth column of Table I is indepen-
dent of whether (3.2) or (3.8) is used for f in the wave
function (3.1). This is because the energy is sensitive only
to short-range correlations in the wave function that are
accurately obtained when the GFMC method is used to
project out the excited states in the trial wave function.

In Table II, we compare our results with other
methods that give estimates for the ground-state energy.
To make meaningful comparison we look at the excess
over the Neel state energy. Spin-wave theory gives

Esp /J = —2S ( 1+0. 158/S) =0.658

for S =
—,', which is about 7% higher than the GFMC

value. The variational energies with short-range trial
functions are about 10—15% higher than our GFMC es-
timate in (5.1) and by allowing for some additional free-
dom via long-range trial functions of the form (3.7), the
energy can be brought to within 3% of the GFMC result.
Resonating-valence-bond (RVB) wave functions give
surprisingly good energies; though the dimer states are
about 40% higher, including just short rang-e singlet
bonds brings the energy to within 3% of the GFMC re-
sult. Even though the energy using Jastrow states with
long-range correlations and RVB states with short-range
dimer bonds are very close, the sublattice magnetization
in these states is markedly different —from being around
0.33 in the Jastrow states to 0 in these RVB states (see

TABLE I. Ground-state energy per site EoiJ obtained by variational Monte Carlo using trial wave
functions with short-range (SR) correlations (one and two parameters) [Eqs. (3.1) and (3.2)] and with
long-range (LR) correlations [Eq. (3.7)]. Also calculated are the energies by the Green function Monte
Carlo method using the wave function in Eq. (3.2) as the initial trial and guiding state. For comparison
we give the results of Ref. 13 obtained by a projector method without importance sampling.

Size

4x4

6x6

8x8

12x12

VMC (SR)
one parameter

—0.6911
+0.0002
—0.6619
+0.0008
—0.6536
+0.0005
—0.6481
+0.0004
—0.6474
+0.0003

VMC (SR)
two parameter

—0.6921
+0.0002
—0.6663
+0.0007
—0.6608
+0.0003
—0.6566
+0.0004
—0.6559
+0.0002

VMC (LR)

—0.6690
+0.0006
—0.6640
+0.0003
—0.6598

0.0004
—0.6590

0.0004

GFMC

—0.7017
+0.0002
—0.6789
+0.0001
—0.6734
+0.0005
—0.6702
+0.0006
—0.6692
+0.0002

Reference 13

—0.70178
+0.00009
—0.6780
+0.00005
—0.6715
+0.0004
—0.6670
+0.0007
—0.6672
+0.0008
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TABLE II. Comparison of the ground-state energy per site Eo of the Heisenberg quantum antifer-
romagnet calculated by different methods. The last column gives the difference of the excess energy

Eo E—N with respect to the GFMC result in Eq. (5.1). [E~= —0.5J is the energy in the classical Neel
state. ] WF denotes wave function.

Method

Spin-wave theory, see Anderson'
Perturbation around Ising limit, see Singh

Variational short range Jastrow WF
Huse-Elser' [f, -0.58]
Present work [f, -0.58]
Huse-Elser' [f„f„f,]
Present work [f, -0.5,f, -0.85]

Variational long-range WF [V(r) =a/r ]
Huse-Elser' [f, -0.27, a-0.95, P-0.7]
Present work [f, -0.6, a-l, P=1.0]

Variational-Gutzwiller WF
Yoko yama-Shiba

Variational RVB WF
Liang, Doucot, and Anderson'
dimmer
short-range RVB
long-range RVB

Finite-temperature Monte Carlo
Reger, Riera, and Young'

Projector method
Barnes, Kotchan, and Swansong

Gros, Sanchez, and Siggia"
Carlson'
Present Work (see also Trivedi and Ceperley)'

Eo/J
—0.658
—0.6696+0.0003

—0.644
—0.6474+0.0003
—0.6550
—0.6559+0.0002

—0.6638
—0.6590+0.0004

—0.642+0.002

—0.604
—0.6650
—0.6688+0.0004

—0.670+0.0005

—0.669+0.001
—0.6662+0.0005
—0.6692+0.0001
—0.6692+0.0002

6Ep(% )

+6.6

+ 14.9
+ 12.9
+8.4
+7.9

+3.2
+6.0

+ 16.1

+38.5
+2.5

0.3

—0.5

—2.1

+ 1.8

'Reference 32.
Reference 15.

