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of D&h symmetry

Wenwu Cao* and Gerhard R. Barsch
itrlaterials Research Laboratory and Department ofPhysics, The Pennsylvania State University, Universe'ty Park, Pennsylvania 16802

(Received 7 August 1989; revised manuscript received 2 October 1989)

The Landau model of Slonczewski and Thomas (1970) for the improper ferroelastic Oq-D4I, phase
transition in perovskite-structure compounds has been extended by including spatial gradient terms

of the three-component primary order parameter (OP) and applied to calculate the OP pro61e and

the strain distribution for antiphase and for twin boundaries in the tetragonal phase. In order to ob-
tain quasi-one-dimensional kink-type solitary-wave solutions for which the OP and the strain de-

pend only on the coordinate normal to the interface plane, lateral surface forces are required which

allow for the shape change associated with ferroelastic interfaces, but which prevent expansion or
contraction within the boundary plane. Numerical application to SrTi03, including calculation of
the thickness and energy of both types of interphase boundaries versus temperature, is also present-
ed.

I. INTRODUCTION

Strontium titanate' (SrTi03) and several fiuoro-
perovskites undergo a nearly continuous improper fer-
roelastic phase transition from the high-temperature cu-
bic (Ot,') to the low-temperature tetragonal (D4„)
perovskite structure (composition ABX3). This transi-
tion is driven by the softening of a degenerate-zone
corner (R25) phonon mode that consists of the antiphase
rotations of adjacent (nearly rigid) BX6 octahedra around
any of the three cubic axes of the cubic prototype phase,
resulting in a quadrupling of the crystallographic unit
cell and the concomitant loss of cubic symmetry (Fig. 1).
In addition, the transition is accompanied by a spontane-
ous strain, consisting of a (nearly) volume conserving de-
viatoric deformation of the tetragonal unit cell that is in-
duced by a nonlinear ("rotostrictive") coupling between
the rotation and the strain. '

Thomas and Miiller have described this transition (to-
gether with the zone corner mode-driven cubic-trigonal
transition occurring in other perovskites) within the
framework of the Landau theory of continuous phase
transitions. In this theory the three components Q;
(i = 1,2, 3) of the primary order parameter (OP) were tak-
en as the displacements of the X ions that are related to
the rotation angles P; of the BX6 octahedra according to
Q;=(a/2)tang, (a denotes a lattice constant; Fig. 1).
Subsequently Slonczewski and Thomas' (ST) have ac-
counted for the induced spontaneous tetragonal deforma-
tion by including the coupling between the primary OP
and the components of the elastic strain tensor"
g;.= —,'(u;. +u,.) that take on the role of a secondary
(multicomponent) OP.

In the tetragonal phase three orientation states, or vari-
ants, occur; they correspond to the three possible direc-
tions that the rotation axis, or the (parallel) tetragonal
axis, may assume along any of the three cubic axes. Ad-
jacent domains consisting of different tetragonal variants

may be separated from each other by two types of inter-
phase boundaries: twin boundaries (TB's) or ferroelastic
domain walls, and antiphase boundaries (APB's). The
former separate different domains consisting of different
tetragonal variants and can be observed by optical
methods. ' The latter represent interfaces between
domains with the same direction of the tetragonal and ro-
tation axis, but with the sequence of the rotation angles
of alternating signs along the rotation axis reversed [Fig.
1(c)]. Coherent interphase boundaries are planar and are
characterized by their orientation, by the order-
parameter profile along the direction of their normal (i.e.
their thickness or width), and by their interfacial energy.
The orientation and energy (in conjunction with proper
boundary conditions) determine the morphology of the
domain structure. The width affects the wall mobility
and the applicability of continuum theoretical models to
interface boundaries, with wider boundaries being more
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FIG. 1. The Oz-D4& transformation in the perovskite struc-
ture (after Unoki and Sakudo ): (a) Unit cell of the cubic parent
phase. (b) The plane X3 =a/2 for the variant of the tetragonal
product phase with rotations of the BX6-octahedra around the
X3 axis. (c) Displacement pattern of the X ions with respect to a
unit cell shifted by (a/2) [111],showing that BX6 octahedra in

