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Gutzwiller-type approach of the size-dependent valence change in small Pr aggregates
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We give a theoretical approach to the valence change in small Pr„aggregates [transition:
4f'(5d6s)'~4f'(5d6s)'], our study limited to n 4. The quantum-mechanics problem (Anderson
Hamiltonian) exhibits various difficulties: f-valence mixing and strong intra-atomic f correlations.
For dealing with this problem we use an extension to the mixed-band systems of the Gutzwiller
method. The extension is detailed and controlled by an application to the Hubbard s chain, for
which the exact solution is known. As the number off electrons and sites of our Pr„system is rela-

tively small, we take into account the full f degeneracy. We find the transition for n =3, which is

close to the experimental result, n =5. A physical explanation of the phenomenon is proposed.

I. INTRODUCTION

The Gutzwiller method is a very powerful tool that has
been used in the solution of many problems in which the
intra-atomic correlation energy is large (but not infinite}
and strongly influences the electronic (or more generally
fermionic) properties. In its original version, it was first
proposed for studying band structures at T =0 in s cubic
lattices described by the Hubbard Hamiltonian. ' Then,
several extensions were proposed. Among them one may
mention various studies: Hubbard s lattices at finite tem-
peratures; susceptibility and compressibility of normal-
liquid He; systems with a limited number of atoms (i.e.,
aggregates) with s (Ref. 5) or m (Ref. 6) wave functions;
modification of the momentum distribution used in the
Gutzwiller theory. In these works no important
changes in the principles of the Gutzwiller method were
made, the basic assumption always being that all the sites
were equivalent (or nearly equivalent in the case of aggre-
gates).

Recently, progress appeared with the application of the
Gutzwiller technique to mixed-band problems ' or,
which is formally equivalent, to s systems with two kinds
of sites (for instance, antiferromagnetic systems). ' ' In
this paper, we intend to develop such an extension to the
study of small rare-earth aggregates which exhibit a mix-
ing of 4f and valence levels and pose an intriguing prob-
lem since, for most of the rare-earth elements (except Ce,
Gd, Eu, and Yb) the electronic configuration changes
with the increase of the size, from 4f"6s (atotn) to
4f" '(5d6s) (bulk).

We shall consider the case of praseodymium aggregates
in which the transition from v=3 to v=2 has been ob-
served' in photoabsorption studies. These experiments
have been performed on Pr, Nd, and Sm aggregates em-
bedded in a solid Ar matrix. Their size is deduced from
the ratio of the metal to Ar weights deposited during the
sample preparation. The measurement of the L&&& ab-
sorption threshold, which is very sensitive to the f popu-
lation, leads to the knowledge of the electronic
configuration and the conclusion of this work is that the

II. PRINCIPLES OF THE METHOD

Let us consider a system where the basis wave func-
tions, indexed by g, can be divided into two kinds, A and
8. The Hamiltonian contains a one-electron part and a
correlation part with intra-atomic energies U„and Uz.
It is always possible to write the one-electron energy EH
in the form'

EH
k, k'a occupied

g~g

a koa ka& k'a& k'a
ka g g' g

EH= X p. (g g'»
g, g', a

(2)

where the expression of the propagator p (g, g') between
sites g and g' can easily be obtained from a combination
of formulas (1) and (2). In relation (1) kcr is an index for
the molecular one-electron wave functions with eigenen-
ergy ck and eigenvector coef5cients ag

Then, one may write EH in the form

EH g Eq~+Es~+Eqq~+Es~~+E~s~ (3)

with

valence change occurs for n, nearly 5.
It is worth noticing that free rare-earth aggregates

have begun to be investigated by the liquid-metal ion
source (LMIS) technique (for Pr see Ref. 14, for other
rare-earth elements see Refs. 15 and 16}. These works
give interesting information on the aggregates since the
emission intensities are related to the stabilities of the
corresponding species.

In the next section we give the principles of the method
and apply it, in Sec. III, to the study of a ring of s sites
described by the Hubbard Hamiltonian. This application
will serve as a control since an exact solution of the prob-
lem exists. We will see that the Gutzwiller method gives
an energy very close to the exact energy of the ground
state.
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Ew = g p (g,g'},
gEA

p (g,g'),
gE A, g'6 A

g&g

(4) have an excess of 1' ( $) electrons. We will call
Nzt &Nt/2 and NB&)N&/2 the numbers of f (g) elec-
trons on A (B) sites, where Nl (Nl, ) is the total number
of 1' (l) electrons. In this paper we only study the half-
filled band:

EABa
gE A, g'E A
gEB,g'6 A

(6)

E~ and Ea~ take the same form as EA and E» with
the index B replacing A.