"Reference 9.
Reference 10.

'Reference 11.
'Reference 42.
~Reference 17. This is an improvement on a previous estimate of —0.672+0.001 given in Ref. 17.
"Reference 13. We obtain this value by a least-squares fit to the energy of 6X6, 8 X 8, and 12 X 12 lat-
tices reported in Ref. 13, which differs from their extrapolated value of —0.6672+0.0008.
'Reference 18.
"Reference 20.

Table IV). Thus states with and without LRO can have
energies that are very close. Upon including long-range
bonds the energy is only 0.3% higher than GFMC how-
ever, m =0.23, which is lower than the accepted value
of =0.3. The finite-temperature Monte Carlo appears to
give energies that are about 0.5% lower than the GFMC
results. Our results agree well with the series estimate
obtained by keeping terms up to (J„~/J, ) (Ref. 10) in the
perturbation around the Ising limit. It is also heartening
to see that the results for the energy of Carlson' ob-
tained by a GFMC calculation using trial wave functions
in Ref. 9 are identical to ours. However, since he has a
lower value for the exponent of the long-range correla-
tions, he finds a higher sublattice magnetization.

4. GFMC on classical Keel trial state

Thus it is clear that by a judicious choice of the varia-
tional wave function, a very good estimate of the
ground-state energy can be obtained. We next want to
explore the efBciency of the GFMC method by using the
simplest possible state, the classical Neel state, as the
guiding function. We iterate (4.7) approximately 1000
times with O'G equal to the Neel state and obtain a
ground-state energy for an 8 X 8 system to be
—0.669+0.004. This agrees with the result obtained
with an optimized wave function of —0.6734+0.0005
that includes short-range pair correlations, i.e., (3.2) with
the optimal value of f, . Notice that for the same number
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of iterations, the error bars in the former case are larger,
as expected. This study in fact points to a great strength
of the GFMC method, i.e., to obtain the ground-state en-

ergy even a very simple wave function is suScient, pro-
vided it has a nonzero overlap with the ground state.
This is true since the Neel state, written in the boson
language is nodeless.

B. Correlation functions

We can define the off-diagonal correlation function be-
tween the bosons, which is a measure of the amplitude of
a boson to hop from a site i to a site i + I by

1

v'2

2
v'5

2v'2

GFMC

—0.1177+0.0018
0.0710+0.0021
0.0710+0.0023

—0.0660+0.0019
0.0591+0.0022

Exact

—0.117
0.071
0.071

—0.0675
0.06

TABLE III. Spin-spin correlation function {S S +I ) for a
4X4 lattice. Comparison of results obtained by GFMC method
using the short-range trial and guiding functions in Eq. (3.2)
with exact diagonalization results (Ref. 8).

h (I)=—g (b; b;+I ) .
l

Equation (5.2) is equivalent to

(1jN) g (S";S;+I+S«S +I),

(5.2)
though the walks are guided by (3.2), which is not a sing-
let {the correlation functions along x, y, and z are not
equal}, after projecting out the excited states the GFMC
method is able to achieve equal correlation along all
directions. This is seen from Fig. 3, where II (I)=2g(l).
For larger systems the computer time needed to restore
this symmetry becomes prohibitive.

the spin-spin correlations in the xy plane. We also study
the diagonal correlation function defined by

g(l)= —g (n,.n, +)I——,
l

(5.3)

the density response of the bose system. Equivalently

g {I) =( I/X) g (S;5;,)

is the correlation function of the staggered z component
of the spin.

