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An ensemble of particles with repulsive Yukawa-type interaction is solved at high dimension.
The fluid exhibits a new static singularity at density (p/T)„, which characterizes the supercooled-
fluid branch and the glass transition; at equilibrium the system crystalhzes at p(p„. Thus, a
unified picture of crystallization, supercooled fluid, glass formation, and melting is discovered. The
theory remains exact for arbitrary potential as p~p„and agrees qualitatively with experiments.

I. INTRODUCTION

While there is much known about the theory of fluids'
and solids there is less known about the theory of melt-
ing. Recently the crystallization of hard spheres '

and of charged particles has been solved at infinite di-
mension D, which corresponds to the Kirkwood instabil-
ity. These calculations have two main shortcomings,
namely they have not been extended to finite D and the
respective transitions are continuous. Here an ensemble
of particles with Yukawa-type potential ' is solved for
1 &&D ~. The respective fluid exhibits a singularity at
density p=p„& 00. The system cannot exist at this
singularity, since at equilibrium it undergoes a discon-
tinuous phase transition into a crystalline phase at

pI &p„. On the other hand, if equilibrium is prohibited,
the system may follow the local equilibrium of the fluid as

pI &p~p„, however, a fluid state at p„requires infinite
pressure. Nevertheless, the fluid at pIq (p (p „or
T & T„(p), is the supercooled fluid, which is thereby
solved. As the temperature is lowered, the supercooled
fluid becomes nonergodic at T & T„(p); this transition
corresponds to the dynamic singularity in the mode-
coupling theory. " As the temperature is lowered further,
the number of phases per particle increases and diverges
at T„(p). The Kauzmann paradox' occurs at T & T„
and is repaired by quantum corrections. The analogue of
the Kirkwood instability is the singularity at p„. Thus a
unified theory of crystallization, supercooled fluid, glass
formation, and melting is presented. As D~ ao (pAp„,
p~p„afterwards), the singularity vanishes and the
Kirkwood instability is recovered. The special case of the
Yukawa potential is generalized to an arbitrary potential
asymptotically as p~p„. The results are compared with
experiment.

II. POTENTIAL

Here ~ is a parameter and

J(k) = —o (k)k
2

cr(k) =(2m ) b' J (b), (lb)

q
T(D —2)

'
1 /t D —2)

is the Fourier transform of the Mayer function of the
Coulomb potential P=[q /(D —2)]r, see Appendix
A. Note that for the special case ~=p, g is the screened
Coulomb potential. ' ' ' Here the analogue of the
screening length reads A, =m(k =0). If D »1, the
mean interparticle distance is large compared to A, at the
density, at which the simple hypercubic crystal becomes
stable, see the following. At such densities the corre-
sponding potential can be interpreted easily, namely it is
a Yukawa potential

2

f (r)= q r2 De
D —2

(2)

2 3

in@ = —pg(k =0)— fd k
2 1 —pg

(3a)

plus integrals corresponding to topologically more com-
plicated diagrams than rings. If

p &
' =027&,0.27

Ig(k =0)I
(3b)

Eq. (3a) truncates after the second term for large D, see
Appendix B. The integrand can be discussed in the form

III. DEBYE CHAIN

The activity coeScient' y can be calculated in terms of
the Debye-chain expansion' ' for the case of uniform
density

(k) f(k) —o.

1 —rf(k) k +~o
(la)

The Fourier transform g(k) of the Mayer function g (r)
of the potential under investigation is

3

(r+p) '(~ '+cr/k )
1 —pg

X [(&+p) '+o /k ] (4a)
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IV. SINGULARITIES

'+o(ko)/ko)0 or ~& —ko/o(ko) . (4b)

Note that =ko/cr(ko) is proportional to T, see Appendix
C

Singularities can occur most easily at the Inost negative
value of o /k, say, o.(ko)/ko, see Appendix C. Since the
potential shall not be singular at p=O and kPO, the pa-
rameter ~ is restricted by

where

P=l —'p=1 —T„/T=T/T„—1 .

Pressure Pf and chemical potential pf of the Quid phase
follow from the activity coeScient, ' and read

T

Pf /T= 1+ p+PP ' QD+p(p '/ —1)2QD,
27.