The general Gutzwiller expression of the energy can be
written

EG=Q[E„q (rl„=l)+E» q» (rI„)

Ng+Ng =L,
where L =LA +L& is the total number of sites, which is
taken of the form L =4j +2 where j is an integer.

When applying Eq. (7) we see that various
simplifications occur. We have EA =Ez =0, because the
one-electron diagonal term in Eq. (9} is zero, and
E» =Ezz =0, because we only consider nearest-
neighbor hoppings. Then we have

+EBABB (9B 1}+EBBABB( IB)

+ ABalABa( lA~QB}1

+y ~ ( r) ~ ) U~ +j'B ( rlB ) UB . (7)

EH= gE

and using Eq. (8) we are led to the minimization of

EG X EAB 1AAABB ) + U(gA +gB ) .
The q and j' terms, respectively, modify the hopping

and the correlation one-electron energies. They are vari-
ational functions of two parameters gA and gz where

gA =g~=1 corresponds to U„=U~=O. They also de-

pend on the parameters of the problem, i.e., LA and Lz,
the numbers of wave functions in the basis; NA and N~,
the number of electrons; Nz and NB, the correspond-
ing quantities in the one-electron calculation. In the gen-
eral procedure NA and Nz can be different from N„
and Nz and can be considered as variational parameters.
It has been shown' that qA~ can simply be expressed as

1/P
'0 ABa (9ABaPBBa )

In systems where the number of electrons is large the q
and y functions can be expressed in terms of variational
parameters v„and vB (different frotn g„and r)B) which,
physically, represent the number of doubly occupied sites
on A and B sites. ' ' Then yA and yz are simply given
by v„and vB. The various if(v) functions are given in
Ref. 10.

For a given U/~P~, besides the v variational parame-
ters we can vary the numbers NA &

and N~&, i.e., the am-
plitude of the SDW, which will be considered as other
variational parameters. As a consequence, the q values in
the noncorrelated limit are different from unity; for ex-
ample, we have

III. CON'IROL OF THE METHOD NA DNA g NA t
(L /2)

N

(L /4)
One may first mention the calculations made on small s

aggregates which can be compared with the exact solu-
tion of the Hubbard Hamiltonian. ' The values of the
two electronic energies are very close over a wide range
of U/~P~ values (P is the transfer term between neighbor-
ing sites). Another situation where the method can be
controlled is the study of a non-dimerized s ring since the
Hamiltonian, which we write as

(12)

and a similar formula for B site and $ spin.
In Fig. 1 we give the electronic energy obtained in our

calculations, in the exact solution and in the approximate
solution (VMC: variational Monte Carlo} of Ref. 21. It
can be seen that our degree of accuracy is comparable to

i,j =i+1
c;c +Urn;n;

I 0'
(9)

has received an exact solution. '

For studying this problem with the Gutzwiller method
one may first be tempted to use the original version (with
only one kind of site) but when U/~P~ is large the energy
obtained is very far from the exact one. ' The other pos-
sibility is to study a regular spin-density-wave (SDW)
configuration though it is known that such a
configuration cannot be the exact ground state which is
only partly antiferrogmagnetic. ' This point will be
discussed later.

Then, we suppose that the ring is made of a regular
series of A and B sites ( AB AB. . . ) where the A (B) sites

-0.5-

-l.5
I

10

FIG. 1. Electronic energy E per atom for a chain in the half-
filled case, vs U [0, the present calculation; A, the exact solu-
tion {Ref. 18); continuous line, the VMC calculation {Ref. 21}].
E and U are given in ~P~ units.
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U/Ipl Ms (Ref. 26)

0.62
0.70
0.80

M& (present calculation)

0.51
0.93
0.96

TABLE I. Alternate magnetization M, . where a, b, and c are coefficients given by the one-
electron calculation.

Another simplification comes from the fact that there
is no intra-atomic correlation in the valence levels
(U„=O). We have only to take into account intra-atomic
correlations in the f band. Consequently v)s is the only
variational parameter to be considered and therefore

IV. STUDY OF Pr„AGGREGATES

A. The method

Let us first give the Anderson Hamiltonian H„which
is commonly used for the study of rare-earth ele-
ments, ' '

& W&ci,;~c»~+ g V5(ci;~fij~+fi~j~c
l@J l+J

A, , 1, 0.

+Ef y n...+ ,'U- (13)
i, l, o (l, o )&(I',u')

where n;& =f;I f;& is the number of f electrons with

spin 0. and orbital number l at site i; cz; is the creation
operator of a valence electron on site i with spin 0. and A,

denoting one of the five Sd components (2 ~ A, ~ 6) or the
orbital 6s (A, = 1).

