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Formulas for the Chadi-Cohen process
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For the square and cubic lattices, formulas are designed which yield, for k-space summations over
the Brillouin zone, the special points in the irreducible Brillouin zone and the corresponding
weighting factors prescribed by the Chadi-Cohen method. For the simple-cubic and fcc lattices
these formulas at stage v correspond to those of Monkhorst and Pack at stage 2 . These formulas
allow one to compute the summations to any order of approximation, not necessarily successively.
It is demonstrated how extrapolation in the inverse of the number of special points may be used to
speed up the calculations. Furthermore, the formulas are shown to be useful for numerically
evaluating the integrals of singular functions in two dimensions.

I. INTRODUCTION

Chadi and Cohen' (to be referred to as CC) proposed
both a method and a process for evaluating k-space in-
tegrals numerically. The main idea of the method, basi-
cally a Gaussian numerical integration method, is to re-
late the integral sought to a combination of appropriately
weighted values of the integrand at some "special" points
in the irreducible Brillouin zone (IBZ: the smallest seg-
ment of the first Brillouin zone that would cover the
whole Brillouin zone when properly rotated about the
origin). The process required to implement the CC
method (i.e., to find a set of special points and their
weighting factors) is not unique; alternate processes are
possible based on different choices from among the zeros
of the symmetrized plane waves which enter the theory.
The specific recursion process proposed by Chadi and
Cohen allows one to obtain the required points together
with their weighting factors, successively and up to any
order of approximation, in a very simple and direct
fashion. The main drawback of this process has been
that no general formulas exist for locating the special
points in k space, so that calculations soon become tedi-
ous; calculations are rarely carried through beyond the
fourth or even the third order.

In the absence of formulas, other authors ' (reviewed
by Evarestov and Smirnov ) have taken advantage of the
nonuniqueness of the CC process to design other process-
es within the CC method. Some of these authors do find
formulas which generate (alternate) special points and
their weighting factors. Monkhorst and Pack have de-
vised formulas which generate special points with weight-
ing factors equal to unity, which for the simple-cubic (sc)
and fcc cases give at stage 2 essentially the CC vth-stage
points. These points have not been reduced to the IBZ,
or even to the first Brillouin zone, making the computa-
tions unnecessarily lengthy. The CC process thus
remains by far the one used most frequently in the litera-
ture. For this reason it is of interest and importance to
develop formulas for the CC process for the bcc and SQ
(square) lattices as well.

We have found that, for the three cubic lattices and the

II. REVIEW OF CHADI-COHEN THEORY

It is desired to calculate

F=(i/IV)g f(k),
BZ

where f(k) is a periodic function of the wave vector k
with the periodicity of the reciprocal lattice. f(k) can be
written as a symmetrized-plane-wave (SPW) expansion:

(2 l)

where the

(k) = g exp(ik R)
ReI TR

(2.2)

are the symmetrized plane waves. The summation in

square lattice, formulas can be designed whereby the spe-
cial points and their corresponding weighting factors are
obtained. These formulas can be easily implemented in a
computation program; successive orders of approxima-
tion (not necessarily starting at the first order) can be ob-
tained. Moreover, having all points in the IBZ reduces
the computation time considerably below that required
when, as in Monkhorst and Pack's formula, the points
vary over the entire Brillouin zone and even beyond. It is
shown that, if need be, the points may be extrapolated to
provide a substantial gain of precision while reducing
computer time. In addition the method, with appropriate
modifications, has been found useful in evaluating the in-
tegrals of singular functions in two dimensions.

In Sec. II we briefly review the basic theory, following
CC. Section III describes the recursive process of CC. In
Sec. IV we present our formulas for the square lattice and
the three cubic lattices. In Sec. V we present the extrapo-
lation procedure and, as an example, the evaluation of
the Watson sum in the simple-cubic lattice for which the
exact result is known. Section VI presents a treatment of
integrable diverging functions in two dimensions. Section
VII contains some concluding remarks.
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(2.2) is to be carried out over all points R related to some
particular typical lattice point R by an element of the
point-group operation T. Since the integral over the Bril-
louin zone (BZ) of each A (k) vanishes, the calculation
of F amounts to the evaluation of fo. This is emphasized
by writing (2.1) in the form, for a particular k;:

fo=f(k;) —g f A (k;) .
m=1

(2.3)

(k,'"')=0, m=1, 2, . . . , M .
i=1

(2.4a)

