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If a solid is covered with a quasi-liquid-film, each Fourier coefficient of the solid density vanishes
with a characteristic decay length within the liquid film. A microscopic theory is employed in order
to calculate these decay lengths and to study their dependence on the orientation of the surface
plane and on the microscopic interaction potential. The results are compared with recent surface

experiments on Pb.

I. INTRODUCTION

Consider a planar solid-liquid interface and let G
denote a reciprocal-lattice vector (RLV) of the bulk crys-
tal. As one moves through the interface, the local mean
"density p, changes from the solid mean density to the
liquid density. Simultaneously, each Fourier coefficient
pg (GF#0) of the solid density decays to zero in the liquid
with a characteristic decay length ag.

The decay lengths are accessible experimentally by sur-
face scattering experiments. In particular, one may ex-
amine quasi-liquid-films on a solid and measure the resid-
ual crystallinity in the quasi-liquid-gas interface. The
thickness of the quasi-liquid-film increases with tempera-
ture. Recently, the structure of the Pb(110) interface was
studied by Prince and co-workers"? using low-energy
electron diffraction (LEED). They found that the decay
length of a density oscillation with RLV G decreases if
the projection of G onto the surface plane increases.

In order to explain these findings, Lipowsky et al.}
have used a phenomenological square-gradient Landau
theory, where a multicomponent order parameter (OP) is
introduced. Each OP component is the amplitude of a
density oscillation with a RLV G of the two-dimensional
lattice planes parallel to the surface. However, in com-
parison with experiment, the Landau theory yields decay
lengths that are too small by a factor of =1.

In this paper, we extend this Landau theory in several
directions: (i) We employ a more detailed model, where
each OP component is the amplitude of a density oscilla-
tion with a RLV of the full bulk crystal lattice. (ii) We
include OP gradients to arbitrary order. (iii) We calcu-
late the decay length of each OP component within a mi-
croscopic theory.

As a result, we confirm that the decay lengths decrease
with increasing |G'"|. However, the microscopically cal-
culated decay lengths are larger than predicted by the
Landau theory of Ref. 3 and closer to the experimental
data.

We proceed as follows: In Sec. II, a microscopic ex-
pression for the decay lengths of the different Fourier
components of the solid density is derived. This involves
the Fourier transform of the Ornstein-Zernike correlation
function c(k) of the bulk liquid phase. Then, in Sec. III,
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we calculate the decay lengths for a simple model poten-
tial and examine the influence of an oscillating tail in the
pairwise forces. In Sec. IV, we use experimental data of
the liquid structure factor to deduce the decay lengths in
liquid Pb and Al. Finally, in Sec. V, the influence of
higher-order corrections and long-ranged potentials is
discussed.

II. MICROSCOPIC THEORY

In order to describe a solid-liquid interface, we
parametrize the local density by

p(r)=3 pglzlexpiG-1), pg§lz)=p_g(z). (1)
G

The complex Fourier coefficients pg are taken as order
parameters, which vary in the z direction perpendicular
to the surface plane and fulfill the boundary conditions

pglz— —©)=pg, pglz—®0)=8gw (2)

where pg; are the solid bulk values and p, the liquid den-
sity. Now a gradient expansion* of the density functional
around the liquid phase yields the asymptotic form of
pg(z) for z— . This is described in more detail by Mi-
kheev and Chernov.’ For the moment, we consider only
terms bilinear in the OP’s and assume short-ranged parti-
cle interactions. The influence of higher-order correc-
tions and long-ranged potentials is discussed in Sec. V.
Within the gradient expansion, we arrive at the asymp-
totic result for z — oo,

Pc(z)—0g op; ~explikgzlexp(—z/ag) . (3)

Here, kg is a phase mismatch between the solid and
liquid density: In the liquid, the most probable position
of a next-neighbor particle differs slightly from the solid
nearest-neighbor spacing, which results in an additional
small oscillation in the OP’s. Furthermore, a is the de-
cay length of pg within the liquid. The asymptotic
analysis’ shows that kg and ag are given by complex
zeroes of the second direct correlation function of the

liquid in Fourier space, denoted by c(k). More
specifically, consider the complex solutions k of
c([GP+(G*—Kk)* 1) —1/p,=0, 4)
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where G=(G/,G"), written in components parallel and
perpendicular  to  the surface plane. Then,
1/ag =min(Im(k)). Here the minimum is over all solu-
tions of (3), where kg =Re(k) lies in the projection of the
first Brillouin zone (1PBZ) of the solid lattice on the z
axis.