1. Comparison with exact diagonalization results

The correlation functions h (I) and g (I) obtained by
GFMC for a 4X4 system are shown in Fig. 3 and Table
III and compared with the exact diagonalization values.
There is excellent agreement with exact results. Even

2. Og diagonal correlations

As mentioned previously, the GFMC results are ob-
tained for a random walk guided by the wave function in
(3.2), which has all the staggered moment tipped in the xy
plane. This introduces a symmetry breaking field that
leads to anisotropy between II (I) and g (I) for large lat-
tices. The results for h (I) are given in Fig. 4 for a lattice
size 8 X 8. The wave functions used are (3.1}and (3.2) and
the VMC result is calculated using (4.1). For the GFMC
result, the mixed estimate is found from (4.15) also with a
short-range function in (3.2). The solid line in Fig. 4 is
the corrected or extrapolated GFMC result obtained as
explained in Sec. IV C. Over a very short distance of the
order of the lattice spacing, h (I) decays to a nonzero con-

N= axe
0.3 '

~ I
l

\
'I

1

GFMC
0 EXACT

0.2

0.1

I
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I

1
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4.0
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0.5
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$.0
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I
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FIG. 3. Comparison of correlation functions for a 4X4 sys-
tem obtained by the GFMC method and by exact diagonaliza-
tion (Ref. 8). The off-diagonal correlation h (l) is shown by tri-
angles (GFMC) and circles (exact) and the diagonal correlation
g(l) is shown by diamonds (GFMC) and squares (exact). The
error bars are of the size of the symbols.

FIG. 4. The off-diagonal correlations h(l) for an 8XS sys-
tern. The dashed curve is the result of a VMC calculation in
states (3.2). The solid curve is the extrapolated GFMC result
with the mixed average in (4.15) obtained using the trial func-
tion (3.2). The GFMC method tends to lo~er the magnetization
in the xy plane compared to the VMC result and also introduces
angular dependence in h (l). The error bars are of the size of
the symbols.
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stant. For noninteraction bosons It (1)=(Nb/N) =0.25
at large l; the reduction seen in the figure is a measure of
the depletion of the condensate because of repulsive in-
teraction between the bosons. The GFMC value for h (I)
at large distances is lower than the VMC by about 13%.
This shows that in the ground state the bosons experience
enhanced repulsive interactions compared to the Jastrow
wave function (3.2). Alternatively, the ground state can
be viewed as including additional quantum fiuctuations
that leads to a reduction of the staggered magnetization
in the xy plane that is reflected in the difference between
the VMC and GFMC results.

It is interesting to note that while the VMC result for
h (I) is rather featureless, the GFMC result shows wiggles
as a function of the distance. This is due to the fact that
the spin-spin correlation function between two sites i and

j depends not only on the distance between these sites,
but also on the direction.

Using the same set of configurations generated by the
guiding function (3.2},we evaluate the mixed estimator in
(4.15} with a long-ranged trial function (3.8). The effect
of such long-range correlations in the wave functions is
twofold: First, the difference between the VMC and
GFMC method in h (I) is smaller than shown in Fig. 4
and second, we find that spin waves lower the staggered
moment further compared to the GFMC result in wave
functions with only short-range correlations, as would
have been expected. These indicate that (3.8) is perhaps
closer to the ground state than (3.2)

3. Diagonal correlations

The behavior of g(l) for two different lattice sizes is
shown in Fig. 5 and is seen to decay almost to zero at
large distances, showing a lack of diagonal LRO. The
GFMC tends to reduce the staggered moment along xy,
but increase the moment along z (compare Figs. 4 and 5).

The GFMC is attempting to obtain a singlet ground state
with h (1)=2g(l), however, it is unable to do that since
the rotational symmetry has been broken by the guiding
wave function. Once again, similar to the behavior of
It (I), the inclusion of the zero-point motion of spin waves
shows g {I) decaying to a smaller constant, implying that
the moment in the z direction is reduced.

0.50
l2

I

6
I

0.45

0.40

E 0.35

4. Staggered magnetization

At large distances h (I) decays to the staggered magne-
tization in the xy plane defined as (m„) +(m ) . The
function g(1), on the other hand decays to (rn, ) . Thus
from the long-distance behavior of (5.2) and (5.3) we ob-
tain the value of the staggered moment (m ) . The scal-
ing of the staggered moment, extracted from the correla-
tion functions, is depicted in Fig. 6. %e compare in this
figure, the VMC and corrected GFMC results for a trial
function with only short-range correlations as in {3.2).