successive (001) layers rotate in opposite directions.
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mobile and more amenable to continuum theoretical
modeling. The interfacial orientation can be explained
theoretically on the basis of the strain compatibility be-
tween adjacent domains' ' or, more generally, from
group theoretical compatibility relations. ' ' By means
of diffraction contrast and high-resolution transmission
electron microscopy, it has been shown that, in general,
TB's are at most only a few lattice constant wide, and
that APB's are atomically sharp. ' However, as expected
on theoretical grounds, for second-order transitions it has
been found that the width increases sharply as the transi-
tion temperature is approached from below, ' as most
directly measured for ferroelectric potassium dihydrogen
phosphate (KDP) by x-ray diffraction. ' The energy of
interphase boundaries is difficult to measure directly; thus
experimental data on this quantity and its temperature
dependence are sparse and uncertain.

Theoretical models for interphase boundaries in ferroic
materials were inspired by the Landau-Ginzburg theory
of ferromagnetic Bloch walls' and have been proposed so
far only for improper ferroelastics that are either proper
ferroelectrics ' ' or improper ferroelectrics (as in Gadol-
inium molybdate ), and for proper ferroelastics. 3

In all these models the OP profile is given by a solitary-
wave solution of a phenomenological (continuum theoret-
ical) energy functional, which includes (local) nonlinear
terms in the OP that allow for multivalued solutions for
the OP corresponding to the different orientation states
in the homogeneous phase, plus (nonlocal) gradient terms
for the OP in the harmonic approximation, which deter-
mine the width and energy of the interface.

In this paper we present a continuum theoretical model
for TB's and APB's in the tetragonal (D4„) phase of
perovskites, which results from the improper ferroelastic
transition from the cubic (01', ) prototype phase that is
driven by the softening of the R2, mode. This model is
an extension of the. Landau model of Slonczewski and
Thomas' pertaining to the transition of the homogeneous
phase and is obtained by adding the symmetry-allowed
rotation gradient terms to their free energy. These terms
account for the energy associated with differences in the
rotation angle between adjacent (pairs of) BX6 octahedra.
Whereas numerical application of previous Landau-
Ginzburg models to specific materials was hampered by
lack of a procedure for relating the gradient coefficients
to independent experimental data, we will show in the
Appendix how the rotation gradient terms of our model
may be determined from the anisotropic dispersion of the
soft R25 phonon mode in the vicinity of the Brillouin-
zone corner. These results will allow us to include in the
following a numerical application of our model to
SrTi03.

Apart from their crystallographic interest, ferroelastic
TB's are important because they affect the propagation of
acoustic waves, ' phonon dispersion, ' as well as
thermal properties and the electron-phonon interaction.
Furthermore, ferroelastic TB's have been observed in the
perovskite-based high-T, oxide superconductors of the
K2Ni04 structure and of the YBa2Cu307 „ type,
and they result from a tetragonal-orthorhombic improper
ferroelastic transition. For La2Cu04 this transition is

driven by a soft zone-edge phonon mode with wave vec-
tor k =(ir/a )(1,1,0) so that a Ginzburg-Landau model
for interphase boundaries in 2:1:4 superconductors may
be constructed in a manner very similar to that in this pa-
per. However, for the 1:2:3 superconductors the
tetragonal-orthorhombic transition is associated with the
ordering of oxygen ions along the chains in the crystallo-
graphic b direction. Thus, for this case our model of
TB's in perovskites would have to be adapted and aug-
mented by inclusion of other (diffusive) degrees of free-
dom. ~ 4'

This paper is organized as follows. In Sec. II we dis-
cuss the theoretical model and review the application to
the homogeneously transformed tetragonal phase, ' in
Secs. III and IV we present the static solitary-wave solu-
tions for APB's and TB's respectively, and in Sec. V nu-
merical application to SrTi03 is made. Sections VI and
VII contain a discussion and a concluding summary, re-
spectively.

II. THEORETICAL MODEL

A. Landau-Ginzburg free energy

+F,(gi, re„)+FG(g(J ) . (2.1)

Here FL is the Landau free-energy density for the pri-
mary OP Q= t Q, ) (i = 1,2,3),

FL =
—,'E(g, +Q2+ Q3 )+ A ( g 1 +Q2+ Q3 )

(g2g2+g2g2+g2g2) .