This can be rewritten as follows. Let {g;=u;+iv;} be
the set of all complex solutions of

c(g;))—1/p;=0. (5)

This equation is also known from the theory of spinodal
decomposition. g is the complex wave number of a densi-
ty perturbation in the liquid phase. With the abbrevia-
tion

ij(ujz—vjz—G“z)/Z ,
we obtain
ag?=min(w;+(w+ujv})'"?) . (6)
J
As already stated earlier, the minimum extends over all
solutions g; whose wave vector
24,2 2y1/2 1
ujvj(w;+(wi+ujv’)’?)+G
lies in 1PBZ. Without loss of generality, let the right-
hand side of (6) be minimal for j =0. Then
kg=ugvoag+G". (7

Equations (6) and (7) are the central result of this section.
Thus the problem is reduced to find the complex solu-
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tions g; of (5). This can be done in two ways. First, one
can use experimental data of the liquid structure factor
S(k). Then, in a quadratic approximation®:

Uj=qy; - (8)

Here, q,,; is a real wave number, where S (k) has a local
maximum. Moreover,

v;={2/[8(g,;)L" (g, )1}, 9)

with L(k)=1/S(k), primes denoting derivatives with
respect to k. We will use Egs. (8) and (9) in Sec. IV.

Second, one can calculate {g;} within a microscopic
theory with the interparticle potential ¢(r) as the only in-
put, see the following section.

Once the ag’s are known, the residual crystallinity at
the quasi-liquid-gas interface can be calculated. As a
function of the reduced temperature t =(Tr—T)/Tr,
where T, denotes the triple temperature, the residual
crystallinity for a density oscillation with RLV G van-
ishes as a power law with exponent*

vg=max(2ay,{ag})/(2ag) . (10)

III. CALCULATION OF DECAY LENGTHS
FOR A SIMPLE MODEL POTENTIAL

In this section, we calculate ag and kg for a simple
model potential ¢(r): we take a hard core with diameter
o and an attractive Lennard-Jones-type potential ¢,(r) as
an example (see inset of Fig. 1)
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FIG. 1. Fourier transform of the direct correlation function in units o (solid line). Note the scale change. The wave vectors are
in units 1/0. The dotted-dashed line is the constant 1/p;. The inset shows the associated hard sphere plus Lennard-Jones potential

in units k3 T. The parameters are as in Table I.
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w(r)=E{exp[—a(x —1)]—exp[—b(x —1)]}/x, x=r/o forr>d,

$a(N=\w(d) for o <r<d,

where we choose d =1.14140 and take the parameters
E=2.0199¢, a=14.735, b=2.6793 from the Foiles-
Ashcroft parametrization’ of a Lennard-Jones potential.
Model potentials of this kind are familiar in the theory of
liquids, see Ref. 8.

There are several approximations to obtain c (k) from
&(r) (see, e.g., Refs. 8 and 9), the crudest one is the high-
temperature approximation (HTA), which approximates
the true c (k) by the direct correlation function of hard
cores. For the latter the Percus-Yevick expression
[denoted by cpy(k)] or the more accurate Verlet-Weis
form [denoted by cyw(k)] (Ref. 10) can be used. The
HTA clearly neglects effects of an attractive tail. To in-
clude such a tail more accurately, we use the optimized
random-phase approximation (ORPA),

c(k)=cyw k)=, (k)/(kgT)+A(k) , (12)

with A(r)=0 for r>o, ¢,(k), and A(k) denoting the
Fourier transforms of ¢,(r) and A(r), respectively. Here,
A(r) is determined by the condition that the pair correla-
tion g (7) vanishes for » <¢. The pair correlation g (7), in
turn, is linked with ¢ (k) via the Ornstein-Zernike rela-
tion. We approximate A(r) by a polynomial to second or-
der in r for r <o and optimize its coefficients. For a situ-
ation near the triple point, the resulting ¢ (k) is shown for
real k in Fig. 1.