This Hamiltonian describes the coupling between the
valence and the f levels. As in Sec. II we will index them
by A and B, respectively.

Let us first examine the one-electron part of the calcu-
lation. A first simplification, introduced in Refs. 8 and 9,
is to limit the first and second hopping terms in H~ to
first neighbors and to neglect the orbital dependence.
Then, the i,j,p, A. indexes can be removed and we can use
the simplified notations p and V. Moreover, if we consid-
er (as is done in Refs. 8 and 9) that the V term is much
smaller than p and Ef, the expressions Es, E„„,and

E„s, defined by Eqs. (4), (5), and (6), are simply propor-
tional to, respectively, Ef, p, and V. One may also note
that E„=O [origin of the energies in (13)] and Ebs=0
(no direct intersite f, ~f hopping). Then, re. lation (3)
becomes

EH=ap+bEf+cV, (14)

the VMC calculation and that both results are very close
to the exact one. The optimum alternate magnetization
per atom (M, =2N„&/L =2'&/L) is given in Table I.
As we already mentioned, this characteristic, which is
also obtained in other approximate methods, ' is con-
trary to the exact solution. ' The study of the exact spin
correlation function ql

= (s s + &
) (for large U/~ p~ see,

for instance, Refs. 23 and 24) shows that there is only a
local antiferromagnetic order (~ql ~

~0 when / increases).

By creating a SDW, we have forced the system into an
excited state. However, the fact that we obtain an energy
very close to the exact one shows that this state is only
slightly excited with respect to the ground state. The
similarity of the energies allows us also to think that the
Gutzwiller method is a good simple tool to handle such
Hubbard problems.

(15)

The numbers of electrons Nz and Nz on A and B lev-
els are also important physical parameters (we define
them by N„=g N„and Nn=g Na ) since we want
to examine the transition from v=3 to v=2 (change of
Ns from 3n to 2n) as the number of atoms n increases.
Here, the relative variation of Ns (or N„) is large and it
is not possible to take this quantity as a continuous varia-
tional parameter as it was done for Nz &

(or Nz&) in Sec.
III. We will rather undertake separate studies for two
discrete and fixed values: N& =Nz -3n and

N~ =N~ -2n. In each study we simply have

qAA(QA 1} qBB(98 (16)

B. Variational functions for f levels

As we already mentioned the q(vi) and y(rl) functions
are known for an s band. ' They can be written

q(v)) =q (rl)/N(rl),

y(v)) =q(v))/N(v)),

(18)

(19)

where N(v)}, q(v}), and y(v}} have the following physical
meanings: N(v)): normalization of the variational wave
function ql; q (vi}: modification of the hopping term; and
y(7}): modification of the correlation terins.

When rl varies from 1 to 0, q (ri)/N (v)) and g(v))/N(v})
decrease, respectively, from 1 to 0 and from N

&
N

&
/L to

0 if (N$+Nl) &L or to N&+N& L if (N&+N&—))L
[where NI (N 1) is the number of 1 ($) electrons and L
the number of sites].

In an f band, the difference from the s band problem is
that the number of configurations is larger because each f
level can accommodate 14 electrons. S denotes the set of

According to this discussion and by using Eqs. (14),
(15), and (16) we obtain, for the variational function to be
minimized,

EG=aP+bEf+cV[q(vi)]' +y(v))U,

where we have simply written quan (v)s ) =q ( v) ),

yn ( rlii ) =y( rl ), and Us = U.
In Ref. 8 the previous method was applied to bulk ceri-

um where the f band contains a number of electrons per
atom close to one. Then the authors assimilate the f
band to an s band and use the q and j' functions of the
original Gutzwiller paper.

Our treatment is different on two points. Firstly, we
establish new q(v}) and y(v)) functions where we take into
account the full degeneracy of the f level. Secondly, in
the one-electron calculation we treat separately the vari-
ous f components.
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electronic configurations obtained by distributing vn elec-
trons (v=2 or 3 and n =2,3,4) on n sevenfold degenerate

f functions. For each configuration, we count the num-
ber a of electron pairs on the same atom, then we write

N(rl)=

goal

S

which can be recast into

N(rl)= g N, (a)rl
aGG

where 6 is the set of a values. The q (g) term is obtained
by

q(g)= g g
+

S,S'

where the summation is made on all the couples of
configurations which differ from one another by the hop-
ping of one electron with spin conservation.

Moreover, we have, as in Ref. 1,

y(rl}= pari = g aN&(a)rl
S aGG

Our functions are given in Table II for n & 3. We observe
that, as expected, in the noncorrelated limit (q=1) we
have q(1)/N(1) =1 and in the opposite limit (F1=0) we
have q(0)/N(0)=0 (v=2 and 3) and y(0)/N(0)=n
(v=2) or y(0)/N(0)=3n (v=3). Our functions have
been obtained for n ~4 by an analytical calculation but
we are elaborating a computer program which wi11 give
them for larger n values.