M+1 is the lowest value of m for which (2.4a) is not
satisfied. Since the SPW's are invariant under the opera-
tions which transport a given point from the BZ into the
IBZ, the summation in (2.4a} may be restricted to k(&") in

the IBZ; since, however, more than one point in the BZ
might well map onto each kl' in the IBZ, one must then
introduce weighting factors a((") (which may be taken to
sum to unity):

g a&"'A (kI"')=0, m =1,2, . . . , M,
1=1

(2.4b)

where n is the number of special points in the IBZ.
Equation (2.3) then generalizes at order v to

n n 00f (v) = g a(v)f (k(v)) —g (v) g f A (1 (v)}
l =1 l=1 m &M

(2.5)

Assuming that the terms for m )M can be neglected, one
has

f(v) g a(v)f (k(v))
l=1

(2.6)

Equation (2.6} is the central equation of the method.
The problem is now to obtain the special points kl '

and their weighting factors a(&'. For that purpose Chadi
and Cohen proposed and proved the theorem (returning
to the full BZ}: If A (k}=0 is satisfied by k=k, for
m =m1 and by k=k, d for m =m2 & m1, then the set of
points

k; =k1+ T,-k~ed i =1,2, . . . , n~ (2.7)

The original idea was to choose a single point k1 such
that the largest number of terms in the summation in
(2.3) vanishes; hoping that the nonvanishing terms of
(2.3) would contribute negligibly to fo, in CC (Ref. 1) it is
shown that results can be improved if one takes more
than one point, namely, the n' values of k';"' (at order of
approximation v), distributed over the BZ, such that

n'

placed by

k[.i k[.-1i+~k[.] (2 9)(j)l J seed

Though k','d and kl "are chosen to lie in the IBZ, the
k~"]'l are generally not in the IBZ. The latter are next
brought by translation and group rotation (if necessary)
into the IBZ. We let kl ' be the set of distinct values of
the latter points. They are the points to be used for order
v. The weighting factors o, 'l

' are then

(2.10)

where nl is the number of points in the BZ that map onto
the point k(&") by the point-group operations.

III. CONSTRUCTION SCHEME

To obtain the special points k()") in the spirit of (2.9)
one may proceed as follows ' ' Consider the first sym-
metrized plane wave function A, (k); choose a point k",'d
with its three coordinates equal and which lies inside the
IBZ, such that A, (k",'d)=0. k,",,'d is the (only) special
point in order 1.

The general process for going from order v —1 to order
v is as follows: Find the first SPW A (k) that is non-

V

vanishing at all of the points k,",,'d, k~ed, . . . , k'„",d" (the
CC theorem ensures that if an A (k) vanishes at all the
seeds up to a given order, its contribution to fo automati
cally vanishes at all higher orders in the present scheme);
find a zero, ks(~d, in the IBZ and having all its coordinates
equal, of that SPW; combine k'",'d [using (2.9)] with all
the points kl " generated at order v —1; bring the re-
sulting points when necessary into the IBZ (they are now
the k~&")) and obtain their weighting factors from (2.10).
In the Appendix we give details of this construction for
the bcc lattice up to order v= 3.

IV. FORMULAS

The construction scheme described in Sec. III, applied
to the cubic lattices and to the square lattice, produces, at
some approximation order v, the following typical situa-
tion (a is the lattice constant):

k'("'=(b, c,d)(2m. /a ) E IBZ,

where b ~c ~d ~0 (Ref. 8) are rational numbers of the
form p/2~, p is an odd integer smaller than 2, and q 1

is an integer. To go to the next order one needs, for ex-
ample, k,

"(+"=(g,g, g)(2m /a)[following CC (Ref. 1), one
always chooses a point having all its coordinates equal]
where g is a rational number of the form 1/2q+'. The

g A (k,. )=0 (m =m), m2) .
i=1

(2.8)

The CC theorem has here been restated in an equivalent
but convenient form. For general order v, (2.7) is re-

(where I T] is the symmetry operation group of the lat-
tice and nz is the number of elements in that group)
satisfies

np
Lattice

SQ
sc
fcc
bcc

TABLE I. First-order points.

k', " (units of 2~/a)
1 1

4& 4
1 1 1

4~ 4'4
1 1 12'2'2
1 1 1

27 27 2
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TABLE II. Parameters and exponents to be used in formulas (4.2},(4.3},and (4.4}for CC order v) 1.
Coordinates are in units of 2'/a in the sc and SQ lattices, and w/a in the bcc and fcc lattices.

