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Equilibrium quasicrystal phase of a Penrose tiling model
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A two-dimensional rhombus tiling model with a matching-rule-based energy is analyzed using

real-space renormalization-group methods and Monte Carlo simulations. The model spans a range

from T=O quasiperiodic crystal (Penrose tiling) to a random-tiling quasicrystal at high tempera-

tures. A heuristic picture for the disordering of the ground-state quasiperiodicity at low tempera-

tures is proposed and corroborated with exact and renormalization-group calculations of the

phason elastic energy, which shows a linear dependence on the strain at T=O but changes to a

quadratic behavior at T&0 and sufficiently small strain. This is further supported by the Monte

Carlo result that phason fluctuations diverge logarithmically with system size for all T &0, which

indicates the presence of quasi-long-range translational order in the system, meaning algebraically

decaying correlations. A close connection between the rhombus tiling model and the general

surface-roughening phenomena is established. Extension of the results to three dimensions and

their possible implication to experimental systems is also addressed.

I. INTRODUCTION

Quasicrystals represent a new form of ordered state,
characterized by sharp diffraction peaks with noncrystal-
lographic symmetry. ' Immediately after the first re-
port in the icosahedral phase in Al and transition-metal
alloys by Shechtman et al. ' Levine and Steinhardt pro-
posed quasiperiodic crystals as the ideal structural model
for these systems. It is assumed that in these materials
there exist microscopic forces that lead to the formation
of stable quasiperiodic structures. Although the pres-
ence and physical origin of these forces in any particular
experimental system are yet to be elucidated, the well-
known two-dimensional (2D) and three-dimensional (3D)
Penrose tilings provide working examples of quasiperiod-
ic patterns for which the matching rules conceptually
represent such microscopic forces.

At the same time, Elser and Henley made a microscop-
ically different, but physically equally plausible proposal
for the structure of equilibrium quasicrystals, known as
the "random-tiling model. "" ' As the name implies, a
quasicrystal in this picture is viewed as a random packing
of two or more different kinds of rigid geometrical units
which fill the whole space. Each such unit consists of a
certain number of tightly bonded atoms, but unlike the
case in a quasiperiodic crystal, the same energy is as-
signed to all possible local tiling configurations. ' ' In
such a system, the equilibrium state is determined by the
entropy associated with tile rearrangements. It was con-
jectured that quasicrystal arrangements, i.e., those tilings
whose Fourier transforms show sharp peaks and a high,
but noncrystallographic symmetry, possess maximal en-
tropy, and are thus favored. "'

Although the random-tiling scenario does not rely on
the existence of a quasiperiodic ground state, it is intui-
tively clear that under suitable conditions it may corre-
spond to a high-temperature phase of a quasiperiodic
crystal model in which two or more "unit cells" are

packed quasiperiodically. The study of such a model is
important not only for clarifying the distinction between
the two proposals, but also for gaining a better under-
standing of the equilibrium quasicrystal phase over a
broad range of temperatures.

In this paper we explore the thermal equilibrium prop-
erties of 2D rhombus tilings of 36' and 72' rhombuses.
The energy of a given tiling is defined according to a set
of matching rules introduced by Penrose, which will be
specified in detail in Sec. II A. The ground state of the
model consists of the Penrose tilings, which satisfy the
matching rules everywhere. At infinite temperature the
matching-rule energies become irrelevant so that a
random-rhombus-tiling ensemble is achieved.

Such a model is perhaps too simple to be an accurate
description of a real physical system. For sure, it com-
pletely ignores phonon modes which would be associated
with tile distortions. By insisting on rigid tiles, one also
excludes the possibility of dislocations and other defects
which couple to phonons. ' In addition, the model as we
defined it does not contain a dynamical description for
tile rearrangements.

Despite the aforementioned limitations, the model does
have several attractive features. First of all, the ground
state of the system is known. We note that finding an in-
commensurate ground state of even a classical one-
dimensional system is a nontrivial problem. ' ' Know-
ing the ground state enables us to analyze the equilibrium
processes at low temperatures, which are the tile rear-
rangements, normally described as phason Auctuations. '

Secondly, the matching-rule-based energetics offers a new
class of incommensurate systems which have not been
studied in detail before. Such rules are usually absent in
systems modulated in one direction, e.g. , the Frenkel-
Kontorova model and the axial-next-nearest-neighbor Is-
ing (ANNNI) model. ' There, diff'erent incommensu-
rate ground states are often stabilized by tiny interactions
between domain-wall-type defects. As a result, each of
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them has zero volume on the phase diagram. In our
model, the quasicrystal phase is expected to occupy a
finite volume on the phase diagram when plotted under
proper parameters. In addition, the nice inflation sym-
metry of the ground-state Penrose tilings ' allows us
to develop a simple real-space renormalization scheme so
that the melting of ground-state quasiperiodicity can be
conveniently analyzed.

There exists a simple mapping of vertices of the
rhombus tiling to a subset of five-dimensional (5D) hyper-
cubic lattice sites which form a continuous 2D hypersur-
face. ' Under this mapping, a Penrose tiling corresponds
to a macroscopically flat hypersurface, which is macros-
copically invariant under the fivefold symmetry operation
of the 5D hypercubic lattice. Rearrangements of tiles
away from the Penrose tiling lead to fluctuations of the
hypersurface. These fluctuations are usually described in
terms of the "phason variables, " which give the coordi-
nates of the hypersurface along directions perpendicular
to the flat surface. ' '

It has been recognized that the presence or absence of
long-range translational order in a quasicrystal is deter-
mined by whether the representing hypersurface is flat or
rough. Fluctuations of the hypersurface are governed by
the energetics of the quasicrystal. An important question
which arises under this context is whether such a hyper-
surface can become rough due to thermal fluctuations.

The roughening of an ordinary solid-gas interface
along one of the major crystal symmetry directions usual-
ly occurs at a finite temperature Tz )0. An impor-
tant quantity which characterizes the transition is the
free energy for slightly tilted interfaces. Below Tz, this
free energy depends linearly on the tilt angle, and gives
rise to a cusp on the Wulff plot. This behavior is intui-
tively understood as due to the breaking of translational
symmetry in the surface height direction by the crystal
lattice, such that a linear height gradient can only be dis-
tributed on a set of steps. At T & Tz, a quadratic surface
free energy is obtained, from which surface height fluc-
tuations can be calculated. These fluctuations usually
diverge logarithmically with increasing system size.

In quasicrystals one can define a phason elastic (free)
energy which plays the same role as the surface free ener-
gy. At T=O, Socolar et al. suggested a linear depen-
dence of the elastic energy on phason strain for unit-cell
quasicrystals with matching-rule-based energies. ' This
is somewhat surprising in view of the fact that quasicrys-
tals have a continuous symmetry resulting from the ener-
gy invariance under uniform "phason translations. " '

In the random-tiling case a quadratic free energy was
conjectured by Elser and Henley, "' and confirmed by
transfer-matrix studies of Widom et al. ,

' and Monte
Carlo simulations of Strandburg et a!.' (part of the work
is reported in detail here). As a consequence, 2D random
tiling s have "quasi-long-range" translational order,
characterized by algebraically decaying correlation func-
tions and power-law diffraction peaks.

A similar situation is expected in more physical mod-
els. Consider, for example, a ground-state quasiperiodic
crystal resulting from short-range pairwise interactions
between the atoms. Then, it can be shown that certain

general assumptions about the associated atomic hyper-
surfaces imply a singular, linear phason elasticity at
T=O. On the other hand, finite-temperature density-
functional calculations for atomic models are consistent
with the quadratic phason elastic energy.

This raises the question about the nature of the transi-
tion between the singular, linear, and the quadratic
phason elasticity regimes. Therefore, in the context of
the Penrose tiling, the focus of the present paper will be
the following questions. What is the roughening temper-
ature of a 2D equilibrium quasicrystal? How does the
roughening transition take place? Is the quadratic free-
energy description valid for the thermal fluctuations of
the representing hypersurface in the rough phase?

The remaining part of the paper is organized as fol-
lows. In Sec. II we introduce a matching-rule-based ener-
gy defined on rhombus tilings. This is followed by a re-
view of the 5D representation of rhombus tilings and the
definition of phason variables. We then discuss the
Fourier transform properties for tilings with or without
phason strain. In the last part of Sec. II we outline the
main results obtained by assuming a square-gradient free
energy for long-wavelength phason fluctuations.

In Sec. III we study the zero-temperature phason elas-
tic energy of the model. By using simple geometrical re-
lations we obtain a rigorous lower bound for the strain
energy, which shows a linear dependence on an overall
scale change of the strain tensor. This lower bound be-
comes an exact expression for a restricted class of tilings.

Section IV contains a heuristic discussion on the
thermal roughening of the hypersurface representing a
quasicrystal. Special attention will be given to the step
free energy. The usual argument for the roughening of a
crystal surface, when applied to the incommensurately
oriented hypersurface, suggests a zero-temperature
roughening transition.

In Sec. V we present a real-space renormalization-
group (RG) analysis based on a generalization of the
inflation transformation on the Penrose tilings. An ap-
proximate RG equation for the fugacity of matching-rule
violations is derived. We find that, in the quasicrystal
phase, the equilibrium distribution at any nonzero tem-
perature flows toward the infinite-temperature random-
tiling limit under successive RG transformations. The
analysis indicates that a low temperature tiling behaves
like a random tiling on sufficiently large length scales.
This again suggests a zero-temperature roughening tran-
sition. The free energy for tilings with and without
phason strain is approximately calculated, which shows
two different kinds of behavior depending on the temper-
ature and phason strain. The analysis also gives the
dependence of phason elastic constant on temperature in
the rough phase.

In Sec. VI we present results from a detailed Monte
Carlo study of three limiting cases of the rhombus-tiling
model. The result confirms the existence of quasi-long-
range translational order in the random-tiling models,
and in the quasiperiodic crystal model at finite tempera-
tures. In the latter case, the logarithmic divergence of
phason fluctuations on system size continues down to
very low temperatures, only limited by the size of system
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studied. This provides yet another evidence for the zero-
temperature roughening transition. The temperature
dependence of energy and elastic constant agree to lead-
ing order with results of the RG calculation given in Sec.
V. In Sec. VII we summarize our results and discuss an
extension of the analysis to three dimensions, and point
out some possible applications to experimental systems.
The Appendix contains an exact calculation of energy per
vertex for a special class of tilings at T=O.

II. DEFINITION AND BASIC PROPERTIES

A. The model

for (DD) state,

for (SD) and (SD) states .