The intersection points of ¢ (k) with 1/p, for complex
k will be near the local maxima of ¢ (k) for real k, see Fig.
1. The results for this solutions g; are summarized in
Table I. For comparison, also the HTA results are given.
Remarkably, they do not possess a solution with u;=0.
This corresponds to the fact that ¢ (k) has a minimum for
k =0. The quadratic approximation around the local
maxima of c(k) for real k is only slightly in error of
10-15 %, in general. However, for ¥ =0 it is wrong by a
factor of 3; therefore quartic corrections are necessary to
find the zero of (5) with ¥ =0.

Using Egs. (6) and (7) we display the mismatch and the
correlation length for different RLV of an fcc lattice in
Fig. 2 for a (111) plane. This clearly shows that the smec-
tic order (represented by a(,;;)) decays much slower than
the parallel order. Furthermore, higher Fourier
coefficients have a smaller decay length. As for the ex-
ponent of the residual crystallinity [see (10)] we find
v(111y=0.5 and v(_;;,=1.3. This can be compared with

(11)

[

the numerical result of Trayanov and Tosatti!! who only
considered one single crystal OP and found v=1.6.
However, one should note that v depends sensitively on
the cutoff in the Lennard-Jones potential.

For a (100) plane, a(,;;, is reduced since its RLV is no
longer parallel to the surface normal; in this case we have
a1 <2ag0). Physically more interesting is the (110)
plane, where melting was observed experimentally. We
shall discuss this orientation in the next section.

Next, we consider an oscillatory short-ranged potential
by adding

Dosc(r)= AO(90 —r)exp( —Br)sin(kgr)/r

to (11), where © denotes the step function and kj is the
Fermi momentum. Potentials of this kind have been em-
ployed to describe liquid metals.!*!* Using 1/8=70,
kpo=6.88, Ao =—0.25kzT /7, and the parameters of
Fig. 1 we obtain within the ORPA that the correlation
lengths of the crystal OP’s are enhanced considerably.
For the same parameters as in Fig. 2 we find ¥ =7.31,
v=0.32. This corresponds to a(;;)=3.20 for a (111)
plane of an fcc solid.

If ¢,(k) has a minimum where the hard-sphere c (k)
has a maximum, then the total ¢ (k) will have a higher
and sharper maximum, which leads to an enhancement of
the correlation length due to a resonance between the po-
tential and density oscillations. Since k =k;=|G,|, this
is the case in the example studied before. On the other
hand, if ¢,(k) has a maximum where c (k) has a max-
imum, the correlation length will decrease. However,
this simple picture is modified by the ORPA procedure.
So we even find in the preceding case, that @y, and
a5, were enhanced, too, such that vg and other ratios
of decay lengths do not vary drastically.

Up to now, we have studied hard cores. The numerical
values for ag may also vary for a soft core, but this
should not be a big effect.

Summarizing, we have established a connection be-
tween the decay lengths ag of the crystallinity within the
liquid film and the direct correlation function ¢ (k) of the
liquid. In general, ¢ (k) depends on the interparticle po-
tential and, on the one hand, the decay lengths are
nonuniversal. On the other hand, physically reasonable
liquid structure factors can often be well parametrized by
the structure factor of a hard-sphere liquid with suitably

TABLE I. Complex solutions of (5), ¢,=u,+iv, in units of 1/0 for a hard sphere plus Lennard-
Jones potential for a situation near the triple point (p;=0.90 "3, k5T /e=0.75). Both the ORPA and,
for comparison, HTA results are given. For the latter the Verlet-Weis (VW) and the less accurate

Percus-Yevick (PY) approximations are shown.