Lattice

SQ
sc
fcc

bcc

v+1
v+1

v

2v —2
3v —3
3v —4

Exactly
three coord.

equal

P
Exactly

two coord.
equal

1

3
3

If sum of
any two

coord. = 1,
@=1;

otherwise
@=3

No two
coord.
equal

2
6
6

If sum of
any two

coord. = 1,
@=3;

otherwise
@=6

value of q depends on the order of approximation |and
on the lattice. In this context, the use of Eq. (2.9) yields,
for a particular point,

k'"+"=k'"'+ T k'"+"=(r' s' t')(2n /a )(j)I I j seed (4.1)

where r', s', and t' turn out to be rational numbers of the
form u /2s+', 2s+' & u & 0 and u is an odd integer. Each
kI")i" is necessarily in the first octant (or quadrant, for
the square lattice), and one of three cases occurs: (i) The
point belongs to the IBZ; (ii) the point belongs to the re-
ducible Brillouin zone (RBZ) but not to the IBZ. Each
(positive) coordinate (in units of 2m/a ) must be less than
or equal to 1 for a point to be in the RBZ. For the bcc
lattice, the sum of any two coordinates must, in addition,
not exceed 1, and for the fcc lattice the sum of the three
coordinates must, in addition, not exceed —,. The point
must be brought into the IBZ by one of the T operations;
(iii) the point is outside the BZ; it must be brought into
the RBZ by an appropriate translation and then into the
IBZ by a rotation. The only operative translations here
are "—1" on the two largest coordinates for the bcc lat-
tice and "—1"on each coordinate for the fcc lattice. (No
such translations are required for the Sg and sc lattices
as the CC process generates no points outside the BZ for
these cases. )

These operations yield the special points k'I"+" given
the special points ki'. It is found that the CC points and

their weighting factors can be written, for approximation
order v & 1 (for v= 1 the points are given in Table I):

k'"'=(r s t)
2m 1

(4.2)

a"=p/2r,

2 &r&s&t)0,
(4.3)

(4.4)

where r, s, and t are always positive odd integers, subject
to the further restrictions that the sum of any pair is (2~

for the bcc lattice and that the sum of all three is
& 3(2t' ') for the fcc lattice; and P, y, p, and A, , given in
Table II, all depend on the approximation order and on
the lattice. The low-order points provided in CC (Ref. 1)
for the three cubic lattices, and those given in Cunning-
ham for the square lattice, are consistent with these for-
mulas.

V. THE EXTRAPOLATION

Starting at some order of approximation v, with N&

special points, one has an estimate fc, of fc. The next
orders v2, v3, . . . , with N2, N3, . . . , special points, pro-
vide the next approximations fo2, fo3, . . . , of fo. These
successive approximations can be plotted as a function
of the inverse number of points, (1/N), and extrapolated
to (I/N)~0. We used a four-point extrapolation. The

TABLE III. Comparison of the direct and extrapolated methods in the evaluation of F=(1/N) gsz f(k) with

f(k) =[I—
—,'(c, +c~+c,)] ', where ci =cos(k, ) (I=xyz); the exact result (Ref. 4) is F=1.5163860591.. . .

Order

Chadi-Cohen

1.294 12
1.4164
1.46406
1.49003
1.503 35
1.509 87
1.513 13
1.514 76
1.515 57

Computer time
(CPU sec)

0.005
0.007
0.011
0.035
0.22
1.5

11.5
91.5

727

Orders

1,2,3,4
2,3,4,5
3,4,5,6
4,5,6,7

Extrapolated Chadi-Cohen

1.51628
1.516 377
1.516 385 4
1.516 386 014

Computer time
(CPU sec)

0.074
0.279
1.819

13.7
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TABLE IV. Numerical evaluation of (6.1) without extrapolation for different CC orders and

different choices of ~ko~. The exact result (Ref. 11) is 3.198663937. . . . The value a= —,
' is used.

1.0388
0.0852

0.91546
0.104 95

0.642
0.190

0.450
0.349

4
(136)

5

(528)
6

(2080)
7

(8256)
8

(32 896)

(No.
3.198 27

(13)
3.198 56

(47)
3.19845

(182)
3.198498

(717)
3.198493

(2844)

Evaluation
of points in the ~k~ &

3.198921
(10)

3.198 793
(38)

3.198 709
(146)

3.198 704
(567)

3.198 700
(2241)

~ko~ region)
3.1973

(5)
3.1994

(20)
3.1989

(72)
3.198 945

(276)
3.198 958

(1091)

3.197 15
(3)

3.19936
(10)

3.19897
(35)

3.1990
(138)
3.199
(542)

efficiencies of the direct and the extrapolated Chadi-
Cohen method are compared, for a given f(k) for the sc
lattice, in Table III. This table shows that the extrapolat-
ed value quickly approaches the exact one to within a
very small fraction of one percent. The computer times
(Cyber 835 of Concordia University) are given for com-
parison purposes. A similar behavior was obtained for
the SQ, bcc, and fcc lattices, confirming the feasibility of
the extrapolation procedure.