Fel 2Cll( /ll+ 922+ 933)

+C12( 911922+911933+922933)

+2C44( 912+ 913+923)

(2.2)

(2.3)

is the elastic energy density in the harmonic approxima-
tion;

c ~1(911Q 1
+ 922Q 2+ 933Q 3 )

2t. 911(Q2 Q3 )+ 922(g 1 +Q3 )+933(g 1 +Q2)l

2~t( 112glg2+ /13glg3+ 923Q2Q3) (2.4)

is the coupling energy between the primary OP and the
strain ri = I il,.i I (i,j= 1,2,3); and

FG =
—,'Dll(Q1 1+Q2 2+Q3 3 )

+D12(Q1, 1 Q2, 2+ Q1, 1Q3,3+Q2, 2Q3, 3 )

+ pD44l(Q1, 2+Q2, 1 ) +(Q1,3+Q3, 1 )

+ (Q2, 3+Q3, 2 )'1 (2.5)

The (rotationally invariant) Landau-Ginzburg free en-
ergy (LGFE) density, which describes the second-order
transitions of the cubic perovskite structure that are
driven by the softening of the R25 zone corner mode, is to
lowest order given by

F(g;, Q; Jgk() =Fr (Q, )+F,l(gkl )
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P4=2Q2Q3& Ps 2Q, Q3, P6=2QiQ2, (2.6b}

e1

e2

e3

911
=S g2

'933

(2.7a)

e4 =2g23 es 2g13, e6 =2g12,

where

(2.7b)

is the gradient energy for the primary OP pertaining to
spatially inhomogeneous configurations, where indices (i)

preceded by a comma denote differentiation with respect
to the position coordinates X,

The LGFE, Eq. (2.1) is obtained from the Landau free
energy for the homogeneous phase (which equals
FL+F„+F,) as introduced by Slonczewski and Tho-
mas by adding the OP gradient contribution, Eq. (2.5).
All expansion coefficients in Eqs. (2.2) to (2.5) are referred
to the cubic parent phase; they are given here in the nota-
tion and with the same meaning as used by Slonczewski
and Thomas, ' except that the &); are the components of
the linear strain tensor (i.e., they include, as shown, a fac-
tor —,

' for the off-diagonal elements). The three (rotation)
gradient coefficients D», D i2, and D44, given here also in

Voigt notation, are determined by the anisotropy of the
dispersion of the soft R 25 phonon mode in the vicinity of
the Brillouin-zone corner.

For treating the OP-strain coupling it is convenient to
introduce the following symmetry coordinates:

p Q2

P2 =S Q2 (2.6a)
p Q2

Sii =Bi+2B2,

$22 =$33 =Bi B2

(2.12a)

(2.12b)

(2.12c)

B. Equilibrium conditions

From the variational derivative of the total energy

5f f fF(Q;,Q;i, rik& )dx, dx2dx3 =0, (2.13)

one obtains the following six static equilibrium conditions
(summation convention):

a aF
Bxj BQ; J

=0 (ij =1,2, 3),dF

l

(2.14)

o,'J"J =0 (i,j =1,2, 3) .

Here

aF aF„aF,
~g/J ~ )gJ ~gfJ

(2.15)

(2.16)

C. Homogeneous phase

represents the total Cauchy stress tensor; its two contri-
butions arise from the purely harmonic elastic response
of the crystal, plus an anharmonic term from the cou-
pling of the strain to the primary OP.

The six coupled partial differential equations (2.14) and
(2.15) plus boundary conditions determine the two sets of
field variables Q;(x) and u;(x). In the following, after re-
calling the solutions of Slonczewski and Thomas' per-
taining to the homogeneous product phase, we will give
special solutions that describe APB's and TB's.

1 1

v'3 v'3

1 1

v'2 v'2

1 1

v'6 v 6

1

v3

2
v'6

(2.8)
L&J 7

=0

Qklm 0 .