ORPA HTA-PY HTA-VW
u,+iv, 0.00+:1.74 no solution no solution
u,t+iv, 6.88+i0.69 6.82+i0.65 6.82+i0.71
us+iv, 12.69+1.88 12.60+1.82 12.69+i1.92
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FIG. 2. Mismatch kg and correlation length ag (in units of
o~ ! and o, respectively) for different reciprocal lattice vectors
G. We have chosen an fcc lattice with first RLV |G,|=6.89/0.
The inter-particle potential and further parameters are as in
Table I. The surface orientation is a (111) plane. To each point

one typical RLV is shown in units of |G,|/V3.

chosen diameter. According to the Hansen-Verlet rule,'*
the liquid freezes if the first peak of the liquid structure
factor exceeds 2.85. Thus for this class of materials, the
ratios ag/ag, are relatively model independent, for
G, G'#0, if the surface orientation is fixed.

IV. RESULTS FOR Pb AND Al

In usual surface scattering experiments decay lengths
with same G' but different G cannot be distinguished.
Therefore it is natural to define a decay length a(G") that
only depends on G by

a(G" (13)

znéal"(a((;”,cl)) :
For these quantities, the Landau theory of Ref. 3 yields
the simple algebraic relation

a(Gh=a(0)/{1+[G'a(G"]*}!/2. (14)

It is tempting to compare our result with (14) and with
experimental values of a(G"). To achieve this, we first
calculate a(G'") within our theory for Pb and Al.

We use experimental data of the liquid structure factor
of Pb and Al near the triple point; for a compilation of
the data see Waseda.!> Unfortunately, the data for the
liquid structure factor S(k) are not given for the melting
temperature T,, of Pb (600.7 K) and Al (931.7 K), but for
three temperatures above T,,. We therefore extrapolate
S(k) from these values to T,,. Furthermore, we take 18
values near a minimum of 1/S(k) and determine an in-
terpolating polynomial of sixth order for 1/S(k) by a
least-square fit, whose complex zeroes are to be found.
The complex solutions g;=u; +iv; of (5) are then in units
of A ™!

for Pb: 2.15+i0.213 4.12+i0.620, (15)

for Al: 2.81+i0.365 4.80+i0.579 . (16)

The resulting a (G'Y’s are shown in Figs. 3 and 4. It

wave vector |E”| (2_1)

FIG. 3. Decay lengths a(G), plotted versus IG”I (®) for lead
at the melting point (7=600.7 K). Units are in A~'and A.
We choose a (110) plane. Each point is labeled by the pair of in-
tegers (nm) resulting from Gl'=nGl+mG] with
Glll~( 1,—1,0), GQ~(0,0, 1). For the (00) and (10) beam, the ex-
perimental values are also indicated («). For comparison, the
relation (14) is shown (dotted-dashed line), which, for any
choice of a(0), is bounded by 1/|G'| (solid line).

turns out that the expression (14) of the Landau theory
underestimates a(G') considerably.!® Experimental re-
sults are still sparse, the only data we are aware of are
from the LEED experiment of Breuer et al., 2 who get
for the (10) beam: a(G)=1.75 A and from ion-
scattering experiments of Pluis et al.,"” who obtained
a(0)=6.3 A. These data have to be compared with our
theoretical values of 2.66 A and, respectively, 4.7 A.

The agreement is reasonable, the discrepancies of
= —349% and, respectively, = +34% may have several
reasons. First, we have not used data of S(k) at the melt-
ing point, but extrapolated them from higher tempera-
tures. The first peak of the extrapolated S (k) for T, is at
=2.5, which is slower than 2.85 according to the
Hansen-Verlet rule.'* If the first peak would be really
higher than 2.5, then the decay lengths a5 would in-
crease. This would make the comparison with the LEED
experiment worse, but it improves the comparison with
the a(0) data of Ref. 17.