(2.1)

The energy of a tiling y is (formally) defined as a sum of

Consider a plane-filling tiling by arrowed skinny (36')
and fat (72') rhombuses shown in Fig. 1(a). Viewing each
rhombus as a unit cell, the spatial pattern defines a net-
work of vertices connected by bonds, which are the
rhombus edges in the tiling. On each bond reside two ar-
rows, whose types (single, double) and direction give rise
to six possible states to the bond, as illustrated in Fig.
1(b). The following shorthand notation will be used to
denote the state of the bond: SS for two single arrows,
DD for two double arrows, and SD for a single and a dou-
ble arrow. In addition, each such combination is given a
superscript "+"if the two arrows are parallel, and a su-

perscript "—"otherwise. States (SS)+ and (DD)+ are
referred to as matched, and the rest, unmatched

A simple statistical mechanical model on the tilings,
we call the Penrose model, is introduced by assigning an
energy to each bond,

0 for (SS)+ and (DD)+ states,

ass for (SS) state,

bond energies

&(X)= g &b .
bonds

(2.2)

B. Five-dimensional representation of tiling structures

The geometrical properties of a rhombus tiling are
most conveniently discussed by lifting the vertex network
to a higher-dimensional space. The mathematical pro-
cedure for the mapping is illustrated in Fig. 2. In the til-
ing each rhombus edge is oriented in one of the five direc-
tions

e" =(cos2na/5, sin2na/5), a=0, . . . , 4 . (2.3)

Choosing an arbitrary vertex 0 as the origin, the position
of any other vertex of the tiling is expressed as

4

"a a
a=0

(2.4)

where a is the length of a rhombus edge, and n is the
number of steps in direction e, on a continuous path to

In this paper we shall consider only the case where czar,
c.~z, and c&z are all positive.

The ground states of the above model are tilings which
contain no unmatched arrows. Penrose discovered the
set of such tilings over ten years ago. It was later shown

by deBruijn that the Penrose tilings are quasiperiodic.
Additional terms, such as vertex energies, can be incor-

porated in Eq. (2.2) to accommodate a more general class
of rhombus-tiling models. For instance, the binary til-
ings, derived from the quasicrystal phase of a 2D, two-
component Lennard-Jones system,

' ' can be represent-
ed by assigning zero energy to vertices at which the
corner angles of surrounding rhombuses are either all
even or all odd multiples of m. /5, and infinite energy to all
other types of vertices. These additional terms may in-
troduce competing interactions in the energy, in which
case, finding the ground state of the system may become
a highly nontrivial problem.

skinny fat

(b) (ss) (DD) (sD)'

(ss) (DD) (sD)

FIG. 1. (a) 36 (skinny) and 72' (fat) rhombuses decorated
with single (S) and double (D) arrows. (b) Six possible arrow
configurations on a bond and their energy c,b. The superscript"+"indicates two arrows on a bond are parallel, and "—," op-
posite.

FIG. 2. Definition of 5D coordinates of vertices. A path
from an arbitrarily chosen origin 0 to a vertex 3 is shown by
the heavy line. The shaded part is a row of tiles.



41 EQUILIBRIUM QUASICRYSTAL PHASE OF A PENROSE. . . 4527

the vertex at r from the origin along the bonds, counting
negatively when going in the opposite direction. For in-
stance, the point A in Fig. 2 has [ n I

= ( —1, 1,2, 1, —1).
Despite the fact that the five vectors e sum to zero, this
procedure gives a unique definition of [n I once the ori-

gin is chosen, independent of the path taken.
Taking I n I as 5D coordinates, the vertices of a

rhombus tiling are made to correspond to a subset of 5D
hypercubic lattice sites. The 5D hypercubic lattice has a
fivefold symmetry, under whose operation the 5D space
decomposes into three invariant subspaces: a 2D "physi-
cal space" spanned by basis vectors

2m 4m 6m 8n
a "' =&2/5 1,cos,cos,cos, cos5' 5' 5' 5

Here

e =(cos4ma/5, sin4na/5) . (2.10)

Each rhombus in the tiling is a projection of a square
face of a 5D hypercube. These square faces connect into
a 2D surface imbedded in the 5D space, and the entire
2D tiling can be viewed as a projection of this surface
onto the 2D physical space. We shall call this surface the
deBruijn surface. For a Penrose tiling, the average orien-
tation of the deBruijn surface is the same as the orienta-
tion of the physical space. In general, a deBruijn surface
can have a diferent average orientation, in which case we
say the corresponding tiling has a uniform phason strain.
The phason strain matrices E and E, are defined through

—=&2/5 cos
27TG

5

2m . 4m . 6m. . 8m.
a ' ' =&2/5 0,sin, sin, sin, sin5' 5' 5 5

= &2/5 sin
2&6K

5

(2.5}

and

E=a[(h(r)r) —h (r)](rr)

E, =a [(h, (r)r) —
111, (r) ](rr)

(2. 1 1)

(2.12)

a 2D "perpendicular space" spanned by basis vectors

4m. 8m 12m 16ma' '=&2/5 l,cos,cos,cos, cos5' 5' 5
'

5

—=&2/5 cos
4m'

5

where we used the dyad notation. Here ( ) denotes
averaging over all vertices of the tiling, and the uniform
phason displacements are h =(h(r)) and h, =(h, (r)).
The average orientation of the deBruijn surface is then
specified by two vectors

~141, . 477 . 877 . 1277 . 1677
a =v'2 5 O, sin, sin, sin, sin

5
'

5

(2.6) b'"=a'"+E a' '+E a' '+ —E a' '
11 21 ~2 z1

(2.13)

4m a= &2/5 sin
5

and a one-dimensional "perpendicular space" along the
(commensurate) fivefold symmetry axis

a1"=&I/5(1, 1, 1, 1, 1)—:&I/5[ I I . (2.7)

The original tiling is recovered by projecting the subset
of hypercubic lattice sites R= In I onto the physical
space, i.e.,

r=av 5/2R

=a@5/2[(R a ')a +(R a )a ] (2.8)

h(r)—=&5/2[(R a' ')a' '+(R a' ')a' ']
4=one',

a=O

4

h, (r)—:&5R a' '= g n
a=O

(2.9)

and connecting vertices separated by a distance a with
bonds. Projection of R onto the other two invariant sub-
spaces gives the perpendicular-space (or phason) coordi-
nates

b(2) — (2)+E ~ (3)+E (4)+ E (5)
12 22 ~2 z2

both parallel to the deBruijn surface. Here E; and E, ,
i,j=1,2, are matrix elements of E and E„respectively.
(We note that, like the ordinary elastic strain of a solid,
the phason strain can be defined locally under a suitable
continuum limit. )

For the following discussion it is useful to distinguish
rhombuses (fat or skinny) oriented in each of the five pos-
sible directions. The type of a rhombus is specified by
two subscripts (a,p) of the edge vectors ae ' and ac),
which form the rhombus. The choice p=a+1 (mod 5}
gives a fat rhombus, while p=a+2 (mod 5} gives a skin-
ny rhombus. The average number density p( &) of rhom-
buses of type (a,p) exists for a uniformly strained tiling,
and is uniquely determined by E and E, as follows.

An (a,p) rhombus corresponds to a 2D square face of
a 5D hypercube with edges parallel to the a and p axes.
As mentioned above, a tiling can thus be visualized as a
corrugated 2D deBruijn surface in the 5D space. The
projected area of the deBruijn surface onto the ap plane
gives the number of 2D faces associated with (a,p)
rhombus, contained in the deBruijn surface. From this
observation we obtain the density of (a,P) rhombuses:



4528 LEI-BAN TANG AND MARKO V. JARIC 4]

~(b(1) b(1) )X(b(2) b(2)
)~

5a2

+e 'l X (E e )
—e I)) X ( E e ) +—'(e ll —el' ) X E

25a'

+sin detE+ —'[E (e —e&)]XE
5

(2.14)

Here b'" and b' ' are the projections of b"' and b' '

onto the physical space, and E and E, are the transpose
of E and E„respectively. The overall density of fat and

skinny rhombuses are given by

4

PF X P(a, a+1)

Q r=Q$ r+hQ r

=2~+m n —
Qp h(r) —

Qp, h, (r)+bQI). r

= 2n g m n —
Qp h(r) —

Qp, h, (r)

a=o

4 . 2m ] . 2m
sin +~ 'sin detE

5a'
where

+(bQ" —a 'E Q' —a 'E g ) r (2.19)

4

PS X P(a, a+2)
a=a

4 ] . 2m . 2m
sin —sin detE

5a

(2.15) Qp= gm e',
a

=2~
Qp, = gm

are the perpendicular-space components of Q, and

(2.20)

respectively. Here r=(&5+1)/2 is the golden mean.
The total density of rhombuses, which is the same as the
density of vertices, is given by the sum pF+pz. Equa-
tions (2.14) and (2.15) have been derived previously by
Henley for the case E, =0. '

C. Fourier properties
and long-range translational order

Simple as they are, the rhombus tilings can exhibit a
variety of spatial patterns, amongst which are periodic
configurations with arbitrarily large unit cells, quasi-
periodic configurations, and random configurations, and
give rise to distinct diffraction patterns. Quite generally,
each scattering peak can be indexed with five integers,
corresponding to a reciprocal-lattice vector

Q= t2nm (2.16)

Q]l

a
(2.17)

where a is the rhombus edge length, and the indexing is
unique mod(1, 1,1,1,1).

In general, for a tiling with uniform phason strain E
and E„weconsider a scattering wave vector

Qli =Q)l+gQII

At an arbitrary vertex r =a g n e ll, we have

(2.18)

of the 5D hypercubic lattice. (This indexing is not unique
if the deBruijn surface representing the tiling is oriented
commensurately along one or more directions of the 5D
hypercubic lattice. ) For example, the peak position of
the Penrose tilings is given by the projection of Q onto
the physical space

h(r) =h(r) —a 'Er,

h, (r) =h, (r) —a 'E,r,
(2.21)

denote fluctuations of the deBruijn surface from its aver-
age position.

The last term in Eq. (2.19) vanishes if we take

gQ)) =a )(ErQ)- +E~g ) (2.22)

= g exp[ iQp h(r—) igp, h, (r—)], (2.23)

where the sum is carried out over all vertices. From this
we obtain the scattering intensity at Q",

1)v(Q }=IS)v(Q }I'~&

= g exp[ —iQp. [h(r) —h(0)]

—igp, [h, (r}—h, (0)]I . (2.24)

Equation (2.24) shows that if the differences h(r }—h(0)
and ))t, (r) —h, (0) remain bounded throughout the system,
which means that the deBruijn surface is pat on large
length scales, Bragg scattering peaks are obtained. Til-
ings with this property are said to possess long-range
translational order.