VI. SUMMATION OF DIVERGING
FUNCTIONS IN T%'0 DIMENSIONS

g [I—
—,'(cosk„+cosk )]'

&z~sz
(6.1)

where 0&a (—,'. The problem is that the closer any of
the special points are to the origin (and in the CC process
there are special points increasingly close to the origin in
increasingly higher orders) the larger f(k) becomes; this
tends to destroy the convergence of the procedure. When
the attempt is made to perform the calculation analytical-
ly for small k (with ~k~ & [ko~ for some ~ku~) and by the
CC method for large k, the CC method fails to converge
due to the large discontinuity at ~ko~.

One solution is to make use of a function g(k}, defined
in terms off(k) and a constant go by

go for /k/ & /k, f,

f(k) for /k/) /ko[,

and to write the integral in the following way:

f f(k)dk= f f(k)dk+ f g(k)dk

(6.2)

where the erst and the third terms are to be evaluated
analytically (the first by expanding f(k) in a power

The following k-space summation for the SQ lattice ap-
pears in a theory' for the calculation of the critical ex-
ponent g,

series) and the second term is to be evaluated by the CC
method. The choice go=0 corresponds to the failed at-
tempt cited above.

While the best choice of ~ko~ and go will depend on the
function f(k), some guidelines for this choice may be
given. It is desired to have ~ku~ small enough so that the
power series calculation will be accurate, and yet large
enough so that the CC procedure applied to the second
term will be able to sample the region ~k~ & ~ku~

sufficiently for good convergence. We have found that
the optimum is obtained by having roughly ten percent of
the special points lying in the

~
k &

~ ku~ region.
Once ~ko~ has been fixed, go is chosen (so as to weaken

substantially the jump discontinuity at ~ko~ ) as an average
of the function f(k) over the general set of k vectors hav-

ing magnitude ~ko~. In Table IV we give the evaluation
(without extrapolation} of (6.1) for a =

—,'.
VII. DISCUSSION AND CONCLUDING REMARKS

We have provided formulas that strictly produce the
Chadi-Cohen points and their corresponding weighting
factors to any order of approximation, for the three cubic
lattices and for the square lattice. The question arises as
to the existence of simple formulas for the CC process in
other lattices. For the hcp lattice, the process described
by CC is equivalent to the use of a formula. While there
is no guarantee that a simple formula can be found for
other lattices, our results indicate that this problem is

worth investigating at least for single-parameter lattices.
For a lattice described by more than one parameter, the
ratio of the lattice constants may be crucial for the deter-
mination of the weighting factors.

The process described by CC has here been modified
slightly in that the terms in (2.2) have been grouped ac-
cording to the symmetry type of the points R, rather
than according to the magnitude of the R . The
enumerations according to these two groupings are the
last two columns of Table V. We have found this group-
ing useful in the development of the present formulas.

The only work that has approached the present calcu-
1ation by means of formulas has been that of Monkhorst
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TABLE V, Distribution of sites around the origin in the bcc lattice.

Number
of

sites

Typical
points

in units of a/2
(s, t, u)

Shell
number

SPW
number

0.75
1

2
2.75
3
4
4.75
5
6
6.75
8
8.75
9

10
10.75
11
12
12.75
13
14
14.75
16

8

6
12
24

8
6

24
24
24
32
12
48
30
24
24
24

8
48
24
48
72

6

(1,1,1)

(2,0,0)
(2,2,0)
(3,1,1)
(2,2,2)
(4,0,0)
(3,3,1)

(4,2,0)
(4,2,2)

(3,3,3), (5,1,1)
(4,4,0)
(5,3,1)

(4,4,2), (6,0,0)
(6,2,0)
(5,3,3)
(6,2,2)
(4,4,4)

(5,5, 1), (7,1,1)
(6,4,0)
(6,4,2)

(5,5,3), (7,3,1)
(8,0,0)

1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1

2
3

5
6
7
8
9

10,11
12
13

14,15
16
17
18
19

20,21
22
23

24,25
26

and Pack; they found a formula which, at stage 2", ap-
pears to have all the Chadi-Cohen points of order v.
Ho~ever, the fact that their special points are not
confined even to the first BZ renders their process com-
putationally lengthy.

