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Scaling analysis of the new mnlticritical behavior of CsMnBr3 and CsNiC13
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Critical properties of the axial triangular antiferromagnet CsNiC13 and the planar triangular anti-

ferromagnet CsMnBr3 under an applied magnetic field are studied using scaling theory. Novel types
of multicritical behavior observed in these compounds are associated with n=2 (CsMnBr3) and
n=3 (CsNiC13) chiral universality classes recently identified by the renormalization-group analysis.
Various experimentally testable predictions are derived on the basis of a scaling ansatz combined
with the numerical estimates of critical exponents. In particular, all phase boundaries emanating
from the multicritical points are found to be scaled by the corresponding anisotropy-crossover ex-

ponent. It is also predicted that the criticality along the high-field critical line of CsNiC13 (paramag-
netic to spin flop) is of n =2 chiral universality.

I. INTRODUCTION

There has been continuous interest in the magnetic
properties of a large class of hexagonal insulators with
the chemical formula ABX3, where B represents magnet-
ic ions such as Ni, Cu, Co, Cr, and Fe. In this class of
materials, the magnetic ions form linear chains along the
c axis that are coupled antiferromagnetically forming tri-
angular layers in the basal a-b plane. Although these
compounds are magnetically quasi-one-dimensional, most
of them are known to undergo magnetic phase transitions
into a three-dimensionally ordered state at low tempera-
tures driven by the weak interchain coupling. Thus,
magnetic frustration, which arises because of the antifer-
romagnetic nature of the interchain coupling combined
with the triangular-lattice structure, is expected to play a
crucial role in their magnetic structure. In fact, the na-
ture of the magnetic ordering of these ABX3 compounds
are often quite novel, markedly different from those of
usual ferromagnets or unfrustrated antiferromagnets on
bipartite lattices.

If the long-range dipolar interaction is sufBciently
weak, which appears to be the case when the intrachain
coupling is antiferromagnetic, the magnetic ordering of
these compounds may roughly be classified into two
categories depending on the type of their magnetic aniso-
tropies. If the magnetic ion has an easy-axis-type anisot-
ropy, the compound exhibits two successive transitions in
zero applied field, say at T = T~, and T&2( T~, ) Ttt2). A
typical example of an axial triangular antiferromagnet is
CsNiC13, which has Neel temperatures at T~l —4.85 K
and TN2 —4.40 K. At T=TNl only the longitudinal
(c axis) component orders and a linearly-polarized spin
structure is realized for T~2(T & Tz, . The transverse
components order at T= T&2 and the elliptically polar-
ized structure is stabilized for T ( T&2. ' The magnetic
field-temperature phase diagram of CsNiC13 was experi-
mentally determined by Johnson, Rayne, and Friedberg

by means of the susceptibility measurements. Their re-
sults, obtained with the magnetic field applied along the
easy c axis, is schematically reproduced in Fig. 1. The
most striking feature revealed by their experiment is the
existence of a novel type of multicritical point at a finite
field, at which a line of first-order transitions (spin-fiop
line) and three distinct critical lines meet. In fact, it was
shown by Plumer, Hood, and Caille that such an unusual
type of multicritical point is possible within the frame-
work of the Landau theory. The nature of the spin or-
dering in each phase was also determined (see Fig. 1).

On the other hand, if the magnetic ion has an easy-
plane-type anisotropy, the compound exhibits a single
transition in zero applied field at T =T~. A typical ex-
ample of such planar triangular antiferromag nets is
CsMnBr3, which has a Neel temperature at Tz-—8.3
K. The spin ordering at T (T~ is the so-called 120'

FIG. 1. Schematic magnetic phase diagram of CsNiC13.
Magnetic field is applied along an easy c axis. The I—III bound-
ary line represents the first-order spin-flop transition.
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spin structure in the basal plane. The magnetic field-

temperature phase diagram of CsMnBr3 was experimen-

tally determined by Gaulin et al. by use of elastic neu-
tron scattering. Their result, obtained with the magnet-
ic field applied in the basal plane, is schematically shown
in Fig. 2. The single phase transition observed in zero
field was found to split into two successive transitions un-

der finite fields. Thus, the Neel point in zero field has
turned out to be a tetracritical point. Subsequently, a
Landau-type free-energy analysis was applied to
CsMnBr3 by Plumer and Caille, who successfully repro-
duced the experimentally-observed magnetic phase dia-
gram including the tetracritical point at zero field and
determined the type of spin ordering in each phase as
shown in Fig. 2.