Unbounded fluctuations of h and h„which describe
the behavior of a rough deBruijn surface, can destroy the
Bragg scattering peaks, hence the long-range translation-

The structure factor at Qll for a system of X vertices (or
equivalently, X tiles), is then given by

S)v(Q)')= +exp(iQ) r)
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al order in the system.
Finally, we consider an alternative, perhaps more

direct way of analyzing the translational order in a tiling.
Let us call a row to be a stack of abutting tiles in a
rhombus tiling, as illustrated by the shaded part in Fig. 2.
A row is said to belong to set a if the tiles are stacked on
edges parallel to e ". (a=0 for the example shown in Fig.
2.) For a tiling with zero phason strain, the average
orientation of a row of set a is normal to e . Let r, and

r2 be two vertices of the tiling with 5D coordinates I n& j
and I n& j. Then

hr e~'=(r2 —r, ) e~'=a( ,'b, n—,—b,h e,——,'b, h, } . (2.25)

By choosing both r, and r2 to be on the same row a,
hn =n n'—=0 In .this case, Eq. (2.25) gives the trans-
verse displacement of the row a from r, to r2 in terms of
Ah and Ah, . Long-range translational order is present if
every row in the tiling has bounded transverse displace-
ment.

The rows of set a divide a tiling into domains of con-
stant n . In this respect a rhombus tiling can be viewed
as a domain-wall system. The analogy is useful for un-
derstanding some physical properties of rhombus tilings,
as we shall see in more detail in Sec. VI.

D. Square-gradient phason free energy

The phason correlation functions and Fourier proper-
ties of the rhombus-tiling system can be calculated if one
assumes that long-wavelength phason fluctuations are

governed by a square-gradient free energy. The general
expression for such a free energy in systems with pentag-
onal symmetry has been discussed by Bak, and by
Levine et al. In our case, it takes the form

PF= PFo+ I« —[(Vh, )'+(Vh, )']+ (Vh, )'

+K' f drVh, X Vh2, (2.26)

h(r) =h(r)+5h(r),

h, (r) =h, (r)+5h, (r),
(2.27)

and assume that 5h(r) and 5h, (r), which denote devia-
tions from the coarse-grained quantities, are bounded, we
obtain

where P=I/kaT, h=(h&, h2) and h, are coarse-grained
perpendicular-space coordinates, and K, K', and K, are
the corresponding phason elastic constants. Using

Vh, X Vh2 = V X(h, Vh2)

and the Stokes theorem, the last term in (2.26) can be
transformed to a line integral along the system boundary,
so that it remains constant if periodic or "fixed tile"
boundary conditions are assumed. We shall ignore this
term in the following discussion.

Using (2.26) the height-height correlation function at
large distances can be calculated in a standard way, em-
ploying momentum-space diagonalization. Write

and

([h (r) —h (0)][hk(r) —hk(0)]) =—([h, (r) —h (0)][8k(r)—h„(0)])
1 +ala +n/a I —cos(q r)

~1-~pa —~ca ~q~'

5,kin +const,mK' a
(2.28)

([h, (r) —h, (0)] ) =([h, (r) —h, (0)] ) = ln +const,
z

(2.29}

where the angular brackets denote ensemble average and 5 k is the Kronecker symbol.
The same method can be applied to calculate the average phonon fiuctuations of a finite system under proper bound-

ary conditions. The results are given by

and

(
1 1

'
1

h(r) —— h(r')N, , 2~ K cN '"
[q~ ~za ~q~

1 +in% const,
2@K

(2.30)

1 1, 1 dg
h, (r) —— h, (r'}

N ' N ' 4~ K cx '"&~q~~~za ~q~

1
lnN +const,

4m.K,
(2.31)

where C is a number which depends on the boundary geometry. The constant terms in Eqs. (2.30) and (2.31) vary for
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different boundary conditions, but remain the same value under a linear scale change of the system size for sufficiently

large N. The logarithmic divergence of (2.30) and (2.31) with increasing system size implies the deBruijn surface is
rough.

We now consider the ensemble average of the Fourier intensity given by Eq. (2.24) for a finite system at E=O and

E, =O. Using (2.27), we write

(Ix(gj' )) = (Z exp{ —i(]x [h(r) —h(0)] —igx, [h, (r) h, (—0)]]
I'

X exp I
—i Qp [5h(r) —5h(0)] —igp, [5h, (r) —5h, (0)]] (2.32)

(2.33)

where

i}'(Qp Qp }=
2 & IQpl +

2 & IQp I
(2.34)

Assuming 5h(r) and 5h, (r) to be bounded, the second
phase factor in the above equation is close to 1 at
sufficiently small Qp and Qp„in which case it can be as-
sumed to be independent of the first phase factor. In this
case the ensemble average can be carried out in a stan-
dard way, which yields

I

this case may assume a slightly different value for each of
the two components of h.

III. ZERO-TEMPERATURE PHASON ELASTICITY

Socolar et al. suggested that unit-cell models of the
sort discussed in this paper may exhibit an unusual kind
of phason elasticity at T=O, with a linear dependence of
elastic energy on the strain. ' In this section we present
an analysis which yields a lower bound or, in special
cases, an exact expression for the energy of uniformly
strained tilings. Though our conclusion is the same as in
Ref. 17, the discussion provides new insights into the
problem, as well as some additional results.

Equations (2.33) and (2.34) do not hold when there is a
strong correlation between the two phase factors in
(2.32). This is the case at large values of Qp and Qp, . In
particular, since h, ( r ) takes only integral values, adding
an integer multiple of 2' to Qp, does not change the
scattering intensity. Therefore,

i)(Qp, Qp, +2m. ) =ri(Qp, Qp, ) . (2.35)

Nevertheless, Eq. (2.34) may still give the correct Qp,
dependence of i) at Qp, =0, +2m. /5, and possibly at
Qp, =+4ir/5. [Equation (2.35) reflects the fact that the
indexing of diffraction peaks of tilings with E, =O is
nonunique with respect to adding a common integer to
each of the five indices m . ]

The Fourier intensity for an infinite tiling at a scatter-
ing wave vector in the neighborhood of Q${ is given by

iraq r

1(Q$~+5q) Jdr- (g,g, )

1

I2
—)](QP, QP )

q

(2.36)

thus it exhibits a power-law dependence (divergence) on
5q.

The logarithmic dependence of height-height correla-
tions [Eqs. (2.28} and (2.29}], and algebraic diffraction
peaks [Eq. (2.36)], are characteristic of 2D systems pos-
sessing quasi-long-range translational order.

For tilings with small phason strain, one expects the
equations in this subsection to be approximately correct
if h and h, are replaced by h and h, [Eq. (2.21)], and Q$
by Qg+b Q" [Eq. (2.18)]. Due to the absence of pentago-
nal symmetry in strained tilings, the elastic constant E in

A. Exact elastic energy for four-vertex tilings

A four uertex tilin-g is a tiling whose h, coordinates of
vertices are restricted to four consecutive integers. It is
the simplest case of the Penrose model with Auctuations
along the commensurate h, direction suppressed, but
with no restriction on Auctuations in the incommensurate
2D perpendicular space h. Without loss of generality, we
shall take the four possible h, values to be 1, 2, 3, and 4.
Note that Penrose tilings, which constitute the ground
state of models with energy (2.2), belong to this class.

The four-vertex tiling ensemble is simply a realization
of the Penrose model at cDD csD ~ i.e., with no un-
matched double arrows. To see this, we note that around
four corners of a given rhombus, the set of h, values is
given by either (1,2,2,3), or (2,3,3,4). In either case it is
possible to orient the rhombus such that the double ar-
rows are on the edges linked to the h, =1 or 4 vertex and
point toward the vertex. By arranging every rhombus in
the tiling this way, all double arrows are on the edges
linked to vertices with h, =1 or 4, and match one another
in direction. The opposite is also true, i.e., any tiling with
all double arrows matched in pairs is a four-vertex tiling.

The enumeration of (SS) bonds in a four-vertex tiling
can be done as follows. Consider first a row of set n=O,
which consists of tiles of type (0,1), (0,2), (3,0), and (4,0),
as shown in Fig. 3(a). Along the row one sees an alternat-
ing sequence of SS and DD bonds between successive
cells.

Figure 3(b) shows six basic cell-and-bond config-
urations in between two successive DD bonds in the row.
We find that coinbinations of a tile of type (0, 1) or (3,0)
with another tile of type (0,2) or (4,0) give rise to an
(SS}+bond (C], C2, and C3), while other combinations
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tiles) are introduced, or when the tiles are allowed to de-
form in response to a softened atomic potential.

C) Cp Cg
B. A general lower bound for the strain energy

C4 C5 C6

give rise to an (SS) bond (C4, C&, and C~). Thus, a
lower bound for the number of (SS) bonds in rows of set
0 is given by the excess number of (0, 1) and (3,0) type
rhombuses with respect to that of (0,2) and (4,0) type,

~+a=0 ~ ~P(0, 1) P(3,0) P(0, 2) P(4, 0)~ (3.1)

where A is the area of the tiling. The factor 2 in (3.1) ac-
counts for the fact that it takes two excess (0, 1) or (3,0)
rhombuses to make an (SS) bond.

Equation (3.1) can be generalized to rows running in
other directions in an obvious way. Summing over all
five sets of rows gives a lower bound for the elastic energy
per unit area

FIG. 3. (a) A row of tiles with common edges along e ( direc-
tion. SS and DD bonds alternate along the row. Unmatched
single arrow pairs are indicated by the circles. (b) Six non-
symmetry-related two-tile configurations, each containing an SS
bond in the middle. (SS) bonds are found in C4, C5, and C6.

%e now turn to the general class of rhombus tilings
with energy (2.2). To obtain a lower bound for the elastic
energy associated with E„weapply a similar counting
scheme as in the previous case.

For the following discussion it is convenient to intro-
duce an h, coordinate for every cell. Let r be the corner
of a decorated tile to which two double arrows point.
The h, coordinate of the tile equals h, (r) —4 if the two
double arrows are along the e" directions, and h, (r) —1

otherwise. Unlike h„h,depends on both the vertex po-
sition and arrow configuration. In the special case of
four-vertex tiling, all cells have the same h, coordinate.

As before, we first consider a finite segment of a row of
set a=0, which contains (DD) and SD bonds. Such a
row consists of "domains" of constant h, separated by
"walls. " Each wall is a (DD) bond [Fig. 4(a)] or an SD
bond [Fig. 4(b)]. The heavy plain line in Fig. 4(b) desig-
nates an edge which is decorated with a single arrow (not
shown) pointing in either the e )( or the —e()t direction, as
the case may be. An SD bond shift h, by 1, while a DD
bond shifts it by 2. Let A and B be two vertices at the
two ends of the segment and on the same side of the row,
and I DD(0) and I sD(0) be the number of (DD) and SD
bonds in the segment, respectively. Then

21 DD(0)+I'sD(0) + ~hh
~

= ~gn) +g n2+2))n3+g n~4

4

Ess XA& /
a=o

4CSS
g fe" XE e

5 5a 0
(3.2)

(3.5)

where we have used Eq. (2.14) at E, =0. From (3.2) and
(2.15) we obtain a lower bound for the elastic energy per
tile

4~SSe' '(E, E,=O)=, g fe('XE e
5&5a PT

Here

PT=PF+ps= (1—r detE)sin
4w 3 . 2~
5a

(3.3)

(3.4)

In the Appendix we consider a special class of four-
vertex tilings whose energy per tile can be calculated ex-
actly. The result coincides with (3.3), which establishes
(3.3) as the exact elastic energy for four-vertex tilings at
T=0.