(9)

pf /T=lnp+p/~+P '
QD ——ln(MT};

—ko/o(ko)=Tr"

Thus also v must be proportional to T

7=TV

(4c}

(4d)

the compressibility is

thus the screening length A, is independent of T.
There can be a singularity at nonzero density, say, p„,

at any temperature T

(r+p„) '+o(ko)/ko =0 or p„=T(r" r) .—

At given density this singularity occurs at the tempera-
ture

the free energy per particle is

ff /T=lnp+ D /21n—(MT) —1 —2QD(p '/2 —1),

the entropy per particle is

o'f = —lnp+D/2 ln(MT)+D/2 —2QD+QDp

T„=p(r" r)—
while it occurs at constant ratio

and the specific heat per particle at fixed p is
(5b)

cf =D/2 —QD/2p

(p/T) „=r (5c)
where M is the mass of the particle divided by the square
of Planck's constant A.

There is no real system at the singularity since either at

p &p„ the system crystallizes, or if the system remains a
uniform fluid, it requires inflnite pressure (see the follow-

ing) to have p=p„. Thus the singularity of the uniform
fluid is fictive. At p&p„ the integral in Eq. (3a) can be
performed with the saddle-point method, see Appendix
D, and reads up to corrections in 1/D

lny
—p/g+ +P2( +r+ Ap ) 1/2( 1 ep) I/2 rl/2Q (6}

where

VI. SIMPLE HYPERCUBIC LATTICE

In order to allow the ensemble to exhibit nonuniform
density, the special case of a simple hypercubic lattice is
considered. The lattice is described crudely but
suSciently in the harmonic approximation at high tem-
perature and at leading order in 1/D. The Helmholtz
free energy reads

Fb, /N=eo DT lnT+D—T Inbred

p p/p~~ 'r 'r/p~~ rm 'rm /p~ ~

4 9g2D
—7 6/( 2~e2)b 2/+1/2

Thus here first p~p„and afterwards D~~ is per-
formed, which is the physical order of limits. In the op-
posite order of limits the fictive singularity vanishes at
D = ~, iny =p/r; the second virial coefficient remains as
in the Kirkwood instability. *

Three conditions have to be fulfilled if p„shall exist,
namely Eq. (3b) p&0.27', Eq. (4c) v&r and Eq. (Sa)
p„=~ —~. These conditions are fulfilled if

where
—ro /A,

E'p=g pe rp p
' 1/2

2g p
MD

rp —
2ro /A,—e

since ro/A, &&D.
The chemical potential pb, =dF/dN reads

D D D
p, b, /T = D lnT+D lnq+ ——Inp ——lnM—

2 2 4

and the pressure is

(10)

(1 la)

1

1 27™~&~m&m ««m .

V. THKRMQDYNAMICS NEAR THK SINGULARITY

The following analysis concentrates on the vicinity of
p„, p=p„and is performed at leading order in p, where
lny takes the forxn

]ny =p/~+p QD,

ro 1—
~ (1 lb)

At D = 00 the crystal can be described in the framework
of the Kirkwood transition and exists at p ~ p „.

VII. PHASE EQUILIBRIUM

At phase equilibrium the respective pressures and
chemical potentials must be equal. At leading order the
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respective chemical potentials read at the same pressure
P,

pf /T =P/T ——ln(MT),1 D

p 2
(12)

p1„/T=D/21n(P/T)+D ln
T&M

Since pf grows linearly and p&, logarithmically with P,
the system is fluid at low and crystalline at high pressure.
At high dimension the respective quantities at phase
equilibrium read

P,q/T= —p„Dp„D q

p,q/T= —ln Dp„
D q 1

2

qqpi„=p„-- D ln Dp„"ro

D qln
&

Dp„

—2

(13)

0

FIG. 1. Phase diagram in the p-P plane. Only one crystal
structure is assumed for simplicity. The four possible branches
are fluid in equilibrium (feq), fluid in local equilibrium (fleq),
crystal in equilibrium (ceq) and crystal in local equilibrium
(cleq).