Criticality of the zero-field transition of CsMnBr3 has
attracted considerable interest because of a recent
theoretical prediction by Kawamura that the chiral de-

generacy associated with the helical spin ordering might
lead to a new universality class, distinct from the con-
ventional 0 (n } Heisenberg universality class. Subsequent
experiments carried out on CsMnBr3, ' and several oth-
er materials including VC12, ' VBr2, " Ho, ' and Dy, '

seem to support this theoretical prediction. If this is real-

ly the case, tetracritical behavior of CsMnBr3 should be
described by a new type of "chiral" universality.

In the present paper, we perform a detailed scaling
theory analysis of the critical behavior of CsMnBr3 and
CsNiC13 under applied magnetic fields, with major em-

phasis on elucidating the novel multicritical behavior ob-
served experimentally in these compounds. We start with
the Ginzburg-Landau Hamiltonian used by previous au-
thors, but go beyond the mean-field level by taking into
account the effect of critical fluctuations. The case of
CsMnBr3 is analyzed in Sec. II. The zero field tetracriti-
cality found in this material is ascribed to the n=2 chiral
universality. At sufficiently small fields, two critical lines
emanating from the tetracritical point are predicted to be
scaled by the corresponding anisotropy-crossover ex-
ponent. The case of CsNiC13 is analyzed in Sec. III.

H

FIG. 2. Schematic magnetic phase diagram of CsMnBr3.
Magnetic field is applied in an easy a-b plane.

Novel type of multicriticality observed at a finite field is
ascribed to the n =3 chiral universality. In the vicinity of
this multicritical point, all three critical lines are found to
be scaled by a common anisotropy-crossover exponent as-
sociated with n=3 chiral class. We also predict that the
criticality along the high-field critical line between the
paramagnetic and the spin-Qop phases should be of n =2
chiral universality. Based on the scaling ansatz, various
experimentally testable predictions are derived for both
materials. Finally in Sec. IV, we discuss the experimental
implications of the obtained results.

+u(a +b ) +u[(a.b) —a b ],
=cm +dm"+e(a +b )m

(2)

+f [(a m) +(b.m) ]—H m,
where m is the uniform magnetization induced by an ap-
plied magnetic field, and the two vector fields a= (a„,a )

and b = (b„,b ) represent the cosine and sine modes asso-
ciated with the wave vector Q=(4m/3, 0,n ) via,

s(r)=m+acos(Q. r)+bsin(Q r) . (4)

The first term in (1), &0, describes CsMnBri in zero field,
while the second term, &, contains the terms induced
by the applied field.

Plumer and Caille performed a Landau-type free-
energy analysis for the Hamiltonian (1), which neglects
the effects of fluctuations. With an appropriate choice
of the parameters, u & 0, U & 0, f& 0, e (0, etc. , these au-
thors successfully reproduced the experimentally ob-
served magnetic phase diagram of CsMnBr3. According
to this analysis, the spin ordering in zero field is a helical-
ly polarized state (120' spin structure), corresponding to
alb with ~a~ = ~b(. At finite fields, two successive transi-
tions occur: the spin ordering in the intermediate phase
(phase II in Fig. 2) is a linearly polarized state with alH
and b=O (or equivalently, blH and a=O), while that in
the low-temperature phase (phase I) is an elliptically po-
larized state with alb and ~a~A ~b~.