An interesting, perhaps artificial feature of the Penrose
model is that there is no lock-in term in the energy (3.3)
at strains corresponding to periodic tilings, in contrast to
the typical behavior of other incommensurately modulat-
ed systems. It is plausible that the degeneracy among
different periodic tilings at a given strain, which is the
origin of above-mentioned behavior, disappears when
suIIiciently long-range interactions among the vertices (or

/ 7

/
/(~as I %~I

/ /
/

L

4 //Q
I~ $ I~ l7

/ ~ /
/
l

0
b,h; =2, e= &Dn

05h, =1, e= &SD

FIG. 4. (aj A (DD) bond, Ah, =2. Solid circles indicate
vertices to which double arrows of the corresponding rhombus
point. (b) An SD bond ("+"or "—"), b, h, =1. The top solid
line is decorated with a single arrow, pointing in either direc-
tion.

where hn =n —n ". Note that hn ~, hn 2,
—b n 3, and

dn4 give the —number of (0,1), (0,2), (3,0), and (4,0) type
rhombuses in the segment, respectively.

Let yss(a), yDD(a), and ysD(a) be the number of
(SS), (DD), and SD bonds in rows of set a per unit
area. From Eqs. (3.5) and (2.14) we obtain (for general a)
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YDD(+)+ YSD(+) —Ip(...+ l )+P(...+2)

P(a —2, a) P(a —l, a) ~

ie)'XE, +(E e )XE
i

. (36)
5a

One can combine this result with (3.1) to give a general
lower bond for the elastic energy. To obtain the con-
straint on Yss(a), we note that while the discussion lead-
ing to (3.1) still holds in the presence of (DD) bonds,
each SD bond introduces an additional tile, which alters
the succession of single and double arrow bonds along the
row. Thus, (3.1) should be replaced with

2 (a)+ (a) ~ (YSS ) SD —~p(a, a+1) P(a, a+2)+P(a 2, a) —P(a l,—a)~

ice( XE'e'+-'e)( XE'+-)E'XE'"'i .
4

a a 4 a z 4 z a (3.7)

+YSD«)&SD]

subjected to the constraints (3.6), (3.7), and

rss(~) o-YDD(~) OYSD—(~) —0

(3.8)

(3.9)

The expression in (3.8) can be evaluated at any given
strain using the standard methods in linear program-
ming. At small strain, the constraints (3.6) and (3.7) are
dominated by terms linear in E and E, . Thus, if one mul-

tiplies both E and E, by a given factor, the lower bound
(3.8) changes by the same factor.

IV. THERMAL ROUGHENING

In this section we examine a heuristic argument which
suggests that thermal roughening of the deBruijn surface
occurs at all T )0. We shall start by reconsidering the
T=O case, and focus on the energy associated with a
"step" on an otherwise fat deBruijn surface.

A key notion in the following discussion is "worm, "
defined as an unbroken sequence of three tile hexagons, as
shown in Fig. 5. The length of a worm is defined to be

Summing over contributions from all five rows, and
minimizing the energy separately for each row, we obtain
a general lower bound for the elastic energy per tile

4
e' '(E,E, )=pT' g min.=0] ss~~] ~DD~~] ~so(~]

X l Yss(+)ess + YDD(+)eDD

the number of hexagons in the string. The two sides of
each hexagon in a worm are symmetrically decorated
with arrows, thus flipping one or more hexagons [shown
by the shaded portion in Fig. 5(b)] in the worm does not
create (or destroy) unmatched arrow pairs on the two
sides of the worm. Note that arbitrarily long worms can
be found in a Penrose tiling. Different Penrose tilings can
be brought to one another through a succession of flips of
worms which run across the system.

Consider a configuration obtained by properly joining
two Penrose tilings which have slightly different average
h coordinates, as illustrated in Fig. 6. This is analogous
to constructing a step on the surface of a crystal. The in-
terface of the two parts is indicated by the dashed line.
The Penrose tiling on the right coincides with the con-
tinuation of the Penrose tiling on the left, except at a set
of worms (shaded). Unmatched single arrows, indicated
by the dots, appear in partially flipped worms which run
across the interface (heavy line). The density of un-
matched arrows along the interface is inversely propor-
tional to the typical length scale I of the network of
flipped worms, which can be estimated as follows.

(b)

FIG. 5. (a) A worm formed by six hexagons. Edges on the
two sides of' the worm are decorated symmetrically. (b} The
same worm with two hexagons (shaded) flipped. As a result,
two (SS) bonds, indicated by circles, are created.

FIG. 6. Two Penrose tilings joined along the dashed line.
The shaded tiles on the right-hand side must be rearranged if we
are to continue the left Penrose tiling across the dashed line.
Solid circles indicate (SS) bonds. Worms running across the
dashed line are indicated by the heavy lines. The typical inter-
spacing of the network of flipped worms is l.
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Suppose that the difference in average h between the
two tilings is hh. Contribution to this difference comes
only from vertices which lie in the flipped worms. Not-
ing that a typical cell of the network of flipped worms
contains I vertices surrounded by I flipped hexagons, we
obtain

(4.1)

The energy of the interface per unit length is given by

assi ' sssl~hl (4.2}

from which the T=0 linear elastic energy can be
rederived.

The behavior (4.2} is typical for a solid-gas interface
below its roughening temperature, though there the
height shift is usually only discrete. The usual argument
for the thermal roughening of such an interface assumes
a finite entropy kslna )0 for a step of unit length. The
free energy of a step of length L is thus given by

f (L) =Leo Lke T l—na, (4.3)

which vanishes at T„=epl(kel na). Here eo is the ener-

gy of the step per unit length. For T & Tz the interface
becomes rough and steps can no longer be unambiguous-

ly identified.
Let us now consider a similar argument applied to the

deBruijn surface. Inspecting Fig. 6, we see that each
(SS) bond (shown by a solid dot) can be moved indepen-
dently to any other shared edge of two hexagons in the
same worm (shown by the region enclosed by heavy lines}

through successive hexagon flips. Since there are no new

(SS) bonds created in the process, all configurations
thus obtained are degenerate. From this observation we

obtain an estimate for the entropy of a step of length L
and shift hh,

s (L ) = ksln& '= Lke I ~hlln l
A—hl, (4.4)

=LI &hl(ess+ke T»lbhl ) . (4.5)

Thus, at any given T )0, f (L) can be made to vanish for
sufficiently small hh. This gives the argument for the
roughening of the deBruijn surface at any T & 0.

One should keep in mind that, though the estimate for
the minimum number of unmatched single arrows, (4.2),
is correct independent of temperature, at T & 0 there will
be an additional number of thermally excited ones which
tend to reduce both the excess number of unmatched sin-
gle arrows due to the step, and the estimate for its entro-
py, (4.4). Thus, strictly speaking, the above argument ap-
plies only at T=O. A rigorous analysis of the step free
energy at T &0 lies outside the scope of the present pa-
per.

V. INFLATION TRANSFORMATION

where we used (4.1}. Combining (4.4) with (4.2) gives the
free energy of the step,

f (L)=sssL/i —Ts(L)

them with bonds of length ~ times the bond length of the
original tiling, one obtains another rhombus tiling which
again satisfies the matching rules. This is known as the
inflation symmetry of the Penrose tilings.

In this section we generalize the inflation transforma-
tion to tilings which contain a small number of un-
matched single arrows. The scheme provides a natural
framework for a real-space renormalization-group
analysis on the four-vertex tiling model. We show that
the equilibrium distribution in the quasicrystal phase at
arbitrarily small T &0 flows under successive RG trans-
formations toward the infinite-temperature random-tiling
limit. The analysis provides another compelling argu-
ment for the thermal roughening of the deBruijn surface
at all T & 0. In the last part of the section we discuss the
crossover behavior of the elastic energy as the phason
strain is increased.

QUEEN STAR

A. Inflation of a rhombus tiling

For simplicity, we shall limit the discussion to four-
vertex tilings. The h, coordinates for the vertices are as-
sumed to be from 1 to 4. Such a tiling can be alternative-
ly viewed as a tiling by queens, kings, and stars, as shown
in Fig. 7. The center vertices of the three types of cells
have h, =1 or 4.

The procedure for performing inflation transformation
is illustrated in Fig. 8, which consists of two steps: (i)
Construct a tiling by queens, kings, and stars [Fig. 8(b)]
from the original tiling y [Fig. 8(a)]. (ii) Add a center
vertex to each queen, king, and star to obtain an inflated
rhombus tiling y [Fig. 8(c)], which is again a four-vertex
tiling. Each tile in g can be decorated with arrows ac-
cording to Fig. 7.

Specifically, we first find all vertices of y whose h, =1
or 4 [marked by open circles in Fig. 8(b)] and connect
them with bonds of length ~a, where a is the bond length
of y. The result is a tiling of queens, kings, and stars if
there is a sufficiently large distance (two or more tiles) be-
tween every pair of (SS) bonds in y. Additional cell
shapes can rise at places where two or more (SS) bonds
are placed next to each other. If the overall density of
unmatched arrows is low, such "bad" cells do not appear
often, and when they do, they are usually surrounded by
the "good" ones, and can be removed by shifting the po-
sition of one or two vertices around each bad cell. In the
example shown in Fig. 8(b), the bad cell is removed by
moving the vertex A to A', and reconnecting it to the
neighboring vertices, as indicated by the dashed lines.

A Penrose tiling has the interesting property that, by
suitably selecting a subset of vertices and connecting

FIG. 7. Queen, king, and star, corresponding to three, four,
and five incoming DD bonds at the center vertex, respectively.
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n a

The perpendicular space coordinates h for these vertices
are related by

agon of the type shown by the crosshatched tiles in Fig.
8(a) does not change g. In a vague sense, such flips
represent the type of local phason fluctuations which are
integrated out under the inflation transformation.

The 5D coordinates t n I for the vertices of the
inflated tiling can be obtained using the standard pro-
cedure discussed in Sec. II B. For convenience, we
choose the origin of y to be at the same position as that
of y, and let h, =g n to be from 1 to 4. At the com-
mon vertices of y and j' (those with h, = 1 or 4), we have

n, +n +, for h, =l,h, =2,
na —&+na+i 5 for h, =4h, =3 .

h(F)—:gn e = g(n, +n +, )e = —ih(r) . (5.2)

Thus, long-wavelength phason fluctuations in y remain in

j. Its amplitude is enhanced by a factor of ~.
Noting that the bond length of j' is r times that of y,

we obtain from Eqs. (2.11) and (5.2),

E= rE . — (5.3)

Equation (5.3) holds not only for the average strain of en-
tire system, but also in a suitable coarse-grained local
sense. Thus, the relation tells us that a random (rough)
tiling becomes even more random (rough) under the
inflation transformation.