C. One-electron calculation and minimization procedure

Let us return to the one-electron calculation. For
n =3 and 4 we have chosen compact shapes, i.e., the tri-
angle and the tetrahedron. We diagonalize the Hamil-
tonian (13} (without the U term) in which we suppose
that all the valence components are equivalent. This ap-
proximation leads to a removal of indexed A, and )M in pg„
and Vj, which become P,, and V&,". We calculate VI;, by

V); =(4f)i4fo; i) V,
where fo, is the l =0 component when the Oz axis is

directed along the i—j bond.
Considering a valence band width of 10 eV for the bulk

we have derived p-0. 8 eV. We have fixed Vby using the
relation between the observed half-width 6, of the order
of 0.05 eV and V,

h=mn(EF)V

where we take for n (EF) an average density of six elec-
tronic states for a width of 10 eV, therefore V-0.15 eV.
The value of Ef is deduced from the 4f 5d6s ~4f 5d 6s
atomic transition which is about 3 eV (Ref. 27) and which
is equal to Ef—2U, where U is the intra-atomic correla-
tion energy. For U =3 eV, which is a typical value for
rare earth elements, we obtain Ef =9 eV.

The diagonalization gives us the electronic levels. We
consider two situations. In the first case we put 2n elec-
trons on the lowest levels, which are predominantly f,
and the other 3n electrons are put on the first levels,
predominantly of valence type. We then arrive at an f
valence population which is almost two per atom; the ex-
act populations are given in Table III. Then we calculate
the Hiickel energy and deduce coeScients a, b, and e of
formula (14) that we will use for the case of 4f (Sd6s)
configuration. The same procedure is used for the
4f (5d6s) configuration which gives us another set of a,
b, and c values.

For each configuration we minimize the total energy
(f7) by using the convenient variational functions ob-
tained before and we compare their stabilities.

D. Results —conclusion

In Table IV we give the g values and the energy
difference E2 E3 between sta—bilities of the 2f electron
case and the 3f electron case. We observe that the g
values are small which means that we are very close to
the localization of the f electrons on the sites. We also
note that the configuration with 2f electrons per atom
begins to become the stablest for n & 3, a result which is
close to the n, = 5 experimental one.

Physically, one may try to understand this result. As
the f electrons are almost localized on the sites the corre-
lation part of E2 —E3 is close to n times the 2U correla-
tion energy difference of atoms. One must then take into

TABLE II. Polynomial expression for N(g) and q(g) versus the number of atoms (n) in the cluster
and the number of valence electrons (v).

q(g)=8g +16'
N(g)=4g' +12' +8g
q(g) =8/ +16/' +24/'
n (q) =4q"+12'"+2eq" + 12q"
q (ri) = 16''+ vP'+ 14vP+4'�"+40'' + 14'' +96'"+ 14'"

+74'"+144'' +9g +119' + 105' +4g
N{g)=9g +66' +108'' +165'' +282' +60'
q (g) =24g~+ 12' +48' +48' +48' +72'~

+72' +96' + 168' + 102' +96' '+ 240' +252'
+3247@+189@2+3847@+2167/ +228/'

N(g) =4g +72' + 120' +96' + 168' +516'
+420'~ +48&g +612vjo+14g"
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TABLE III. Exact f population in our calculations versus

the number of atoms (n) and the number of valence electrons
(v).

TABLE IV. g and E3 —E, versus the number of atoms (n)

and the number of valence electrons (v).

E3 E2 (eV)

n —2
n —3
n=4

1.998
1.989
1.997

2.999
2.986
2.999

n=1
n =2
n =3
n=4

g =0.0249

g =0.005 20

g =0.00407

9=0.0232

g =0.0101
g =0.003 77

—3
—1.06

1.10
2.54

account the fact that the number of valence electrons is
larger (3n instead of 2n) in the 4f case. If the n excess
valence electrons of this configuration were at the origi-
nal atomic energy we would obtain

E3 E2=n—(2U Ef)—

which is negative. But as valence bonding levels begin to
appear for n =2, 3, . . . the loss of energy is less than nEf

and E3 —E2 becomes positive. This type of calculation
can be improved at least along two directions. A better
description of the valence band can be carried out, for ex-
ample by considering separately the Sd and 6s levels. Ex-
change energy can be included in the f band. These im-
provements could lead to a better agreement with experi-
ments; however, we think that this simple treatment gives
the main features of the valence-change phenomenon in

praseodymium.
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