0.12

~ GFMC (N = l2 x12)

GFMC (N = 8 x 8)
VMC (N = 8x 8)

0.30—
VMC SR

GFIVIC SR

o GFMC LR

0.25
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O-.~ p
0.20

0.0
I

0.1
I

0.2

0.00 I
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~~
4.0 6.0 8.0 10.0

FIG. 5. The extrapolated GFMC results for g (1),using states
(3.2) in the mixed estimator, is shown for two lattice sizes:
N =12X 12 (solid circles) and N =8X8 (open circles). The tri-
angles show the VMC results for an 8 X 8 system. In contrast to
Fig. 4, the GFMC method tends to increase the moment along z
compared to the VMC result. The wave function in (3.1) has all
the magnetization in the xy plane, so g(1) rapidly decreases to
zero as the lattice size is increased.

FIG. 6. The staggered magnetization m vs 1/L evaluated at
(L/2, L/2) for two different trial functions. (In the classical
Neel state m =0.5). (i) Short-range (SR) trial function Eq.
(3.2): The extrapolated GFMC estimate is shown by the squares
and the VMC estimate is shown by the triangles. The dashed
line is a least-squares fit to the squares and extrapolates to 0.37
for the infinite lattice. (ii) Long-range (LR) trial function Eq.
(3.8): The GFMC estimate is sho~n by circles. The variational
estimate (not shown) is within a few percent of the GFMC esti-
mate. The solid line is a least-squares fit to the circles and ex-
trapolates to 0.31 for the in6nite lattice.
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The value of m extra olated to the infinite lattice ob-
tained by GFMC is m =0.37, which is about 8% lower
from the variational results. We also give the corrected
GFMC results for m for the long-range trial function in
(3.8). We find

m =0.31+0.02, (5.4)

which is lower than the GFMC estimate with short-range
trial functions by =19%. This result is consistent with
spin wave and finite-temperature Monte Carlo' of
m~=0. 30. It also agrees with neutron scattering experi-
ments' on pure LazCu04 that show evidence for a two-
dirnensional antiferromagnetic ordering of the spins on
the copper atoms at low temperatures, stabilized by the
inter-planar coupling. The moment' is found to be point-
ing along the diagonals of the square lattice and have a
magnitude of about 0.25+0.08.

f "
d n n»(q, ~)=Neq I Tk I /2 . (6.5)

At long wavelengths, the collective excitations exhaust
the sum rule and the single quasiparticle-quasihole excita-
tions and multipair excitations do not have much oscilla-
tor strength. We then obtain the well-known Feynman-
Bijl formula~ ' from (6.5) by writing $(q, co)-5(m —coq),
given by

(6.6)

where Tk = —0.5 is the kinetic energy per site in units of
J and is related to the off-diagonal correlation function at
the nearest-neighbor site h (1)=—Tk/2. It can also be
shown, by inserting exact eigenstates of the Hamiltonian
in the left-hand side (LHS) of (6.4) and comparing with
the usual definition of the structure factor in (6.1), the f
sum rule is modified on a lattice to

VI. SPIN-WAVE VELOCITY

The spin-wave velocity can be obtained from the scal-
ing of the ground-state energy as a function of the system
size from the relation

Eo(L ) /N =Eo /N —1.4372Ac /L

From Fig. 2, we obtain a slope of 2.0806+0.02, which im-
plies that A'c =(1.45+0.01)Ja. If we define Z, —=c/c, to
be the renormalization of the spin-wave velocity by quan-
tum fluctuations, where A'c, =&2Ja is the classical spin-
wave velocity, we get Z, =1.024+0.007.

It is also possible to get an estimate of the spin-wave
velocity from the structure factor in the ground state by
using the f-sum rule, as we describe later. The structure
factor is the Fourier transform of g (l) and is given by

Thus from the behavior of the structure factor at small q
it is possible to understand the nature of the excitation
spectrum. In the continuum (6.6) reduces to the usual ex-
pression without the kinetic energy factor.