B. Fugacity renormalization

FIG. 8. Inflation transformation: (a) a four-vertex tiling g,
(b) a tiling of queens, kings, and stars, shown by the heavy lines,
obtained by connecting vertices of g whose h, coordinate equals
1 or 4, and (c) the inflated tiling y. Solid circles indicate (SS)
bonds. The shaded long hexagon in (a) illustrates a short-
wavelength fluctuation which is integrated out in the inflation.

In the second step, we first add a center vertex to every
king and star, for which there is a unique choice for its
position. The situation is different for the queens, where
the following rule is used: If the two possible choices for
the position of the center vertex at a given cell give rise to
different number of unmatched single arrows, pick the
one which corresponds to a smaller number of un-
matched arrows in g; otherwise, pick either of the two
with equal probability —,'. In the case when the choice for
one queen-shaped cell affects the choice for another
(which rarely occurs at small density of unmatched single
arrows), we apply the above rule one at a time, following
a random selection of queen-shaped cells.

For a Penrose tiling the above scheme coincides with
the standard inflation rules, and generates a unique
inflated tiling. In general, we expect the transformation
to be a many-to-many mapping: different tilings g can be
mapped to the same inflated tiling y, while a given y may
correspond to more than one g. Note that flipping a hex-

The partition function of the four-vertex tiling model
can be expressed as

M(y)
Z(13,N)= +exp[ I3E(g)]= g ff—z;, (5.4)

where N is the total number of tiles, P= 1/k~ T, E (y) is
the energy (2.2), M(y) is the number of (SS) bonds in y,
and z, =exp( —Pass) is the Boltzmann weight (fugacity)
of the ith (SS) bond. The sum is over all possible tiling
configurations consistent with a given boundary condi-
tion.

Adopting the standard renormalization procedure, we
write

Z (p, N) =Zo(p, .V)Z(p, N ),
where

Z(P, N ) = g exp[ —PE(g ) ]

(5.5)

(5.6)

exp[ PE(y)]= g exp[ —PE(y)]IZO(P, N),—(5.7)

where the sum is over all possible configurations g which

is the partition function of the inflated tiling with X tiles,
and Zo(P, N) gives the contribution to Z due to the de-

grees of freedom which are summed over in the inflation
process. The renormalized energy E(y) is defined such
that
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are mapped to g under the inflation transformation.
At low density of (SS) bonds, it makes sense to write

(5.7) as a product of fugacities for the (SS) bonds z;,

exp[ —PE(j'}]=gz; . (5.8)
l

In the following we derive a renorrnalization equation for
z;, assuming that the (SS) bond is contained in a worm,
which is the case if the bond is sufficiently far apart from
other (SS) bonds.

Consider a worm which contains certain number of
(SS) bonds, as shown in Fig. 9(a). If we divide the
worm into a number of sections according to the arrange-
ment of the short hexagons (queens), in the way shown in

the figure, the inflation transformation can be carried out
for each section, independent of its neighboring sections.
At low density of (SS) bonds, each such section con-
tains one or two long hexagons (two fat tiles and one

skinny tile).
Figures 9(b)—9(d) give a list of possible configurations

for sections which contain one (SS) bond, along with
bonds of j (shown by the heavy lines) determined by the
local configuration. Two Boltzmann weights are needed
for our purpose: z~ for an (SS) bond between a fat and
a skinny tile (see C5 in Fig. 3), and z2 for an (SS} bond
between two fat tiles (C6 in Fig. 3).

In Fig. 9(b), two different configurations of the section,
each of which contains a z, -type (SS) bond, lead to the
same set of bonds in j', including a z2-type (SS) bond.
Thus, we have

zf z$ + zp (5.10)

for the fugacity of the (SS) bond in the inflated pattern
of Fig. 9(c) and the left-hand side of Fig. 9(d). [We note
that since the fugacity of an (SS)+ bond in j' is
1+O(z, ), Eqs. (5.9) and (5.10) should contain a second
order correction if (5.8) is assumed. However, at low
temperatures z, &&1, so that this second order term can
be safely ignored. ]

Rewriting Eqs. (5.9) and (5.10) in a matrix form, we ob-
tain

T

z] 1 —' z2 1 z]

.Z2.
=M

2 0 z2 zz
(5.11)

The eigenvalues of the matrix M are given by ~ and
—1/~. Since z„z2,and M are all positive, the transfor-
mation carries z, and z2 toward larger values with an
asymptotic growth rate ~.

Equations (5.9) and (5.10) may not hold for (SS)
bonds which occur at the end or outside of a worm.
Since the percentage of such (SS) bonds in equilibrium
configurations at low temperatures is very small, we ex-
pect that the renormalization of the equilibrium distribu-
tion is controlled by the behavior of z

&
and z2.

z, -type (SS) bond in the inflated pattern. The segment
shown in Fig. 9(d), on the other hand, corresponds to two
different z&-type inflated local patterns, each assigned a
probability —,'. Thus, we write

22 2zf (5.9) C. Renormalization-group flow and elastic energy

Figure 9(c) illustrates a segment of two long hexagons
containing a z&-type (SS) bond, which gives a unique

Writing approximately z; =z; exp( —Pass ) with
P= 1/kz T, Eq. (5.11) can be replaced with, after a
sufficient number of iterations,

P =P in'/—ess (5.12}

IXL
~ie I
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The RG flow on the T Eplane, as d-efined by (5.3) and
(5.12), is shown schematically in Fig. 10. The right
(T= ~) and upper (~E~ =1) boundaries of the box are
limits on the validity of the RG equations. The origin 0,
representing the 7=0 Penrose tilings, is the only fixed
point of the transformation, and is unstable. The dashed
line, given by ~E~ =exp( —2ess/k~T), separates two re-

(c) IVo

A% ~ ~
~ ~

FIG. 9. (a) Dividing a worm into sections according to the
arrangement of short hexagons. (b) Two possible configurations
for sections containing one long hexagon and an (SS) bond,
along with bonds of the inflated pattern, as shown by the heavy
lines. (c) A two-long-hexagon pattern containing an (SS) bond
which gives a unique inflated pattern. (d) Another two-long-
hexagon pattern containing an (SS) bond which gives two
difterent inflated patterns, each assigned a probability —,'.
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FIG. 10. Schematic plot of the renormalization-group flow

on the T-E plane.
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gions I and II. Points in region I flow to the infinite-
temperature limit. These include the entire quasicrystal
phase at T & 0, represented by the lower boundary of the
box. Points in region II flow to the large strain limit.

In the following we show that the elastic (free} energy
is quadratic in the phason strain E in region I, but be-
comes linear in region II. Consider the reduced free ener-

gy per tile

where

$0(p, E)= —lim —lnZO(p, N),1

w-~ N
(5.14)

and the limits are taken at fixed E. The factor v in
front of the last term in (5.13}accounts approximately for
the reduction of the number of tiles in the inflated sys-
tem.

The factor Zo includes contributions to the partition
function from flips of long hexagons mentioned previous-
ly. In a perfect Penrose tiling, the number of such hexa-
gons is ~ N. We expect this to be approximately true at
low temperatures, too. Each such hexagon contributes
(approximately independently) a factor 1+z2 or 1+z,zz
to Zp. Hence, we obtain

P (PE)= —v Ae (5.15)

where we have used z, -z2-exp( —Pass). Here A is
some constant which depends on the ratio of z, and z2.

Using (5.15), Eq. (5.13) can be iterated n times to give
—2'

p(p, E)= —Ar ne

+~ '"y(P n in~/ass—~ (5.16)

where we have used Eqs. (5.3) and (5.12), and the inver-
sion symmetry P(P, E)=P(P, —E).

Starting from a point (T,E}below the dashed line in

Fig. 10, i.e., lEle (1,one arrives at the right bound-2P'ss

ary of the box after n =pass/ln~ transformations. As-
suming that the reduced free energy at infinite tempera-
ture depends quadratically on the phason strain, we get
from (5.16)

A 2~'ss
passe

~lnv

+Be "+-'K(p}lEl'

P(P, E)=—

(5.17)

P(P, E)= —lim —lnZ (P,N) =40(P, E)+r P(P, E),
N

(5.13)

+lElg(P —n ln~/ass, r "E) . (5.19)

At fixed phason strain E, the first term vanishes as T~0,
while the second term reduces to the zero-temperature
linear elastic energy (3.3).

Figure 11 is a schematic plot of the energy per tile
e =BQIBp (same as the number of unmatched single ar-
rows per tile multiplied by ass ) against E at T=O and
T & 0. For T & 0 the excess number of unmatched single
arrows increases quadratically with E for small E, but—2Pcss
changes to a linear behavior at lEl & e

The quadratic form (5.17) at small E governs thermal
fluctuations of phasons of sufficiently long wavelength,
and leads to the roughening of the deBruijn surface at ar-
bitrarily low temperatures. This conclusion agrees with
the heuristic argument presented in the previous section.

VI. MONTE CARLO SIMULATION
OF RHOMBUS-TILING MODELS

A. Method

Due to lack of exact results, Monte Carlo simulations
provide a valuable source of information to the equilibri-
um properties of our model. There are some technical is-
sues involved in applying the standard method to
rhombus-tiling systems. Since there has not been a de-
tailed account of the approach in the literature, in this
section and in Sec. VI 8 we discuss in some detail the al-
gorithm used in studying the four-vertex, binary random,
and "unconstrained" random tilings. The last case is
defined to be the infinite-temperature limit of the Penrose
model at finit ass ~sD an«DD

The algorithm is based on the Metropolis importance
sampling scheme. Transition from one tiling to another
is done through a sequence of "flips" of a few prescribed
local clusters of tiles, which we take to be long and short
hexagons [Fig. 12(a)] except for the binary tilings, where
an octagon is taken instead [Fig. 12(b}]. Each hexagon or
octagon is uniquely identified by a vertex, as indicated by
the solid circles in Fig. 12.

In the case of hexagon flips, the basic Monte Carlo
move consists of two steps: (i) randomly select a vertex in
the system; (ii) if the vertex represents a hexagon, flip the

where 8 is the entropy of the infinite temperature random
tiling, and

sc(p}=z e (5.18)

is the phason elastic constant, whose value at T = ao is
given by K

ZP'ssFor lEle & 1, one arrives at the upper boundary of
the box after n = —

—,'inlEl/1n~ iterations. Equation
(5.16) then yields

0

FIG. 11. Schematic plot showing the dependence of energy
per rhombus on the phason strain at T=O and T &0. Here
a =exp( —2c.ss/ka T)
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(a)
FIG. 12. Basic moves for the tiling simulations: (a) hexagon

flips, and (b) an octagon flip. Solid circles indicate vertices
which identify the corresponding cluster of tiles.

hexagon according to a probability

M'"= IM"'
I =(P,O, P,——Q, Q),

M' '=tM' ') =(O, P, Q, —Q, P)—,
(6.3)

where P and Q are integers. Note that this hypersurface
is normal to the h, direction a' ' [see Eq. (2.7)], thus
there is no average E, strain in the system. Once the grid
lines are given, standard methods can be used to con-
struct the tiling (see Ref. 24).