(110) plane

\ o (01)

Al

\ ° (10)

decay length a(G") (4)

wave vector [E"| (A

FIG; 4. Sameoas Fig. 3, but now for Al (T=931.7 K). Units
arein A “'and A.
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Second, the discrepancies may result from the experi-
mental side. In Ref. 2, one is still away from the triple
point. Furthermore, a(G') is not measured directly such
that one needs a model that expresses the scattering in-
tensity as a function of a(G'). Experimental uncertain-
ties are less pronounced in the ion-scattering experi-
ments,!” since here a(0) is directly measured as the pre-
factor of the logarithmic divergence law for the thickness
of the quasiliquid layer.

We add as a comment that Landau tl},eory3 [see (14)]
yields for the (01) beam a((01))=0.56 A, which is too
small. Moreover, it cannot make any prediction for a(0).

Totally reflected x-ray scattering experiments would be
more suitable to determine a(G'") for different G"’s. Such
experiments are highly desirable in order to improve the
experimental data and to compare with the prediction of
other decay lengths than that of the (10) beam.

We add a final remark concerning a(0). In Figs. 3 and
4, a(0) results from a smectic density oscillation with
wave vector Re(q,)=u,. For a (110) plane, the prefactor
of such a density perturbation should be small, since it is
incommensurable with the natural lattice spacing.
Another example of a density perturbation with G'=0 is
where G*=0, too. Unfortunately, the experimental data
of the liquid structure factor S(k) are not known exactly
for k=0. Therefore we cannot determine ayy, and
a(G'") exactly. We conjecture that in the interesting re-
gion a gy <a(0).

V. INFLUENCE OF HIGHER-ORDER GRADIENTS
AND OF LONG-RANGED POTENTIALS

We finally discuss the influence of higher-order terms
in the gradient expansion and the effect of long-ranged
potentials.

Concerning higher-order corrections, an asymptotic
analysis yields the inequality

1/ag< 3 1/ag, (17)

i=1

provided the sum rule

G=3 G, (18)
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holds for the components parallel to the surface plane. If
(18) is not satisfied perpendicular to this plane, the pre-
factor of the associated exponential of the OP’s is small,
when the mismatch of the G’s is small. Equation (17)
shows that higher-order corrections do not affect the
maximum of the ag’s but may modify the other ag’s.
However, a((10)), a((01)), and a((00)) (in the notation
of Figs. 3 and 4) are not altered by higher-order correc-
tions.

For a long-ranged r ~" potential (e.g., n =6), which we
assume to be slowly varying, i.e., whose Fourier trans-
form vanishes beyond the first Brillouin zone of the solid
lattice, we find* that p(y0)(z) approaches zero as a power
law ~z~"~3_ This implies @y — . The decay of
the other OP’s remains unaffected. This modifies the
temperature dependence of the residual crystallinity* into
a stretched exponential ~exp(Agt~!/?)  with
Ag=02W)'3/ag, where W denotes the Hamaker con-
stant.

VI. CONCLUSIONS

In conclusion, we have presented a microscopic expres-
sion, based on the Fourier transform of the direct correla-
tion function, for the characteristic lengths governing the
decay of the Fourier coefficients of the solid density
within the liquid. For a hard sphere plus Lennard-Jones
potential, we calculate these decay lengths using the
ORPA. We have also discussed the dependence of the
decay length on the orientation of the surface plane and
the influence of oscillatory potentials. The latter may
enhance or reduce the crystallinity in a quasi-liquid film
considerably if the inverse oscillation length (i.e., the Fer-
mi momentum for a metal) is comparable to the first
RLYV of the solid. For Pb and Al, we used data of the
liquid structure factor in order to determine the decay
lengths. The results are in accordance with LEED exper-
iments. Further experiments (e.g., by using totally
reflected x rays) are highly desirable in order to obtain a
more detailed comparison with the theory.
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