Since A.=e, if e.g., q /T =1 then the mean distance
between neighboring particles is larger in the crystal than
in the fluid by the factor e' . On the other hand, the
compressibility vanishes in the fluid phase at p „,while it
is proportional to 1/p in the crystal. The possibility of a
Wigner' crystal is discussed elsewhere.

VIII. LOCAL EQUILIBRIUM

The phase diagram of the system is given in Fig. 1.
Since the kinetics can be made extremely slow at low
temperature, the system can be fixed in states of local
equilibrium. While the existence of the fluid equilibrium
states (feq) is proven already, the existence of the fiuid lo-
cal equilibrium states (fieq) is not yet proven and will be
assumed in the following. Since P, ( T) decreases as T de-

creases, a fluid state at fixed pressure, which is at equilib-
rium at high temperature [P &P,q(T)] may be at local
equilibrium at low temperature [P)P,„(T)]. Thus the
fluid at local equilibrium can be identified at least approx-
imately with a supercooled fluid. The fleq state will now
be investigated in more detail.

IX. CORRELATION FUNCTION

The Fourier transform of the potential of mean force'
reads' u1= —g/(1 —pg). The inverse transform can be
calculated with the saddle-point method and reads

X. KAUZMANN PARADOX (REF. 12)

At sufficiently low temperature, say, TK,„„the entropy
0 f [Eq. (9}]is zero. TK,„, can be expressed as a function
ofpandp,

TK,„,=p exp —Qn( —
p

'
)

eM
(15)

Since in experiments the pressure remains finite, mostly
constant, p is approximately constant and p decreases ap-
proximately proportional to T, see Pf Eq. (9). If D )2,
the change in p does not remove TK,„,. Due to the ex-
ponential in Eq. (15), the II auzmann temperature Tx,„, is
zero at infinite dimension, but it is nonzero at 3 D ( ~.
Note that TK,„, is reduced near p„. The Kauzmann
paradox motivates the investigation of quantum correc-
tions to the equation of state.

XI. QUANTUM CORRECTIONS

f =T M '/24((dg /der) ) . (16a)

The free energy can be written as an expansion in A. In
this expansion, the leading correction to the classical free
energy per particle reads'

( r ) ( 2 )
( 1 D )/ 2

( r +p )
1 / 2p 1 / 2

Xp
—1/2kD —4(k r)

—D/2+1J (k r)
Thus the two-particle correlation function

(14}

gr, F, =PV . "" (16b)

Let us consider the forces F; = —dP /dr(r, "). At states
at which the quantum corrections become relevant, the
solid phase virial theorem' is a sufficient approximation,

g2(r) =(normalization constant) exp[ —u1 (r)/T]

oscillates with period ko =2/D, and the maxima decay
like exp( —r' '

) and diverge like exp(p '/2).

At high dimension ro))A, and thus only the interaction
of immediate neighbors contributes significantly. At
crude but sufficient approximation, the mean distance is



4352 HANS-OTTO CARMESIN 41

~o=p ' and the number of immediate neighbors is D,
thus

XII. REPARATION OF THE KAUZMANN PARADOX

The corrected entropy reads
F; =2Pp 'D

Inserting into Eq. (16a) yields

=T—
M

—iP

(16c)

(16d)

D D
o =o. +o = —lnp+ —lnMT+-f ~m 2 2

——1/2+y ——2T i (18a)

A. Small corrections

If the corrections are sufficiently small P =Pf [Eq. (9)]
can be inserted into Eq. (16d), thus at leading order in p,

f =Pp ', where /=ADD M '/6,

The function o ( T) diverges at infinite and zero tempera-
ture and exhibits a minimum at say, T;n. At sufficiently
high D or small P, o (T;„))0 and the Kauzmann para-
dox is thus repaired by the term due to the singularity,
namely Pp T

For small p

T;„/T„—1=(—'M 'T '0 D )'

oqm 4p

c = —Zap T ', P =Ppp

(16e) omin oqm(1 p p min) '

XIII. IRREVERSIBILITY

(18b)

his approximation is valid for Pf &)P, or
Consider a decrease of temperature d T. Thereby

occurs a decrease of heat dg.