The basis vectors of the periodic tiling are given by

A periodic tiling can be constructed from a periodic,
uniform dual grid. %'e choose the dual grid to be the in-
tersection of (four-dimensional) lattice planes of the 5D
hypercubic lattice at constant n with a 2D hypersurface
spanned by two vectors

exp( Pb,E)—, if hE )0,
1, otherwise . (6.1)

4
R(i) ~ ~(i)~ ~~

a ea
a=O

Here AE is the energy cost for performing the flip. The
case with octagon flips is done following a similar pro-
cedure.

Let X; and X. be two tilings related by a single flip, and

b E=E (X/ ) E(X; ) ~—0 .

Suppose the total number of vertices in the system is N,
then the transition probability

P(X, ~X ) =exp( pb, E)/N, —

whereas P(X~~X;)=I/¹ Thus, the detailed balance re-
lation

= (Pr+Q), r—sin-2w —1 ). m

2 '
5

(6.4)
4

R' '= g M' 'e ~~ =(Pr+Q) (},2sin-
a=O 5

Since ~R'"~ = ~R' '~, the unit cell has a rhombic shape.
This rhombic cell is used as a finite system in our simula-
tions. Periodic boundary conditions are used.

The shift in h across the system along R"' and R' ' is
given by

P(X, ~XJ ) =P (X, X; )exp( 136E), — (6.2) H"'= g M"'e =(P —Qr), r sinn. /5
a=O 2

is fulfilled.
For tilings whose energy depends on the arrow

configuration, single rhombus flips should be included in
addition to the hexagon flips. This step is not necessary
in simulating the infinite-temperature random tilings, as
well as the four-vertex tiling.

In order for the above algorithm to generate the equi-
librium distribution of a given ensemble, there must be a
nonzero transition probability to any tiling configuration
in the ensemble from a given one. Using the "dual-grid"
representation of rhombus tilings, ' it is possible to
show that the hexagon flips, which correspond to shifting
the dual lines locally, is sufficient for reaching any other
configuration starting from a given one, under proper
boundary conditions.

4
H' '= g M,' 'e =(P —Q~)(0, 2sinn/5),

a=O

(6.5)

1 0
2 sin2m /5

E= Q +PQ P-
(Pr+Q)

(6.6)

A sequence of approximate pentagonal tilings can be
obtained by taking

P =Fk Q =Fk-i (6.7)

where Fk are Fibonacci numbers satisfying the recursion
relation

respectively. Using Eq. (2.11) we obtain the average
phason strain

B. System characteristics
Fk =Fk —~+Fk-z (6.8)

In this subsection we discuss various aspects of the til-
ing systems studied in our simulations. Since our main
interest is the property of pentagonal quasicrystal phase,
most of the systems we studied are specifically chosen to
contain the smallest average phason strain at a given sys-
tern size, though due to the periodic boundary conditions,
it is impossible to eliminate the strain E completely. In
addition to systems with minimal phason strain, we also
looked at a few other systems at larger strain in order to
understand the eft'ect of strain on our results.

with F0=0, F& =1. The number of tiles in such a system
is given by

Nk =F2,I +, +2F2k . (6.9)

Systems of 76, 199, 521, 1364, and 3571 tiles are obtained
for k ranging from 4 to 8. They are used in most of our
studies reported below.

Using (6.7), the prefactor of the strain matrix in (6.6)
takes the form,
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Fk —1
+Fk~k —1 Fk —

( 1 )k&
—2k

(Fk, +Fk r)

TABLE I. Phason elastic constants and entropy per tile s„
for three different random tilings.

=( —1)"rNk '+O(Nk 3) . (6.10)

Thus, the phason strain E is inversely proportional to the
number of tiles in the system under the special choice
(6.7).

Tiling

0.600+0.025 0.288+0.016Unconstrained
random

Binary random 0.626+0.025
Four-vertex, T = (x) 0.740+0.032

s~ /kB

=0.5'

0. 1928+0.0004'
0.393+0.002

C. Simulations of binary and unconstrained random tilings

The purpose of these two simulations is to establish the
existence of quasi-long-range translational order in ran-
dom tilings of the plane by Penrose rhombuses, thus
confirming an earlier conjecture by Elser and Henley.
The starting con6gurations of our simulations are chosen
to be the periodic tilings mentioned above, with h, being
integers from 1 to 4. In the case of binary random tilings,
where the h, coordinate is restricted to three consecutive
integers, the procedure is followed by a sequence of hexa-
gon flips to eliminate vertices with, say, h, =4. After an
initial equilibration stage, which typically consists of
2000 Monte Carlo (MC) sweeps, data is gathered every
10-50 MC sweeps over a total run of 20000-50000 MC
sweeps. (An MC sweep consists of one basic Monte Car-
lo move per vertex. } Correlation between successive data
points is taken into account in estimating the error bars
on the statistical averages (2.30)-(2.32).

As a test of the algorithm, we applied the hexagon flip
scheme to the 60' rhombus-tiling model, where an exact
expression for the elastic constant is known. The loga-
rithmic behavior of phason fluctuations was indeed ob-
served. The agreement between the numerically deter-
mined elastic constant and the exact value is better than
the estimated error bars, which is about 2%.

Figure 13 shows the h fluctuation data for the binary
(solid circles) and unconstrained (open circles) random
tilings, and h, fiuctuation data (triangles) for the uncon-
strained random tiling, computed using Eqs. (2.30) and
(2.31). [To eliminate effects due to a small phason strain,

'Estimated by Henley (Ref. 12).
W'idom et al. obtained a value 0.600%0.006 from a transfer-

matrix study (Ref. 15).
'Widom et al. (Ref. 15).

the perpendicular space coordinate h is calculated using
(2.21).] Error bars on the data are roughly represented
by the size of plotting symbols. The logarithmic behavior
over the range of sizes studied is apparent. The slopes for
the three lines are determined to be 0.254+0.010,
0.265+0.010, and 0.276+0.015, respectively. The corre-
sponding elastic constants, defined through (2.30} and
(2.31), are listed in Table I.

We also measured scattering intensities at a number of
peaks. The data for the unconstrained random tilings are
shown in Fig. 14, where points corresponding to the same
peak (with phason strain taken into account) are connect-
ed with straight lines. Points with Q~, =0 are represent-
ed by solid circles, and those with Q~, =+2m. /5 are
represented by open circles. The nearly linear behavior
of data in each group on the log-log plot confirms the
finite-size scaling relation (2.33), thus providing direct
evidence for the quasi-long-range translational order in
the tiling system. The slopes of the lines are determined

10!

~ 2.5
0
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2

10:

10:
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10 10 y y ~ ~ 0 I I OS%II
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FIG. 13. Mean-square deviation of the perpendicular-space
coordinates [see Eqs. (2.30) and (2.31)] vs logarithm of system
size N for h of the binary tiling (solid circles), h of the uncon-
strained tiling (open circles), and h, of the unconstrained tiling
(open triangles).

FIG. 14. Diffraction intensities vs logarithm of system size N
for the unconstrained random tiling at a number of peaks stud-

ied. Points of the same peak are connected. Solid circles corre-

spond to Q, =0, and open circles, Q, =+2~/5. A line (dashed)

with slope 1 is drawn for comparison.
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w 0.5
I

0 4 8

Q
2

FIG. 15. Slopes for each set of data shown in Fig. 14 vs the
square of the phason momentum Q', with Q, =0 (solid circle)
and +2m/5 (open circle). The lines are drawn using Eq. (2.34)
with E and E, taken from Table I.

periodic boundary conditions, which can be calculated
using Eqs. (3.3) and (6.6)] is always obtained as we contin-
ue the simulation down to very low temperatures.

Carrying out the simulation at P) 4 (or T &0.25) is
hindered by both the small probability e ~ for creating a
pair of (SS) bonds, and the large system size (approxi-
mately e ~ tiles) needed to begin to see the full effect of
equilibrium phason fluctuations (see discussion in Secs.
IV and V). More efficient algorithm and considerably
larger system size and longer runs are needed to explore
the equilibrium behavior of the model in this temperature
regime.

Figure 16(a) shows part of a configuration y obtained
during a simulation of the 3571 tile system at P=2, and
Fig. 16(b) a tiling obtained from y after three inflation

and plotted against ~Q ~, as shown in Fig. 15. Data with

Q~, =O and +2m/5 fall on two separate straight lines,
which are drawn using Eq. (2.34) and the value for E and
E, taken from Table I.

The fact that the elastic constant K for the two random
tilings is almost identical is an interesting and intriguing
result. One can plausibly relate this behavior to the
universality of elastic constant in uniaxial striped
domain-wall systems. The latter case can be represent-
ed by a quantum mechanical system of one-dimensional
fermions. Using a free-fermion approximation, a univer-
sal elastic constant can be obtained. Adding short-range
interactions among the fermions may or may not change
the elastic constant. Given the various topological prop-
erties of the rows, one may plausibly formulate the equi-
librium statistical theory of rhombus tilings in the one-
dimensional fermion system language. Further work is
needed to quantify this connection.

I
't

D. Simulation of four-vertex tilings

The arguments given in Secs. IV and V suggest that the
logarithmic dependence of h fluctuations on the system
size, observed for the random-tiling models, should con-
tinue down to T=O in the Penrose model. In this section
we present simulation data on the four-vertex tiling mod-
el which support the heuristic arguments and results
from the RG analysis.

We recall that the four-vertex model is defined by the
energy (2.2) with esz= 1 and EsD =EDD =+ ~, thus only
unmatched single arrows are allowed at any T, including
T = ac (by convention).

The simulation was carried out as described in the pre-
vious subsection. Data were taken following a heating se-
quence, from @=4 to 2.5 at increment bP=0. 5, and from
2.5 to 0 at 613=0.25. As before, at each temperature the
system was equilibrated for a period of 2000 MC sweeps
before data were taken. This seems to be adequate, as no
transient behavior was observed. We did some cooling
runs to check the presence of hysteresis effects, too.
Within the statistical errors, the data so obtained agree
well with those from heating studies. The lowest energy
state [containing two or more (SS) bonds due to the

FIG. 16. A typical equilibrium configuration at P=2 from
Monte Carlo simulation. (a) Part of a 3571-tile system. Traces
of the quasiperiodic spacing of rows (shaded} can still be seen.
{b) The whole system after three times inflation. The area en-
closed by the box of dashed lines corresponds to the part shown
in (a). Phason fluctuations are much more pronounced. (SS)
bonds are indicated by solid circles in both cases.
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transformations (see Sec. V}, plotted using the same
rhombus edge length. The part of Fig. 16(b) which corre-
sponds to the inflation of Fig. 16(a) is indicated by the
box of dashed lines. Ail (SS} bonds, indicated by solid
circles, are located within the worms in Fig. 16(a}, but
not necessarily so in Fig. 16(b). Obviously, the inflation
transformation carries the system to higher temperatures
with a larger density of (SS) bonds.