(2.17a)

(2.17b)

In the homogeneous state the OP and the strain are
constant, so that

Then the elastic and the coupling energies, Eqs. (2.3)
and (2.4), become, respectively,

Then Eqs. (2.14) and (2.15) reduce respectively, to

=0, (2.18a)
6

A
Fei 2 X caaea

a=1
(2.9)

0.
;J =const . (2.18b)

6

F, = —gS eP
a=1

Here

c11 c11+2c12

C22
—C33 C11 C12

C 44
=C 55

=C 66
=C

(2.10)

(2.1 la)

(2.11b)

(2.11c}
e =(J Ic )P {2.19)

For K &0 and o',-"=0 the equilibrium state corresponds
to the cubic high-temperature phase ' Q=O, &) =0.

In the low-temperature regime E &0 for vanishing to-
tal stress, o,'J"=0 one obtains from Eqs. (2.16) and
(2.7)—(2.10) the induced spontaneous strain as

are the elastic constant eigenvalues for cubic symmetry
and are (proportional to or equal to) the bulk modulus
and the two shear moduli. Furthermore,

Inserting this result into Eqs. (2.9) and (2.10) one obtains
in view of Eqs. {2.1) and (2.2) the effective Landau free en-
ergy 10
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FL,tr=(K/2)(g, +Q2+Q3)

+ g t( Q2 +Q2 +Q2 )2

+ g ~(Q2Q2+g2g2+g2g2 ) (2.20)

with the
coeScients'

renormalized anharmonic expansion

6c))

822

3C22
(2.21a)

A'„

2k 2

A'=A +
Pl 7l

C22

(2.21b}

The possible solutions of Eq. (2.18a) depend on these
coefficients as shown in the phase diagram 'o of Fig. 2.
The solutions for the tetragonal and for the trigonal
phase then become, respectively, '

FIG. 2. Phase diagram for the D4q and D31, perovskite prod-
uct phases in terms of the anharmonic parameters A' and A„'

[after Thomas and Muller (Ref. 9)].

For later reference these results are summarized in Table
I.

Q =(+Qo, 0,0),(0, +Qo, 0),(0,0, +Qo),

Q =(+Qo, +Qo, +Qo)/v'3,

(2.22)

(2.23)
III. ANTIPHASE BOUNDARY

where for the tetragonal phase

g, =(—K/4W')'" . (2.24)

Fo= —K /16A' . (2.25)

The components of the strain tensor parallel and perpen-
dicular to the tetragonal axis become'

21~~
—(A„+2A„)g,'/3,

nt =(Ai t
—A2 }Qo/3

where

(2.26a)

(2.26b)

The different signs in Eq. (2.22), and their different com-
binations in Eq. (2.23) describe the possible domain states
(variants). For the tetragonal phase of interest here the
minimum free-energy density is given by'

In the tetragonal perovskite phase as shown in Fig. 1(c)
adjacent octahedra lying on the same rotation axis (x3)
alternate in the sign of the rotation angle. Because of the
weak coupling of the octahedra along the rotation axis,
this sequence can be reversed in some part of the crystal,
thereby creating an APB perpendicular to the rotation
axis. In order to make contact with the atomistic lattice
dynamical description, we consider the vertical row of X
ions passing through the front face of the unit cell in Fig.
1(a) with position coordinates x(n& ) =(1, ,', ,'+n—&—}a,

where the integer n3 labels the unit cells along x3, and
n3=0 refers to the unit cell in Fig. 1(a). Assuming a
clockwise rotation of the BXs octahedron in Fig. 1(a)
around the positive x 3 direction, the displacements of the
X ions considered are along x2 and are for a homogeneous
tetragonal phase given by [see Fig. 3(a)]

A =S /c (2.27)
N3u2(xs)=gosin —x3=go( —1) ' . (3.1}

TABLE I. Order parameter Q, strain symmetry coordinates e, and induced spontaneous strain g for
the three variants of the tetragonal perovskite phase, with Qo and A given by Eqs. (2.24) and (2.27),
respectively.