T»QoD 'M 'p '"/6. (161)
dQ~TdS . (19a)

B. Large corrections

Since P =p dfId p and f =ff +f, Eq. (16d) takes
the form

The process is reversible if the equality holds. Thus if
do IdT &0 only the inequality holds, thus that process is
irreversible. Denote by T;„,„ the highest temperature, at
which an irreversible change of states occurs at T de-
creases. Thus.

f=f +T M 'D /6 +
d d

'2
& T.Tmin — irrev (19b)

(17a)

Inserting Pf =p dff /dp and f ff =f an—d consider-
ing the vicinity of the singularity Pf = TpQDp

' yields
the differential equation

with

and

A =D '0~6

8 =T 'M ' D '6 p. (17b)

Only qualitative features of the solution f of the
preceding differential equation will be derived. Consider
f as a function of p, p =const, then

(17c)

Due to Eq. (16f); the construction off can be started
at sufficiently large p with Eqs. (16e). These approximate
solution Eqs. (16e) can be inserted into the differential Eq.
(17c) and thus increases the quantum correction. The in-
creased approximate solution can again be inserted into
Eq. (17c) and so forth. By this iteration the quantum
corrections grow monotonically. Therefore the approxi-
mate solution Eqs. (16e) will be investigated further.

An irreversible state exhibits a nonzero configurational
entropy o „„f,which is the logarithm of the number of its
phases. This entropy o.„„fcauses the increase of entropy
at decreasing temperature. Since in reversible thermo-
dynamics d o Id T)0,

o conf —o o min —Tmin (19c)

XIV. MEAN FIELD THEORY

Consider the Fourier transform of the Mayer function
of any two-particle potential say, h (k). Then the activity
coefficient can still be written in the form of Eq. (3a). In
the following it will be assumed that the topologically
more complicated diagrams than rings will neither com-

At T ~ T;„,„several states exist, thus the system is noner-
godic, the longest relaxation time diverges, thus T;„,„
marks a dynamic singularity" of the fluid and thereby a
glass transition, ' say, G1. As T decreases further below

T;„,„, the number of phases grows continuously, Eqs.
(16e), and diverges at T„.Thus in principle there occurs
a transition of zeroth order, which is fictive, however,
since at T„ the pressure diverges. Nevertheless it is con-
ceivable that another glass phase occurs, say, G „.Since
at T„(orp„)g(ko) = 1/p, see Eq. (4a), that singularity is
the analogue of the Kirkwood instability. Thus, if a tran-
sition into a phase G„exists, it is the analogue of the
Kirkwood transition. ' Note that in the irreversible re-
gime, the specific heats calculated in this paper are upper
bounds of the true specific heats due to Eq. (19a).
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pensate the singularity at p„, nor cause another singular-

ity at p (p . Then the analysis of the singularity at p„ is

asymptotically (p~O) exact. If truncation of [Eq. (3a)] is
possible for h(k) at sufficiently high dimension, then this
high dimensional case can be regarded as the mean-field
theory, which corresponds to the asymptotically (p~O)
exact calculation.

The singularity occurs at [Eq. (3a)]

as above. That leads to a quadratic equation for p, which
can be solved by

p
I P2T —2 —2 —

1[1y(1 +4P —2T22 2)1/2]

(21b)

Because of mD the second term in the root is large, thus
p=PcoD 'T ', thus

p„(T)=h(k0, T) (208) a= — =pcoDP D
1 dL
L dT

(21c)

where at k0, h is minimal and negative; potentials
without such ko will not be discussed here. The integral
in Eq. (3a) can still be performed by the saddle point
method and is still proportional p '~, see Appendix D,

——1 /2say, mDp
Therefrom follows the thermodynamics of the super-

cooled fiuid in mean-field theory (Mt T). Here the
asymptotic case p~O is considered, and h(k =0)=f is
abbreviated.

Pf /T =(1+ph /2)p+tanpp '~2+ 2cgD(p'~~ —1),

where L is the length of the material. Experiments
show, ' that in glasses typically a is independent of tem-
perature as is found here.

Compressibility: (s) As p~O the compressibility Kf
becomes a relatively small quantity in agreement with ex-
periments (Ref. 19, p. 311)of glasses.