We have shaded rhombus rows which have an average
vertical orientation. In a Penrose tiling, these rows
divide the system into a quasiperiodic sequence of wide
and narrow strips. This behavior can still be identified in
Fig. 16(a), but is absent in Fig. 16(b). This implies that,
even at very low temperatures, the quasiperiodicity asso-
ciated with the ground state is lost on suSciently large
length scales. From the transverse displacement of rows
one can get a rough estimate on the phason fluctuations,
which are much more pronounced in the inflated tiling.

In the following we present a more quantitative com-
parison between Monte Carlo simulation results and pre-
dictions of the RG analysis. The quantity which can be
most accurately determined in our simulations is the en-

ergy per tile e(N) for a system of size N, which also gives
the density of (SS) bonds. Figure 17 shows e(N) at
P= 1 plotted against 1/N for the five sizes 76—3571 with
minimal phason strain, and three other sizes 2 X76,
3 X 76, and 2 X 199. Data at a given phason strain E are
connected by a straight line. The lines are nearly parallel
to each other, indicating a finite-size correction which is
approximately linear in 1/N, with a slope independent of
E (for small E). This behavior is generally expected for
2D systems described by a square-gradient free energy.
The upward increasing behavior of e (N) with N can be
plausibly interpreted as due to the long-wavelength cutoff
of phason fluctuations, thus reducing the number of
(SS) bonds in smaller systems. The extrapolated value
for the infinite tilings is larger for systems with large
phason strain, showing that the quasicrystal phase has
the lowest (free) energy.

Figure 18 shows the energy per tile extrapolated for
the infinite system at zero phason strain. The error bar

0.4

0.3 —''

I I I I I I I I I I I I I I

0.2—

0.1—

0.0
0

FIG. 18. Energy per tile vs inverse temperature P. The solid
and the dashed lines are drawn using the fits Eqs. (6.11) and
(6.12), respectively.

on all data points is about 0.5X10 . The data fit well
with

e (P)=(2P—1.3838)e ~+(2P+2. 1820)e 4~, (6.11)

+0.0164P —0.0051@',

shown by the dashed line.
Figure 19 shows the heat capacity

c/k k
—I P2((e2) (e )2)

dT

(6.12)

(6.13)

The two curves on the figure are obtained by taking
derivatives of (6.11) (solid line) and (6.12) (dashed line),
which fit well with the data within each temperature
range.

in the range 1&P&4, as shown by the solid line. This is

to be compared with the derivative of (5.17) with respect
to P. For P & 1 the data fall on the curve

e (P)= 0.3841 —0.279P+0.0436P
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FIG. 17. Energy per tile vs inverse system size at P= 1 for til-

ings at various phason strain. Data at the same strain are con-
nected by a straight line.

FIG. 19. Specific heat vs inverse temperature P. The solid

and dashed lines are drawn using the derivatives of Eqs. (6.11)
and (6.12), respectively.
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FIG. 20. Mean-square deviation of the perpendicular-space
coordinates [see Eq. (2.30)] vs logarithm of system size N for the
four-vertex tiling model at various temperatures. Data at the
same temperature are connected with straight lines.

FIG. 22. Slopes for each set of data shown in Figs. 20 and 21,
multiplied by e a, and plotted vs P.

The free energy and entropy can be obtained by in-
tegrating (6.11) and (6.12). For instance, the entropy per
tile of the four-vertex tiling at infinite temperature is
given by

s„/ks= f e(f3)dP=0. 393+0.002,
0

(6.14)

which is about twice the value for the binary tiling deter-
mined by Widom et al. using a transfer matrix method
(see Table I). '

Figures 20 and 21 show the average fluctuation of h
plotted against N on a similog scale, at high and low tem-
peratures, respectively. [We have subtracted out the cor-
responding zero-tetnperature value. ] Points at the same
temperature are connected by straight lines. The loga-
rithmic behavior is observed for P & 2. 5, and reasonably
accurate phason elastic constant can be determined. At
lower temperatures, one still sees the definite trend of in-
creasing phason fluctuations with system size, though the
data is not accurate enough to provide a meaningful test
of (2.30).

The slope of lines in Figs. 20 and 21, multiplied by e ~,

is plotted in Fig. 22. The data show a slightly upward
trend as P increases, instead of the predicted behavior
(5.18).

We also studied the dependence of scattering intensi-
ties on system size, which exhibits the expected power-
law behavior. Figure 23 shows an example at )33=0.5,
where the exponent rl is plotted against ~Q ~

. Note that
since there is no roughening in h, direction, all data
points fall on a single line, in contrast to the behavior
shown in Fig. 15.

From the above analysis of phason fluctuations,
scattering intensities, and the behavior of equilibrium
configurations under inflation transformations, we con-
clude that the phason fluctuations lead to the roughening
of the deBruijn surface in the h direction for P up to at
least 3. The logarithmic dependence on system size at
these temperatures supports the scenario that long-
wavelength h fluctuations are described by a square-
gradient free energy. The behavior of the energy per tile
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FIG. 21. An enlargement of the low temperature region in
Fig. 20.

FIG. 23. Finite-size scaling exponent of the scattering inten-
sity vs the square of the phason momentum Q for the four-
vertex tiling at P=0.5 [see Eq. (2.33) and Fig. 15]. A line is
drawn using Eq. (2.34) with K given in Fig. 22. Solid circle:
Q, =O. Open circle: Q, =+2m/5.
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and phason elastic constant at low temperatures agree
well with predictions of the RG analysis. Finally, we

mention that a recent Monte Carlo study by Strandburg
and Dressel on a similar Penrose rhombus tiling model '

indicated a roughening transition in h at P=2. 5, in

disagreement with our result.

VII. CONCLUSIONS

Our paper presents one of the first detailed studies of
the equilibrium properties of a 2D matching-rule-based
quasicrystal model. The model exhibits quite interesting
configurational disordering behavior, connected to the
quasiperiodicity of the ground state. We have carried out
detailed analysis of phason fluctuations and long-range
translational order in the system, and the behavior of
phason elastic (free) energy and other thermodynamic
functions. A close relationship between the tiling model
and the general surface roughening phenomena is estab-
lished.

We elaborated on the unusual zero-temperature
phason elasticity suggested by Socolar et al. for unit-cell
quasiperiodic crystals. Both analytic calculations and
heuristic arguments are presented, which give a linear
dependence of the phason elastic energy on the strain.
The heuristic argument offers an intuitive understanding
of how the linear form arises in a unit-cell model which
possesses a continuous phason translation symmetry. We
also pointed out a feature of the Penrose model, whose
energy does not contain a lock-in term which favors
periodic tilings.

Through real-space RG analysis and Monte Carlo
simulations we were able to show that the unusual T=O
phason elastic energy changes to the usual quadratic
form at any T )0 and sufficiently small strain

2P~ss ~'ss
~E~ e, where e is the Boltzmann weight for a
single matching-rule violation (defect). Intuitively, this is
understood in terms of the large entropy available, in a
quasicrystal configuration, for each of the defects which
contributed to the T=O phason elastic energy. This large
entropy leads to the vanishing of the free energy for the
defects, hence the disappearance of the linear term in the
elastic energy. The crossover from the linear to the quad-
ratic form occurs when the number of thermally excited
defects exceeds the number of strain forced ones.

A global picture for the melting of the ground-state
quasiperiodicity is provided by the real-space RG
analysis. At very low temperatures the local
configurations in an equilibrium tiling are essentially the
same as in the ground state. Tile rearrangements on the

~'ss
length scale e, which can be seen by performing a cer-
tain number of inflation transformations, destroy the
long-range translational order. As the temperature in-
creases, each domain represented by an inflated tile
breaks into smaller domains. This process continues up
to infinite temperature, where a random tiling on the sin-
gle rhombus scale is obtained.

Phason fluctuations in the tiling model are measured in
the Monte Carlo simulations. They show a logarithmic
divergence on increasing system size for the random-
tiling models, and for the Penrose model at the range of

temperatures studied. This is in agreement with a
square-gradient description of phason fluctuations. The
Fourier intensities of the equilibrium tilings also show the
expected power-law dependence on system size. Though
the simulation algorithm is not efficient for studying very
long-wavelength phasons, which are important at very
low temperatures, there is no indication that phason fluc-
tuations will settle to a constant value with increasing
system size at a low, but nonzero, temperature. We thus
conclude that the random tilings and the Penrose model
at any finite temperature possess quasi-long-range
translational order.

The heuristic domain-wall picture for the behavior of
phason strain energy presented in Sec. IV can be readily
generalized to other 2D quasicrystal models, and to three
dimensions. It is plausible that the 3D rhombohedron til-
ing with a matching-rule-based energy will exhibit the
same unusual T=0 phason elasticity as in the 2D case.
However, the physics at finite temperatures can be
different in the two cases. For the 2D Penrose tiling
model, a defect can be placed anywhere inside a worm
without increasing system energy. This was the origin
for the vanishing of the linear strain term in the elastic
energy at finite temperatures and sufficiently small strain.
In three dimensions, we may imagine the worms being re-
placed by sheets of rhombohedra, and the point defects
which arise from a phase shift across the system being re-
placed by line defects in the sheets. If the matching-rule
energy is such that a rigid translation of the line on the
sheet does not cost energy (except perhaps at the ends of
the line), but producing a jag on the line does, then one
expects the linear form of elastic energy to remain up to a
finite temperature. At sufBciently high temperatures it
should be possible for the line defects to gain enough en-
tropy to overcome their creation energy. A quadratic
phason elastic free energy is then expected. It would be
interesting to see whether the vanishing of the linear term
in the strain energy is accompanied by a phase transition
in the quasicrystal phase.