In Fig. 7 we show the structure factor for a 12 X 12 sys-
tem along [10] obtained by calculating the extrapolated
estimator by the GFMC method using trial functions
that have both short- and long-range correlations. It can
be clearly seen that S(q) is linear in the long wavelength
region only in the presence of long-range correlations.
We have used a maximum ouerlap method to obtain the
parameters in the trial function. The basic idea is to min-
imize the difference between the variational results and
the mixed estimate from the GFMC method. In other

S(q) = (S*(q)S'(—q) ) .
1

Nb
(6.1)

0.5

In the case of antiferromagnetic LRO along z there is a 5
function peak at qo=(qr, qr). From (6.1), it can be seen
that 1—:S(qo) = (M, ). We digress to derive the f-sum
rule on the lattice as it involves some modifications of its
counterpart in the continuum. We start by considering
the commutator of the Hamiltoman in (2.2) with p(q). It
can be shown that

0.4

03

0.2

and

[H,p(q)]= g bq+qbg(Eq+q —Eg)
k

(6.2)

0,1

GFMC

SR (N = l2 x12)
LR (N= 8x8)

o LR(N= l2xl2)

[[H,p(q) ],p( —q) ]= g n z(2sz —sz+ q
—e„

k

(6.3) "0.0
I

1.0
I

2.0

qa IIOj

I

3.0

( [[H,p( q) ],p( —q) ] ) = Neq I Tk I
~—

We have used

g cos(k 5)(nz) = NTk/2, —
k

(6.4)

where p(q)=g&b&+qb& and E&=J+s [1—cos(k 5)] for
the free particle energy on a lattice and the sum is over
the nearest-neighbor sites along +x and +y. If we take
the expected value of (6.3) in the ground state, we find

FIG. 7. Structure factor along [10] obtained by the GFMC
method. (i) (q) for a 12X12 lattice (triangles) calculated with
a short-range trial function. Note that it incorrectly goes to a
nonzero value at small q. (ii) 4'(q) for a 8X8 lattice (squares)
and for a 12X 12 lattice (circles) with long-range trial function.
The spin-wave velocity is extracted from the linear dependence
at small q. There are important and noticeable differences at
small q between (i) and (ii), whereas at large q all the curves
merge, since the short-range correlations are the same.
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z, —=—'= q'
ITI, I,

c, 2&24(q}
(6.7)

words, we have not used the values of the parameters, f,
and a in (3.8) that minimize the energy, instead we have
used the criteria that the best parameters for the struc-
ture function are those that minimize that dift'erence be-
tween the variational and the inixed estimates of S(q),
since the energy is not really sensitive to the long-range
structure in the wave function. In this way we maximize
the overlap between the variational and the ground-state
wave function.

From (6.6), given the dispersion on the lattice at long
wavelengths, the spin-wave velocity is given by

O'
c= 0.6
CT

"0.0
I

0.5
I

1.0
I

1.5
i

2.0

qa [io]

I

2.5
I

3.0

GFMC

O SP (N = 8x8)
o SR (N = 12xl2)
~ LR (N = Sx8)
0 LR (N= l2 x l2)

3.5

where

Pic, =2(1—
ys )'~ /(qa)-~2Ja

is the classical spin-wave velocity and

y =(—,')[ cos(q„a)+ cos(q~a)] .

We obtain a value for Z, = l. 14+0.05. This is a measure
of the renormalization of the spin-wave velocity caused
by quantum fluctuations and can be compared with the
spin-wave analysis around the classical Neel state,
which evaluates the first correction of order I /S, and
finds Z, =1.158.

In the preceding analysis, we have obtained the spin-
wave velocity from the long-wavelength behavior of the
structure factor. It is also interesting to relate a, the
coefficient of the 1/r term in the wave function in (3.7), to
the velocity. Then by using the optimal a that minimizes
the energy, a value for e can be obtained by a variational
calculation. As discussed in Sec. III, within linear
response 1/S(q) = V(q)/2 at long wavelengths since
Ss„(q)~ const%0 from Fig. 7 as q~0. Now substitute
for S(q) from (6.6) and use V(q) =2tra/q in two dimen-
sions to obtain

A'e = Ja .
2

(6.8)

At the optimal value of a=2 from Fig. 1, Z, =1.1 from
(6.8), which implies a =10% renormalization of the
spin-wave velocity. In an independent spin-wave
analysis, Manousakis has found that V(r)=412/(mr).
for larger r, so that he has a parameter-free wave func-
tion. His wave function contains the symmetry of the lat-
tice, however, by not allowing for a free parameter, the
spin-wave velocity has its classical value.