At constant pressure and as p~O the compressibility
reads

pf /T =lnp+ fp+ coDp
'~ ——In(MT),

TpP— (21d)

K =2' lp
—

lp 3/2

(20b)

ff /T =lnp+ ph /2 —ln(MT—)—1 —2coD(p
' —1),

cr = lnp pf /—2+——in(MT) —— p+D Tdh D
2 2dT 2

d oQ

2coD +coD Tpp~ p

df D, d'f
c = —T p+ ——T/2 pdT 2 dT

d
toD /2 Tpp p

Thus deaf/dP &0 and deaf/dT)0, both in agreement
with experiments on glasses (Ref. 19, p. 311).

A further comparison with experiment, especially with
Eq. (14) is desirable.
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The Kauzmann paradox can be discussed analogously as
it was done for the case of the Yukawa potential and so
can the quantum corrections be discussed.

XV. COMPARISON WITH EXPERIMENT

APPENDIX A:
FOURIER TRANSFORM OF COULOMB POTENTIAL

The Fourier transform of the Mayer function of the
Coulomb potential reads after integration of angular
space

Specijic Heat (c). At p~0 the pressure reads
P = AD Tpp '~, thus at constant pressure p
=Pcs&'T 'p ', thus the specific heat reads as p~O and
at P =const,

2'
k

D/2

1 —exp —A

X b JDgp ~(b)db (Al)

D df T' d%
2 dTP 2 dT2P

dp~
1 P3 —2T —1 —1 —4

~D P P~ (21a)

where

2
k2 —D

T(D —2)

It is conceivable, that dp /dT does not compensate T
and that d f/dT )0. In this case the specific heat ex-
hibits a maximum, as is observed' in glasses at relatively
high temperature, which might correspond to the super-
cooled Quid or the first glass transition 61.

Thermal expansion: (a) As p~O the pressure is given

Integration by parts yields
D/2

A (2 —D)
k

X f exp( —Ab )b' D~'JD&2(b)db .

Another integration by parts yields

(A2)
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' D/2

A (2—D)
k

I

X f exp( —Ab )b ' ' J (b)db
0

(A3)
The integral can be performed with the saddle-point
method and thus reads

f(k)=cr(k)/k [I+O(1/D)],
2

o (k) =(2m) b ' J (b)
' 1/(D —2)

b =kR,~, R,~=
T(D —2)

APPENDIX 8:
TRUNCATION OF THE EQUATION OF STATE

In order to prove the truncation of the equation of
state, it is sufficient to show ' that the ratio of the clus-
ter integral of the single loop diagram with one root di-
vided by the cluster integral of any topologically more
complicated simply connected irreducible diagram with
one root and the same number of particles diverges, as D
diverges.

namely I =cP.
Let us now modify the cluster by bringing the l —1

particles of the branch connecting 1 and 1+m into the
branch connecting 1 and M, and let us thereby annihilate
the branch between 1 and 1+m completely. Since the
rest of the cluster remains identical, the cluster integral J
of the modified cluster reads

Q fg1,2g2, 3 gm+I —2, Md2d3 m+I —2 '

Thus it is sufficient to prove

lim Q/P= DD .
D~ oo

(82)

Let the positions of points 1, M and m +I be arbitrary
and fixed and let the distance between 1 and M be shorter
or equal to that between 1 and m +1. Let there be m —1

more particles on the branch between 1 and M and I —1

more particles on the branch between 1 and m + 1.
Thus the corresponding cluster integral I will be pro-

portional to

P= fg2g23 . gm, Md2d3. dm

fgl, m+1 gl, m+ldm+1 m+2 dm+I

(81)

1. The Cluster Integrals P and Q

The topologically more complicated diagram will con-
tain a point, one say, which is connected with at least
three particles, and thus with at least three branches.
Each of these branches will eventually and at the first
time reach a point not equal to one, which is connected
to at least three branches. Say these points of two of the
branches are point M and point m + l.