We believe the real-space RG analysis can be extended
to a general class of classical systems with a quasiperiodic
ground state, though a lack of inflation symmetry may in-
troduce additional complications. The basic idea can al-
ready be seen in the analysis of low-temperature behavior
of one-dimensional incommensurate systems by Vallet
et al. , where they considered a real-space RG scheme
based on the quasiperiods (continued fraction expansion)
of the incommensurate ground state. "

Finally, we comment on possible implications of our
results to the physical properties of real quasicrystals. It
is clear that studies of the equilibrium behavior of
phasons is an indispensible step toward a complete theory
of quasicrystal formation and stability. The picture of a
continuous disordering of an ideal quasiperiodic structure
into random tilings, on an ever decreasing length scale as
temperature increases, may provide a useful framework
for understanding and analyzing various structural prop-
erties of equilibrium quasicrystals. The two forms of
phason elastic energy can be useful for constructing sam-
ple phase diagrams of quasicrystal and other nearby
phases, using chemical potential as a controlling parame-
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ter, so that the thermodynamic relationship among the
quasicrystal phase and other incommensurately modulat-

ed, and large unit-cell periodic phases can be obtained.
Lastly, we point out that thermal phason fluctuations can
have a profound effect on electronic, magnetic, and sur-

face properties of quasicrystals. In the latter case, the
work of Lipowsky and Henley suggested that surface
roughness is qualitatively different for a quasiperiodic-
crystal quasicrystal and a random-tiling quasicrystal.

Note added in proof. After submission of the paper we
became aware of an article by Kalugin where a heuristic
argument for the roughening of the deBruijn surface
similar in spirit to ours was presented. A discussion of
matching rules has been recently formulated by Socolar
for a general class of tiling models. In particular, the
question of matching rules for the 3D Penrose tiling was
addressed. Some of his considerations are parallel to
those presented in Sec. III of this work.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with
V. Elser, K. J. Strandburg, M. Kardar, and D. E. Wolf,
and computer assistance from S. Johnson. This study
was initiated when both of us were visitors at Institute for
Theoretical Physics, University of California, Santa Bar-
bara. One of us (L.T.) wishes to thank the Materials Sci-
ence Division, Argonne National Laboratory for their
hospitality, where part of the work was carried out, and
Insitut fur Festkorperforschung der Kernforschungsan-
lage Julich, where the work was completed. This
research was supported in part by the Center for Theoret-
ical Physics and through the Board of Regents Advanced
Materials Program at Texas A&M University.

APPENDIX

We present here a direct calculation of the energy per
tile for a four-vertex tiling under a uniform phason strain
E, constructed using the projection method. As dis-
cussed in Sec. II B, the deBruijn surface representing the
tiling is globally parallel to the two vectors b"' and b' '

given in Eq. (2.13). As in the case of unstrained tilings,
one can define a "tilted" perpendicular space globally or-
thogonal to the deBruijn surface, which is a 3D plane
spanned by

a (3) ~a (3) g ~a (1) g ~a (2)
11a 12

a (4) a (4) / a (1) g a (2)
21 22

(A 1)

and a' ', where a' ' are given by Eqs. (2.5)—(2.7). Let
W({g j ) be the projection of a 5D unit cube

g ~x &g +1, a=O, . . . , 4, (A2)

into the tilted perpendicular space. The "window"
W( {g j ) specifies a 2D projection strip in the 5D space,
which consists of points whose projection into the tilted
perpendicular space lie in W( {g j ). We assert without
proof that, as in the case of Penrose tilings, projection of
5D hypercubic lattice sites (with lattice spacing equal to
unity) which lie within the strip into the physical space,

gives a complete set of vertices of a generalized Penrose
rhombus tiling. (Special attention should be paid to lat-
tice sites which sit on the boundary of the strip. )

The shape of the 3D window W( {g j ) has been given

by Jaric for the case E=O. At nonzero strain the
rhombic icosahedron is distorted from its regular fivefold

symmetric shape. Since the h, coordinate of the 5D lat-
tice sites takes only integral values, for E, =0 the projec-
tion of lattice sites within the strip is distributed on five

2D sections of the rhombic icosahedron, corresponding
to five successive values of h, . If one takes g g =0 (or

any other integral value), the number of nonempty 2D
sections reduces to four. Consequently a four-vertex til-

ing is obtained. In the following we shall restrict our-
selves to this case and assume h, to be from 1 to 4.

The projection window can be alternatively specified in
terms of the h coordinates introduced in Sec. IIC, Eq.
(2.21). The two orthogonal components of h are given by
the projection of a 5D vector {x j onto a ' ' and a ' ', re-

spectively, i.e.,

h({x j)= gx e (A3)

where

ei=ei —Ee" . (A4)

The window is then specified by four domains D„D2,
D 3 and D4 on the h plane, where Dk is the set of points
h obtained from (A3) for {x j belong to the 5D unit cube
(A2) and subjected to the constraint

h, ({x,j)= gx, =k . (A5)

In general, we define a shifted domain Dk(ho) to be the
set of points h such that h ho ED—k

The neighboring bond configuration of a vertex
r =g n e ~ in the tiling constructed above can be ob-
tained as follows. Suppose h, (r) =k, then h(r) lies in Dk.
The point r+ e jj is also a vertex of the tiling if and only if
h(r)+e lies in D„+,, or h(r) lies in the domain

D&+ i(
—e ). Hence, the presence of a bond in the direc-

tion e" at r is determined by whether h(r) lies in the
overlapping region of Dk and Dk+i( —e ). Similarly, the
presence of a bond in the direction —e ~~ at r is deter-
mined by whether h(r) lies in the overlapping region of
Dk and Dk, (e ). By plotting Dk and ten other domains

Dk+, (
—e ) and Dl, , (e ), a=0, . . . , 4 (five for k =1 or

4), the neighboring bond configuration for each point on

Dk is obtained.
Figure 24 shows the construction applied to (a) D„and

(b) D2 for a Penrose tiling. The two domains D, and D~
correspond to regions enclosed by the heavy lines in Fig.
24(a) and Fig. 24(b), respectively, while other domains are
shown by the dashed lines. Eight non-symmetry-related
domains within D1 and D2 are obtained, corresponding
to eight different local bond configurations, as discussed
previously by deBruijn, and by Jaric. The other two
domains D3 and D4 are related to D2 and D, by inver-

sion.
We now consider a strained four-vertex tiling. Since
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FIG. 25. Overlapping pattern of D2 (region enclosed by the
heavy lines) with other window domains for a strained tiling.
The shaded area does not correspond to any of the subdomains
on Fig. 24(b), thus representing vertices where the neighboring
bond configuration is not found in a Penrose tiling.

FIG. 24. Overlapping pattern of (a) D
&

and (b) D2 (region en-
closed by the heavy lines) with other window domains for the
Penrose tiling. D

&
is divided into three kinds of non-symmetry-

related subdomains, while there are five different kinds on D2.
Points within each subdomain have the same neighboring bond
configuration in the tiling.

Do and D5 are empty sets, only bonds which are possible
are e I for points on D „and —e for points on D4 ~

Thus, the neighboring bond configuration of a point on
D

&
and D4 belongs necessarily to one of three types,

queen, king, and star, corresponding to three, four, and
five outgoing bonds. Indeed, all subdornains on D, and
D4 can be made to correspond to the subdomains in Fig.
24(a).

The situation concerning D z and D 3 is different. Fig-
ure 25 is an example of D2, which is divided into a set of
subdornains by the boundaries of ten other domains. The
shaded region cannot be identified with any of the sub-
domains in Fig. 24(b), thus representing points with local
bond configurations not found in a Penrose tiling. Each
such local configuration contains one or more (SS)
bonds.

The shaded area in Fig. 25 can be decomposed into five

parallelograms, each representing an (SS} bond in a
given direction. Figure 26 is an enlargement of the over-
lapping region of D2 with Di( —50), which gives rise to
an SS bond in e ( direction. The area shaded by 45' lines
in the figure is the overlap of this domain with D3( 5,)—
or D, (53), so that we have a bond along either the e '( or
—e( direction at the same time. The overlap of the
doinain with Dz( —54} or D, (5z}, is shaded by —45'
lines, indicating the presence of a bond along either the
e ) or —e ( direction. In the region where the two shaded
areas overlap, a situation corresponding to one of the
three cases C„Cz,or C3 shown in Fig. 3(a) is obtained.

Thus, one has a pair of matched single arrows. This is
also true for the white region which is covered by neither
of the two shaded areas. The remaining region inside the
domain, which is covered by only one of the two shaded
areas, gives rise to an (SS) bond of the type C4, C5, or
C6 shown in Fig. 3(b). The four vertices of the parallelo-
gram are given by A =5&+53 8 8 3+8 4 C =8'2+54,
and D =5

&
+5z. From them we obtain the area of the

parallelogram

FIG. 26. Enlargement of the left corner on Fig. 25. The area
shaded by 45 lines is covered by either D3( —8 l ) or D

&
(5 3 ),

while the area shaded by —45' lines is covered by either
D3( ~4) or Dl (52).
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oT= +[5 +zXF +(5 +5 +z)X(e +e z)]

=5(2+x)sin (1—r detE),~ 2m -3
5

(A7)

I

I ~

FIG. 27. Projection of 5D lattice sites to a commensurate
perpendicular space, along with the window D&. The area en-
closed by thick dashed lines is the window of a shifted projec-
tion strip. Note that since the shaded region is a unit cell of the
projected periodic structure, it always contains one solid circle,
independent of the window position.

o o ~(Kz —K3) X (54—5, ) ~

=
~ [ez —e3 —E(e(—e()]X [e4—e, —E(ef~ —ev)]~

=(r+r ')~(e~4 —e, )XE(ej~ —eI))

= 5( eJ~, X Ereo'f, (A6)

where we used (A4). Equation (A6) applies generally to
bonds in other directions with 0 replaced by a in the final
expression.

For a tiling whose h(r) distribute densely and uniform-
ly on the four domains D„,the number of (SS) bonds
per vertex is given by the ratio of g cr to the total area
of the four domains

which yields Eq. (3.3).
One might question the validity of the result (3.3) when

the projection of 5D lattice sites obtained from a tiling
does not distribute densely and uniformly over the four
domains. In particular, a periodic tiling can correspond
to a situation where the di6'erences 8' —e

&
become lattice

vectors of a 2D periodic structure. Projection of 5D lat-
tice sites on the h plane will then sit on the 2D lattice
points, as illustrated by the dots in Fig. 27. However,
since the projection of a given 5D lattice site (which may
or may not lie in the strip) does not depend on [g },
while changing [g ] under the constraint g g =0 cor-
responds to shifting the window in the h plane (see Fig.
27), a dense, unifortn distribution of projected points on
each DI, can be obtained through properly averaging over
tilings obtained from shifted windows. The total area of
the four domains (A7) is proportional to the density of
vertices in the tiling, which is not changed under the
shift. Thus, Eq. (3.3) gives the average energy per vertex
for this set of tilings. Since the same expression is also a
lower bond of the energy for each individual tiling, the
energy per tile must be the same for all these tilings, and
is given by (3.3).

In the example shown in Fig. 27, we see that the paral-
lelogram which corresponds to an (SS) bond (e.g.,
ABCD in Fig. 25) is a primitive cell of the projected
periodic structure. In general, as 5 —

5& are all lattice
vectors on the h plane for a periodic tiling, each such
parallelogram covers an integral number of primitive
cells, so that shifting the window does not change the
number of points contained in the parallelograms.
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