We have also shown that the convergence of the
Chadi-Cohen method can be substantially accelerated by
combining these formulas with an extrapolation pro-
cedure, and have further indicated how this method can
be adapted to the calculation of integrals over periodic
functions with (integrable) singularities by roughly
minimizing the jurnp discontinuity in a combined
CC-analytical integration calculation. The ten percent
rule of thumb for finding the optimum value of ~ko~ was
arrived at by plotting the locus of k satisfying
f(k) =const for various values of the constant, choosing
the value such that the locus is most circular, and desig-
nating ~ko~ to be the (rough) radius of that circle. In
finding go, it has been found sufficient to take a rough
average, say over three points: (k„,k~)=(~k0~, 0),

The validity of the formulas presented here is attested
by the reproduction of the Watson sums to the sixth de-
cimal place, and of the extrapolated values of Table IV to
five decimal places at a relatively low value of v. A proof
by induction is in the process of being constructed.
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A i(k) =8 cos—,'k, cos —,'icos —,'k, ,

A z(k ) =2(cosk„+cosk +cosk, ),
A6(k)=2(cos2k„+cos2k +cos2k, ),
A, o(k) =8(cos—', k„cos—,'k cos —,

' k, ),
A „(k)=8(cos—', k„cos—,'k cos —,'k, +cos—,'k„cos—,'k cos —,'k,

+cos—,'k„cos—,'k cos—,'k, );

where k is in units of 2m/a.
Following CC we choose, for the zero of the first SPW,

k,",,'d=(1, 1, 1)n. . (Al)

The set k&" consists of only one point, namely k~,'d. This
point will, in addition, cause all the A (k) contributions
in (2.5), generated by points R= ,'(R„,R,R, ) w—ith R„,
R, and R, all odd, to vanish; that is, A (k'„",d)=0 for
m = 1, 4, 7, 10, 11, 13, 17, 20, 21, . . . (an infinity of m's,
in fact).

The next SPW to examine is A2(k) which leads to
(2)
seed (2~2~2)~ & (A2)

APPENDIX

The expansion (2.2) applied to the bcc lattice gives, for
some of the first few SPW (typical points R are given in
Table V; the lattice constant a is taken equal to unity),
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which will remove from Eq. (2.5) all A (k) generated by
points R having coordinates that are all odd multiples of
2 (in units of —,'); that is, for rn =2, 3, 5, 8, 9, 16, 18,
23,

A 3 A 4 and A 5 having been removed, one next exam-
ines As(k} which has as a zero the point

Inserting (Al) and (A2) into (2.9) (with v=2) will clear-
ly generate k-space points with coordinates —,

' or —,'(in
units of n} Some .of these points will be outside the IBZ
and even outside the first BZ. Bringing them into the
IBZ, one orders the coordinates such that k„~k»

~ k, all
of which, in units of m/4, will be odd positive integers.
This operation leads to only two distinct k'I '.

k' '=(3, 1, 1)m/4, a' '=-'

k '=(1 1 l)m/4 a'

(A5a)

(ASb}

(A3}

k','d will remove contributions to (2.5) by all A (k) gen-
erated by points R with all coordinates equal to an odd
multiple of 4 (in units of —,'); i.e., for m =6, (8 and 9 have

already been removed at order 2), 12, 19, 22, . . . .
So far, all SPW up to m =25 have been removed from

(2.5); Az&(k) (not Azs as stated in CC) has as a zero the
point

(A4)

k't '=(1,1, 1}~/8, aI '=
—,', ,

k2(3)=(3, 1, 1)~/8, a(23)=
i36

k' '= (3,3, 1 }n /8, a' '=
—,', ,

k4 '=(3,3, 3)m/8, a~( '=
—,', ,

k' '=(5, 1, 1)n/8, a' '=
—,', ,

ks '=(5, 3, 1)n/8, as '=
—,', ,

k(7s'=(5, 3, 3)m/8, a7 '=
—,', ,

k(ss'=(7, 1, 1)n/8, a.
s
'=

—,', .

(A6a)

(A6b)

(A6c)

(A6d)

(A6e)

(A6f)

(A6g)

(A6h)

The weighting factors are in sixteenths because each of
Eqs. (AS) generates eight points. The final weighting fac-
tors depend on how many of the three coordinates are
equal and whether the points lie on the surface of or in-
side the BZ (e.g., k7 ' lies on the surface of the BZ, while
k(s ' lies inside the BZ}. The bcc lattice formulas (4.2),
(4.3), and (4.4) are now apparent.

Inserting (A3) and (AS) into (2.9) (with v=3), the kI
' of

(2.9}being given by (A5) and the k,"«d by (A3), points are
generated in k space with odd coordinates (in units of
m /8) which, when brought back into the IBZ, are
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