2. Zero distance

Q= f e'""~ 'I'
(I )I+-m —ldDk(2~)-D (84)

Consider polar coordinates and let 49 be the angle between
It and (r, —rM )

In order to calculate Q, let us write it in terms of
Fourier transforms

Q =f f sin 28e ' g(k)'+ 'k D 'd & dkS, (2m )
0 0

or for the special case r, —rM

Q(r, =r )=f g(k)™Ik 'dkS (21r) D=Q .

Analogously I' reads for r, —r~ =rI+

P(r =r =rI+ )=f g'(k)k 'dk f g (k)k 'dkS (2 ) 2D=P .
0 0

(85)

We now investigate limD „Q/P for this special case. The integrals will be calculated by the saddle point method.
The ease I =1 will be discussed separately.

a. Location of the maximum

Consider the integral II = f g '(k)k 'dk, the derivative of its integrand reads
0

(D —1 —21)k " +1 ' 'k
dk

Thus the maximum is determined by

(D —1 —21)JD~2 1(k) =IkJ21~2(k) .

This equation will be solved at large D with (since, k (D/2)

(87)

(88)
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D D
JD/2(k) = exp —tanha ——a (Dn. tanha)'/ 1+0

D
(B9)

where D/2k =cosha.
Thus

1
k = (D——1 —21)JD/2 —1(k)/JD/2(k),

or neglecting the correction O(1/D), and approximating
D/k =e and tanha= 1,

with

&2D 2
—~DSD /S2D

Thus up to less singular factors,

g2D 2(k =0)=S2D/SD =I

(B13c)

(B13d)

or

1 D
k = (D ——1 —2l) exp —1+in—+1

l

l
—1/2D 1/2(D I 2l )1 I2

(B10b)

c. Ratio

The ratio Q/P from Eqs. (B5) and (B6) reads for
I, m ~3

Q/P =Il+, /(IlI ),
For the following it is sufficient to have an upper bound
for k,„,say

(B10c)

[Note that for the case 1=4, Eq. (B10b) can be obtained
without any approximation from a recursion relation for
Bessel functions. ]

b. Integration

It can be verified, that the width of the maximum is of
order one. It can also be verified, that

g(k ) =S e D/2DD/2k
max D max

times less singular terms . (Bl 1)

or (B14)

Q /P —
[ l 1/2 —1 /[ ( l + 1 )

I /2 —
1 /24] ]

D /2 (B15)

The term in curly brackets is larger than one. For the
case I =m =2 the ratio reads

Q/P =(512/e) (B16)

Thus for zero distance the truncation is proven for
I, m ~2.

Q/p [e(l +m 1)l/2+m/2 —3/2/(ll/2 —
1 m/2 —1)]D/2

It can easily be verified, that the term in square brackets
is larger than one.

For the case m =2, 1 ~ 3 the ratio reads

Inserting yields for the integral
' t —1 D/2

—]+I/2It= e e (B12)

3. Finite Distance

a. Monotonicity

For the case I =2 the integral can be evaluated exactly.
(Note that the smaller I, the worse the approximation for
k,„.) Per definition

I2= fg (r)d r= Fourier transform [g (r)]~k

For the case l » 2, the rest follows from monotonicity.
Consider the integral

I(l, r)= f e'"'g(k)'d k(2~) (B17)

If we denote a= r&
—r~ and 1=r, —r +& then the ratio

Q/P reads

(B13a) Q/P =I(1+m —l, a)/[I(l, a)I(m, b)], (B18)

where without loss of generality we choose b ~0. Since
I(l, r) must decay monotonically with r, we find

I(m, b) ~I(m, a), thus
then (B13b)

Q/P»I(l +m —l, a)/[I(l, a)I(m, a)] . (B19)
gD, 1. (r) g2D —2, 2, /2(

2

Therefore if
oD(k)

gD(k)=
k +rDcrD(k)

then

a 2D —2(k)
g2D —2(k) —

2 +AD 2~ 2D —2( k)—
I(l,a)/(l, O) . (B20)

Thus

I(l, a)/I(l, O) (I(1+m —l, a)/I(l +m —1,0) . (B21)

Now I(l,a) has the property, that the fewer particles l in
the chain, the faster decays I(l,a) with distance a, i.e.,
the smaller
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Since I(m, a)/I(m, O) & 1 we find

I (l, a)I(m, a)/[I (1,0)I (m, 0)]

&I(1+m —l,a)/I(1+m —1,0),
or

I(l +m —1,0)/[I(1,0)I(m, O)]

& I(I +m —1,a )I[I( 1,a )I ( m, a )],
or

' D/2
41K 0 7

0 0

with z0 = 1.8558.