We now further examine the nature of the phase transi-
tion beyond the Landau theory by taking into account
the effects of fluctuations. In studying the critical behav-
ior driven by the critical modes a and b, one may replace
the uniform mode m by its average value, m=(m, 0),
since m is a noncritical mode induced by the applied
magnetic field. Assuming m~H, one arrives at the fol-
lowing reduced Hamiltonian, which will serve as the
basis of the analysis:

II. SCALING ANALYSIS OF CsMnBr3

In this section, we analyze the case of CsMnBri. A
magnetic field is assumed to be applied in the basal plane
as H=(H, O), and only the basal-plane components will
be considered. The appropriate Ginzburg-Landau-
Wilson (GLW) Hamiltonian is given bys 9'"'

&=HO+&

&0=(Va) +(Vb) +ra(a +b }
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&=(Va) +(Vb) +r(a +b )+u(a +b ) +U[(a b) —a b ]

+g(a„+b„a— b—)+[terms not containing a and b], (5)

where the temperature-like variable r and the "effective
anisotropy" g are given by

r =ro+(e+ —,'f)m, g =
—,'fm

Let us first investigate the criticality along the two
phase boundaries at finite fields. At the (P-II) boundary,
the components perpendicular to the applied field, a„and
b, become critical since g is positive. Retaining only the
critical modes in (5), one easily sees that the resulting
GL% Hamiltonian is that of the conventional isotropic
n =2 P model with P=(a„,b~) and with the shifted
temperature-like variable F=r —g. Since e & 0 for
CsMnBr3, r &ro and this line increases in temperature
with increasing magnetic field intensity. Thus, the criti-
cality along the (P-II} phase boundary should be of the
conventional XY universality. In the intermediate phase,
the ordering is such that a %0 with a„=b„=b =0 (or
other equivalent configurations), and the component
parallel to the applied field b„becomes critical at the (II-
I) phase boundary. In deriving the associated GLW
Hamiltonian, one may regard a given by the mean-field
result a = —r/(2u), which states that the coefficient of
b is identical to zero in the intermediate phase. The re-
sulting GLW Hamiltonian is the conventional n=l P
model (Ising model) with P=b„and

r =r +g +(2u —U)a

Therefore, the criticality along the (II-I) phase boundary
is that of the Ising universality.

The XY and Ising lines merge at H=O giving rise to a
novel type of tetracritical point at T = Tz. The appropri-
ate GLW Hamiltonian describing the tetracritical behav-
ior is a "chiral Hamiltonian, "%o, whose critical proper-
ties were recently studied in detail by the use of
renormalization-group techniques for generalized n-
component fields a=(a „.. . , a„) and
b=(b„. . . , b„}.' '. Thus, the associated critical behav-
ior was found to be governed by a new type of n =2 chiral
axed point characterized by a set of critical exponents
that difFered significantly from the standard values: re-
cent numerical estimates based on Monte Carlo calcula-
tions give a=0.40, P=0.25, y=1.1, and v=0. 53.9"'
Furthermore, it was found that the anisotropy field g,
entering the Hamiltonian as in (5), constitutes a scaling
field at the chiral fixed point, characterized by the associ-
ated anisotropy-crossover exponent P. ' " One then
has the standard scaling relation for the singular part of
the free energy around a tetracritical point,

where t and g are linear scaling fields,

t =t +q$2, g =$2,

with t =(T—T~)/TN, h =H/(keTJv ), and q ~(e+ —,'f).
The e- and I/n-expansion calculations ' ' suggest that
1 & P & y = 1.1, so that P is probably fairly close to unity.
Indeed, a recent numerical estimate based on the two-
loop renormalization-group calculation gives P =1.04. '

One can derive various observable predictions directly
from (7) and (8). ' (a) The uniform susceptibility for
H=O behaves as

y-r r(1+cqt~ ')

with

y = —(2 —a —P)- —0.56 .