A direct value of the spin-wave velocity can be ob-
tained by the GFMC method by finding the di8'erence of
the energy of the excited state at a finite value of the wave
vector and the ground state. If we take a trial function
%,„=p(q)%o, as a product of the density operator and the
ground-state wave function, using the GFMC method it
is possible to project onto the subspace with a nonzero q,
and thereby obtain the excited-state energy. Such a
method should give a very accurate value of the excited-
state energy and the spin wave velocity.

It is also instructive to study the long-wavelength be-
havior of the momentum distribution function, which is

FIG. 8. Momentum distribution function q [n (q) —n (0}]vs

qa along [10] obtained by extrapolated GFMC results. The
short-range (SR) trial function in (3.2) give open squares
(N=8X8) and open circles (N=12X12). The long-range (LR)
trial function in (3.8) give solid squares (N = 8 X 8) and solid cir-
cles (N = 12 X 12). As q ~0, it approaches a constant related to
the spin-wave velocity.

the Fourier transform of h (I) given by

& b'(q}b(-q}&,
1

Nb
(6.9)

VII. SOURCES OF ERROR

For the Green-function Monte Carlo calculation per-
formed here, we can identify basically four sources of er-
ror.

Statistical error: In calculating any quantity of in-
terest, one necessarily has a finite set of configurations.
In general, since the configurations tend to be correlated,
the naive variance of the energy E given by
Vi =((E—Eo) ), where Eo is the ground-state energy,
wi11 underestimate the true variance. To see this, con-
sider the extreme limit when a11 the data are identical, a
case of perfect correlation, which will indeed produce a
zero variance. Correlation between the configurations
can arise from branching and also because successive
states are close together.

A simple way to estimate the error bars when the data
is correlated, is to divide the total random walk into a

where 5n(q)=n(q} —n(0}. The presence of a conden-
sate fraction or equivalently, a staggered magnetization
in the xy plane, is indicated by a peak in the zero momen-
tum state. At long wavelengths it can be shown by using
sum rules 7 that 5n (q)-1/q and the prefactor are relat-
ed to the condensate fraction and the spin-wave velocity.
Once again, it is seen from Fig. 8, that the correct behav-
ior is found only when long-range trial functions are used
to calculate the momentum distribution function. For
short-range trial functions, we get an incorrect result of
5n(q}-1/q . Thus from the requirement that certain
sum rules be obeyed, we find that the ground-state wave
function must have long-range pair correlations of the
form given in (3.8).
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number of separate "blocks"; in our case we used approx-
imately ten blocks each containing about 100 generations.
The basic criteria is that the length of the blocks be
longer than the correlation times, in which case the block
average can be assumed to be an independent random
variable. We then determine the standard deviation from
the dispersion of the block averages. If the length of the
blocks is indeed longer than the correlation time, the er-
ror bars will not change if the block size is varied.

Error from use of mixed estimator: As discussed in
Sec. IV, in the GFMC method one can naturally obtain
the mixed estimator, i.e., the expectation value of any
operator 8 sandwiched between the true ground-state
wave function and some trial wave function. (For the
special case of 8=H, there is no error from the mixed es-
timator. ) There are two possible ways to obtain the true
estimate: one is to maximize the overlap between the
ground-state wave function and the trial state by varying
the parameters in the latter state, as we have done for the
structure factor in Sec. VI. Another possibility is to as-
sume that the true wave function is close to the variation-
al wave function, and by a perturbation expansion obtain
an extrapolated estimate as we have done for the spin-
spin correlation functions. Though the above-mentioned
schemes are possible ways to improve the estimate, the
mixed estimator nevertheless remains a source of error.
A different algorithm exists where one removes the
effect of the trial function on the expectation value by us-

ing the asymptotic branching of a given configuration. It
involves the filtering of both bra and ket in any expecta-
tion value.