X exp[ —zo(D/2)' ](4ID) /, (C3)

APPENDIX D:
INTEGRATION OF THE GEOMETRIC SERIES

The integral

QIP &QII' .

b. The case / =1

(B22)

with

1 —pg(b)

(D 1)

Let us first estimate the order of magnitude of the dis-
tance between two particles that contributes significantly
to their cluster integral. Consider the integral

N =fg(r)d r =g(k =0)= 1/&=O(1) .

If the particles were hard spheres of diameter d and h (r)
the corresponding Mayer function, then the correspond-
ing integral reads

Nz = f h(r)d r=SD/Dd =(d 2ne/D) / . (B24)

q

will be calculated for p~p„. In this case the relevant
contribution is the singular contribution. The singular
contribution is the integral between the first two zeros of
o,b, and b2 say. The singular contribution will be calcu-
lated by the saddle-point method, thus slowly changing
factors can be taken at the value of the saddle point, say,
b0.

Inserting for g and substitution of k by b yields

The requirement Nz =Ng yields

d =&D/2me (B25)
I =—,S,o(b, )bD 'r 2(~+-p)-'(r ' -~. ') 2SC,

--
q

Thus we conclude, that the distance between two parti-
cles is large compared to one.

If an additional bond is added to any given diagram,
the integrand is multiplied by g(r) Since .~g(r)~ &1, and
for r ) 1, ~g(r)~ O(r +

), and since r =O(&D ), the
ratio of the cluster integral of the diagram with the addi-
tional bond divided by the cluster integral without the
additional bond vanishes as D ~ 00. Altogether the trun-
cation of the equation of state is proven.

where

b2
IC= f db, co=(r+p)

b, a)+oIb2'

(D2)

J b
—D/2 —2b 1 —D/2J b

—2 (D3)

The rnaximurn of the integ rand is determined by
bo''=2o. , or by

APPENDIX C: MINIMUM OF cr k

From Eq. (16) follows

o(k) D[g D(2~)D/2(kg) —D/2J (kg)]

X[1+0 1

D

with
' ]/I(D —2}

q
T(D —2)

(Cl)
1n(co+a/b ) . — .

Thus at (o'b =2o ) the saddle

X"(bo)=(cob +ob ) '(2cr bo") . —

(D4)

(D5)

Let us now discuss o." at dimension D, say, o.~. Since o.~
is of the form

Since the relative maxima of Jz&2b are of order Sz,
and since O(SD 2)=O(DSD), and since b =O(D), the
right-hand side is negligible compared to the left-hand
side. Thus b0 is given by the zero of Jzy2 or by the first
rninirnurn of o..

Let us now calculate the width of the saddle. Denote

The first term in square brackets is the Fourier transform
of the Mayer function of a hard sphere in D space of ra-
dius R.

Thus the minimum occurs at

o g)
—cd/'2 —,b ]—D/2

thus

koR =D/2+O(D' ), (C2) oD —c(JD/2+, b JD/2b ) . — (D6)

and its value is at leading order in D At b0, the second term vanishes,
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oz(bo) on+tb' =b a&+4 . (D7} Thus

Since the loci of the zeros and the extrema of o &+4 are
the same as those of 0.~, and the absolute values of the
extrema of 0.~ are b times as large as those of o.&+4.

2"(bo)=bo o(bo)(to+o(bo)/bo) .

From the saddle point integration

K =&2sr[ —X"(bo)) ' [to+a(bo)/bo]

(D10)

&@+4 ~a~

Thus

oo(bo)= —og)(bo) .

(D8)
and therefrom follows

K =&2sr[to+tr(bo)/bo] '
~o(bo)~ ' bo, (D11)

(D9) and therefrom Eq. (6).
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