Here, we tentatively put /=1.04 for a rough numerical
estimate. The correction term arises because of the fact
that the thermal scaling axis, that is the t= Oaxis, doe—s
not agree with the t=0 axis. (b} On the thermal axis
t=0, the magnetization varies as

-h izS(1+ h'(y ')zy)

with

8=//(4 —2a —P) =0.48 .

(c) The two critical lines near the tetracritical point vary
as

t- qh k(h2/w—, )'~~,

or equivalently, as

(9)

where c, =Pw, q and

cz =
—,'P(3P —1)(qw )

and a=1,2 refers to the (P-II) and (II-I) phase boun-
daries, respectively.

Note that both critical lines in a close vicinity of the
tetracritical point are scaled by a common exponent P.
This is to be contrasted to the case of ordinary tetracriti-
cal point previously analyzed by Bruce and Aharony'
and by Mukamel. ' In such cases the upper critical line
was scaled by an anisotropy-crossover exponent P, while
the lower critical line was scaled by a slightly different ex-
ponent P —P„, where P„&0 was associated with an ir-
relevant symmetry-breaking quartic perturbation arising
from crystalline anisotropy. Such difference comes from
the fact that, in the present case, the chiral fixed point
lies at u &0, while in the previous cases, symmetry was
dynamically restored at the transition and the fixed point
governing the tetracriticality was the ordinary XY or
Heisenberg fixed point at which u*=0. ' Note that, as
the fixed point is approached u~u*, the lower critical
line persists for u'WO, whereas it should disappear for
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v
' =0. The situation here is analogous to the case

governed by the cubic fixed point analyzed by Bruce and
Aharony. '

In concluding this section, we add one comment. As is
apparent from (9), the nonuniversal correction terms
could be significant since P is so close to unity. There-
fore, in practice, it might be difficult to estimate the lead-
ing exponent P from the experimental data unless one has
the knowledge of the thermal scaling axis, as was pointed
out by Fisher for the case of the bicritical point. '

III. SCALING ANALYSIS OF CsNiC13

In this section, we analyze the axial triangular antifer-
romagnet CswiC13 ~ The magnetic field is assumed to be
applied along an easy c axis as H =(0,0,H }. The ap-
propriate GLW Harniltonian is given by

%=%0+% +%„, &„= 5(a, —+b, ) 5m—, , (10)

where %o and % have been defined by (2) and (3), re-
spectively, but a, b, and m are now three-component vec-

tors. The last term 9z represents an easy-axis-type an-
isotropy.

Plumer, Hood, and Caille applied the Landau-type
free-energy analysis to the Hamiltonian (10), and success-
fully reproduced the experimentally observed magnetic
phase diagram of CsNiC13, shown schematically in Fig.
1, including a novel type of multicritical point at
(T,H ). According to their analysis, the intermediate
phase at lower fields (phase II in Fig. 1) corresponds to
the linearly polarized state with a~~H and b=O (or
equivalently, b~~H and a=O), while the low-temperature
phase (phase I) corresponds to the elliptically polarized
state with ahab, ~a~A~b~, and a~(H (or b()H). At higher
fields, on the other hand, the ordered state is a 120' struc-
ture in the basal plane with the induced magnetization
along the c axis, corresponding to aJ.b, ~a~

= ~1~, alH,
and blH (phase III}. The transition between the phases I
and III is of first order (spin-fiop line), whereas the transi-
tions along all other phase boundaries are continuous.

In order to study the associated critical phenomena,
one may derive the following reduced Hamiltonian via
the same procedure as was done for the case of CsMnBr3.

&=(Va) +(Vb) +r(a +b )+u(a +b ) +v[(a b) —a b ]
—g(a„+b2+a +b 2a, 2b—, )+[—terms not containing a and b],

r =ro —
—,'5+(e+ —,'f)m, g =

—,'(fm' —5) . (12)

From (11), one can see that the point (r =O, g =0) corre-
sponds to the rnulticritical point at which the system re-
covers a full isotropy in spin space, although it is aniso-
tropic in zero field.