Convergence error: If the trial function is in the right
phase, the effect of a convergence error is fairly well con-
trolled since one can vary the equilibration time (the
number of walkers discarded before computing averages)
until the averages are independent of the equilibration.
The better the trial function, the shorter the convergence
time. However, if the trial function is not chosen in the
right phase the averages will show large fluctuations and
after many iterations it might incorrectly appear that the
system has reached "equilibrium. " A long equilibration
time should be used as an indicator for more thought and
improvement of the trial function.

Finite system error: We have accounted for finite-size
eff'ects by scaling. The energy per site E/N-L and
the staggered magnetization m -I ' in agreement with
spin-wave theory. However, in case the number of data
points is small and an incorrect scaling behavior is as-
sumed, the error from finite-size effects is important.
Also, certain physical effects that appear on very long
length scales (e.g., spiral phases with a long pitch) may be
missed if the lattice size is too small.

VIII. CONCLUSIONS

in the method and to understand its strengths and
weaknesses. This should then allow us to use the GFMC
method in more complicated problems. If we compare
our GFMC (GF) results with spin-wave (SW) theory—
ground-state energy Eo„/J = —0.6692+0.0002 and

Esw /J = —0.658; staggered magnetization m &F= —0.31+0.02 and m &w
= —0.303; and renormalization

of the spin-wave velocity Z, "=1.14+0.05 and

Z, =1.158 we conclude that the two-dimensional S =
—,
'

Heisenberg antiferromagnet is surprisingly well described
by lowest-order spin-wave theory. (For a comparison of
our GFMC results with other numerical techniques, see
Tables II and IV.) We also emphasized the importance of
including the zero-point motion of the spin waves in the
ground state and showed that it altered the approach of
the wave function to its asymptotic behavior. This was
found to be crucial in obtaining the correct long-
wavelength properties of the correlation functions con-
sistent with sum rules.

0.303Spin-wave theory'
Series x =(Jxy/Jz)

Terms up to x
Terms up to x '

Variational
Jastrow WF, short range

Huse-Elser'
Present work

Jastrow WF, long range
H use-Elser
Present work

Gutzwiller related WF
RVB WF'

short-range bonds
long-range bonds

Finite-temperature Monte Carlo
Reger- Young'
Reger, Riera, and Young
Gros, Sanchez, and Siggia"
Tang and Hirsch'

Projector
Carlson"
Present work (see also Trivedi and Ceperley)"
short-range importance fn.
long-range importance fn.

0.32
0.3025+0.008

0.42
0.40+0.02

0.36
0.32+0.02
0.43

0.0
0.23

0.31
0.308+0.015
0.285+0.025
0.25

0.34+0.01

0.37+0.02
0.31+0.02

TABLE IV. Comparison of the staggered magnetization m

for the Heisenberg AFM in two dimensions calculated by
diferent methods. The values are given in units in which the
Neel state staggered moment is 0.5.

Method

In this paper we have studied the S =
—,
' Heisenberg an-

tiferromagnet by the Green-function Monte Carlo
method. We had two aims: first, to calculate various
ground-state and low-lying excited-state properties and
second, from a comparison of the results with other
methods reported in the literature, to develop confidence

'Reference 32.
References 14 and 15.

'Reference 9.
Reference 10.

'Reference 11.
Reference 12.

Reference 42
"Reference 13
'Reference 43
'Reference 18.
"Reference 20.
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In our analysis we used the interesting analogy between
two-dimensional bosons and the Heisenberg model.
From the rotational symmetry of the magnetization (sing-
let) and the result that the ground state has antiferromag-
netic long-range order, we conclude that the boson model
has both momentum condensation (off-diagonal long-
range order) and infinite range density waves (diagonal
long-range order), i.e., it is a "supersolid. " On the oth-
er hand, our trial function does not have diagonal long-
range order and is therefore not a singlet. We are
currently exploring a modified form of the trial function
with all the known symmetry properties of the ground
state.