The criticality along the three second-order transition
lines emanating from the multicritical point, correspond-
ing to nonzero g, may be examined by retaining the asso-
ciated critical modes in (11), as has been done for
CsMnBr, . Thus, one obtains (i) for the (P-II) phase
boundary, n =2 P model with P =(a„b, ) and with the
shifted temperature-like variable F=r+2g; (ii) for the
(II-I) phase boundary, n =2 P model with P=(b„,b~)
and r =r +g+(2u —v)a, , on assuming that the symme-
try breaking in phase II is such that a, AO; (iii} for the
(P-III) phase boundary, n =2 chiral model defined by Eq.
(2) with a=(a„,a ), b=(b„,b ), and F=r —g. Therefore,
the criticality along the two phase boundaries at lower
fields (H & H ) are both XY like. On the other hand, we
predict that the criticality along the phase boundary at
higher fields (H & H ) is of n =2 chiral universality
characterized by novel exponents quoted earlier.

The two XY lines and one n =2 chiral line meet at a
novel type of multicritical point. On the locus g =0,
which should be tangential to the first-order spin-flop line
at the multicritical point, one has the n =3 chiral Hamil-
tonian as is evident from (11). According to the
renormalization-group analysis, ' ' its criticality is ex-
pected to be governed by a new type of n =3 chiral fixed
point: recent numerical estimates of the associated critical
exponents are a=0.34, P=0.28, y =1.1, and v=0. 55. "'

As g was found to be a scaling field at the chiral fixed
point, one again has the scaling relation (7) with linear
scaling fields,

t =t +qh, g =h pt, — (13)

P=2 —a —/=0. 60:
here we tentatively put P = 1.06 for a rough numerical es-
timate. (C) The uniform susceptibility X on the locus
g=O diverges as

X-t r(1+cqt~ '+c'q t 't' ")

with t =(T—T )/T~ and h =(H H)l(k Te—), and p
is equal to a limiting tangent of the spin-fiop line at the
multicritical point, p =(dh, fldt) . The exponents ap-
pearing in (7},a and P, are now associated with the n =3
chiral fixed point. Again, P is expected to be fairly close
to unity: a recent numerical estimate based on the two-
loop renormalization-group calculation gives P = 1.06. '

As in the case of CsMnBr3, various predictions follow
directly from (7} and (13)~ (A) The sublattice magnetiza-
tion m, and the associated sublattice susceptibility g, on
the locus g= 0 varies as m, —

~

t
~

~ and X, —t r with ap-
propriate n =3 chiral exponents. (B) The discontinuity of
the magnetization across the spin-flop line below T
varies as

bM- ~t~i(1+cq(t~t' ')

with
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with

y =2/+a —2=0.46 .

(D) On the thermal axis, t=0,—the magnetization devia-
tion 5M —=M —M varies as

with

8—=P/(2 —a —P) =1.77 .

(E) The three critical lines near the multicritical point
vary as glut~~= W, where a=1,2,3 refers to each phase
boundary. All three phase boundaries come in tangent to
the first-order spin-flop line.

susceptibility could be well fitted with a single exponent
(p or y), which is consistent with the n=2 chiral value
but largely different from the n=4 Heisenberg value.
Furthermore, the fact that the theoretical estimate' of
P„associated with the n=4 Heisenberg fixed point ob-
tained from the e expansion at 0(e ), (t, =0.08, appears
to be too small to explain the observed deviation

'tgp» f» t —0.46 also casts some doubt on the valid-

ity of such an explanation. Thus, further careful experi-
mental studies in a close vicinity of the tetracritical point
is highly desirable to clarify the situation.