As summarized in the Introduction, the GFMC
method has several attractive features. It can handle
larger lattices are certainly feasible), as opposed to exact
diagonalization methods that are limited to 4 X4 lattices
because of memory considerations. This method is well
suited to studying the ground-state and low-lying
excited-state properties and is thus complementary to the
finite-temperature path integral quantum Monte Carlo
techniques. The GFMC method goes beyond variational
methods by projecting out of a trial state its component
in the ground state. For bosons (e.g., the Heisenberg
Hamiltonian), the GFMC method gives the exact
ground-state energy with only statistical errors. It is also
possible to evaluate the overlap of the variational and the
true ground-state wave function. This information can
then be used as a feedback to improve the trial wave
functions. One disadvantage, at least at this point, is that
except for the energy, the GFMC method gives mixed es-
timators so that for correlation functions there is a
definite bias from the wave function used. It would be
better if the true estimate were obtained directly.

For the future we are attempting a GFMC calculation
for strongly correlated fermionic systems. It would also
be interesting to study the S =

—,
' spin models with frustra-

tion. For these models, it is well known that the finite-
temperature methods have "sign problems, " i.e., the
Monte Carlo weights can become negative at low temper-
atures. This limits calculations for the Hubbard model at
finite doping to a temperature roughly T= t/5, where t is
the hopping energy. The GFMC method for fermions is
also more difficult than its bose counterpart discussed
earlier because of the lack of knowledge of the nodes of
the many-body wave function. However, it is possible to
ealeulate properties of interest within a fixed node ap-
proximation, ' which gives an upper bound on the
ground-state energy (in continuum problems). This is
similar in spirit to the variational method and is therefore
well controlled, but has not yet been applied to fermion
lattice models.

dation —Department of Materials Research (NSR-DMR)
under Grant No. NSF-DMR88-08126 and by a grant of
computer time on the CRAY XMP/48 at the National
Center for Supercomputing Applications at the Universi-
ty of Illinois.

APPENDIX: K%'ALD SUMMATION METHOD
TO HANDLE LONG-RANGE CORRELATIONS

—Z I dk exp( —krlr+Ll )r+L ir „o (A 1)

where r lies within a cell. The integral in (Al) is divided
into two parts by a cutoff k, and it can be shown that the
second part of the integral is related to the error function
by

f„= erfc(k, lr+Ll ) .
2 r+L

For the first part of the integral, define a function

(A2)

p(r) y &
—k (r+L) y p ik r

L K
(A3)

Note that P(r) has the periodicity of L and it can there-
fore be expanded in a Fourier series, where
K=(2m/L)(m„x+m„y). Now PK can be evaluated by
the inverse transform. The summation over cells
simplifies greatly, since by shifting the origin to each cell,
all the terms become identical and the result is a simple
Gaussian integral that gives

cy
2~~ —K /4k

K (A4)

We have shown in Sec. III that the inclusion of the
zero-point motion of the elementary excitations leads to
long-range correlations in the ground-state wave function
given by (3.7). Since we are applying periodic boundary
conditions on the Hamiltonian, the long-range nature of
correlations can lead to serious difficulties. This is solved
by using the Ewald summation technique. ' The basic
idea is as follows: let us assume that a cell of size L XL is
repeated periodically to fi11 all space. The wave function
in (3.7) requires a summation for a site i of the form

1/lr; —r +Ll,
L j6 cell

where the prime on the summation implies that the j =i
term is not included. We drop constants that merely con-
tribute to the normalization of the wave function. By a
we11-known identity
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In (A5) a separation of the short-range and the long-
wavelength parts of the correlations has been achieved.
We neglect the short-range contribution, as that is al-
ready included in the Jastrow function in (3.2), but care-
fully include the small moment contributions. The num-
ber of E modes in the summation is determined by the
choice of the cutofF. We choose k, large enough so that

the first term in (A5) is smaller than a=10 at the
center of the cell. The larger k, is, the more terms we
need to keep in the second summation. We keep all
modes for which the second term is greater than c.. Pro-
vided these conditions are satisfied, the results are not
very sensitive to the specific values of the cutoff.

'Present address: Department of Physics, S.U.N.Y. at Stony
Brook, Stony Brook, NY 11794-3800.
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