%e have predicted that the zero-field uniform suscepti-
bility of CsMnBr3 should exhibit a singularity of the form' with

IV. DISCUSSIONS
y= —(2 —a —P)= —0.56 .

In this section, we examine our results in the light of
the existing experimental data for CsMnBr3 and CsNiC13,
and also try to give suggestions concerning the future ex-
perirnents. Recently, following the theoretical predic-
tions of the possible existence of a new universality, the
criticality of the zero-field transition of CsMnBr3 was in-

dependently investigated by the two groups: Ajiro, Ka-
dowaki, and co-workers gave P =0.25, y = 1.10, and
v=0. 57 (Ref. 5), while Mason, Gaulin, and Collins gave
p=0.21, y=1.01, and v=0. 54. Both results seem to in-
dicate that the n =2 chiral universality is actually govern-
ing the tetracriticality of CsMnBr3. The crossover ex-
ponents describing the behavior of the two critical lines
around the zero-field tetracritical point have recently
been measured by Gaulin et al. by means of neutron
scattering, giving gp» —1.21 and g» &-—0.75. These ex-
perimental values appear to deviate considerably from
our present result, fp» f» t 1.04. Th„e—reason for this
discrepancy is presently not clear. The existence of a
rather large correction to the leading singularity might be
the cause, as discussed in Sec. III. Another explanation,
suggested by the observation that 1(», appears to be
smaller than gp „, may be that the unstable ($„&0)
four-component Heisenberg fixed point lying at
g'=v'=0 [Ref. 9(b)] is responsible for the observed be-
havior, since one generally expects P», =P —P, for the
Heisenberg-like fixed point with v*=0. ' Note that, in
this explanation, the observed exponents should be
effective exponents observable only in some appropriate
region in the phase diagram not very close to the tetra-
critical point. Sufficiently close to Tz, the stable chiral
fixed point lying at g'=0 and v "WO should describe the
asymptotic behavior of the phase boundaries. This
scenario could well apply if v is sufficiently small.
Meanwhile, if v is small, one may naturally expect that a
similar crossover should be observable in the zero jield-
transition. However, indication of such n=4 Heisenberg
to n=2 chiral crossover has not been observed in zero
field: Indeed, over a rather wide temperature range
(10 (t &10 '), the neutron scattering data of the sub-
lattice magnetization and the corresponding sublattice

This prediction should be testable by straightforward sus-
ceptibility measurements.

Concerning the criticality of CsMnBr3 under finite
fields, we have predicted that the upper and the lower
transitions should belong to the XY (n =2) and the Ising
(n= 1) universality, respectively. Gaulin et ol. also mea-
sured the exponent p at an upper transition point in a
finite field (H-4T) and obtained P=0.29. Although
this value is clearly larger than the corresponding value
obtained from the zero-field measurement P=0.24, it is
substantially smaller than our theoretical value p=0.35
for the XY universality. This deviation could possibly be
understood as a crossover phenomenon from the n=2
chiral behavior to the XFbehavior, which is expected for
the case of weak magnetic fields.

Next, we turn to CsNiC13. Successive phase transitions
of CsNiC13 in zero field has been studied extensively. As
to their criticalities, Clark and Moulton obtained

p~~ -pj =0.32+0.03 by means of the NMR measurement, '

while Kadowaki, Ubukoshi, and Hirakawa obtained
p~~-p~=0. 30+0.02 by means of neutron scattering,
where

p~~
and p~ refer to the order-parameter exponent at

T=T» and T&2, respectively. These results seem con-
sistent with the theoretical expectation that the two criti-
cal lines at lower fields should belong to the conventional
XY universality. The fact that the measured value of p
tends to be a bit smaller than the pure XY value P=0.35,
may be understood as a smooth crossover effect from the
n=3 chiral behavior, which is realized at the multicriti-
cal point.

Very recently, the behavior of phase boundaries near
the rnulticritical point of CsNiC13 have been studied by
Poirier et al. using ultrasonic velocity measurements. '

These authors have found that the crossover exponents
associated with the phase boundaries exceed unity, con-
sistent with the present results. In order to test the
theory critically, further careful experimental studies of
the critical behavior of CsNiC13 are desirable, particular-
1y at the multicritical point as well as along the high-field
phase boundary.
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