Tetragonal axis

[100] (+Q0, 0, 0)
~11 ~22 +22—,0,0,0 Qo

3 3 6

o o

0 qi 0

0 0

[010] (0, +QO, O)
+11 ~22 ~22

, 0, 0,0 Qo
3 2 6

0 0

o q~! o

0 0

[001] (0,0, +Qo) ,0,—,—,0,0,0 Qov'3 ' ' V'6 ' ' '

o o

o g, o

0 0
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Up

Up
ik (b)

lim Q3(x3 ) =+Qc,
x3 ~+ oo

(3.5)

where Qo is the OP for the homogeneous phase [Eq.
(2.24)]. Furthermore, we may require

However, far away from an APB the crystal is in the
homogeneous state so that for 1.3= ac we may take the
boundary condition

Up
lk

r~

and

lim o';~"( X3}=0 for ij =11,22, 33
~3 ~+ oo

o,',"(x3)—:0 for ij =23, 13, 12 .

(3.6a)

(3.6b)

FIG. 3. Alternating displacement pattern along x&
~~

[010) of
one row of I ions parallel to x3 passing through an ion at
x=a(1, 2, —,') of Fig. 1(a) for Q =(O,O, Q, } (schematic). (a) Single

domain tetragonal phase. (b) Discontinuous (001) antiphase
boundary. (c) Continuous (001) antiphase boundary.

By reversing the sequence of rotation angles for x3 & 0 a
discontinuous (atomically sharp) APB is created, as
shown in Fig. 3(b).

In order to allow for a continuous transition between
the two domains x3 ~0 we replace the constant ampli-
tude Qo in Eq. (3.1) by a continuous function Q3(x3) ac-
cording to

We may now proceed to deduce the boundary conditions
for all(x3) 022(x3), and o'33(x3) that are compatible
with the ansatz (3.3), (3.4a), and (3.4b).

Because of Eq. (3.3) the total LGFE (2.1) becomes ex-
plicitly, with Q3 =Q,

F= ,'KQ + A—Q + ,'D, Q—
[~1 /33+~2( 111+922)]Q +Fel (3.7)

tot

tot
022

tot

C11 C12 C12
11 2

2
C12 ll C12 922 82 Q

C12 C12 C11
8

(3.8a)

where F,l is given by Eq. (2.3). The components of the
total stress tensor become explicitly

T

u2 Q3(X3 )Sin X3
Q

(3.2)

where the index 3 is now explicitly added to identify the
rotation axis. By taking the OP in the form

tr' '=2c«rt, " (ij =23, 13, 12) .

From Eqs. (3.6b) and (3.8b) it follows that

I 12 913 I23

(3.8b)

(3.9)

@=[00 Q3(x3)] (3.3)

g;, =g;, (X3), (3.4a)

o';J =o;J(x3) . (3.4b)

Both depend only on x3. Thus the problem considered is
one dimensional (1D) in the independent variables and
the OP, but 3D in stress and strain.

In order to be able to specify boundary conditions we
consider a crystal in the form of a rectangular bar with
dimensions 2L, , 2L2, and 2L3 along x, , x2, and x3, re-
spectively, with the tetragonal axis and (as before) the ro-
tation axis along x3. It turns out that for stress free-
boundary conditions this geometry does not permit the
quasi-1D solutions implied in Eqs. (3.3), (3.4a), and (3.4b).

the function Q3(x3) may then be determined from the
preceding equilibrium condition (2.14). Note that Eq.
(3.3} results from the assumption that Q3 depends on x3
only, but that in general for a ftnite crystal, depending on
the boundary conditions, Q3 also depends on x, and x2.

Because of the coupling between the OP and the strain
Eq. (3.3) implies that also

In the absence of dislocations and disclinations the
components of the strain tensor must satisfy the compati-
bility relations

922, 33 933,22 923 23 (3.10a)

911 33 I33» 913 13 ~

911,22+ I22, 11 2912, 12 &

~11,23+ I23, » 912,13+ 913,12 &

I22, 13 I]3,22 912,23+ 923, 12 ~

(3.10b)

(3.10c}

(3.10d)

(3.10e)

(3.10f}I33, 12+ 912,33 913,23+ I23, 13

Because of Eqs. (3.4a) and (3.9), the last four of these
equations are satisfied identically; the first two may be in-
tegrated twice with the results that q» =const,
g22=COnSt, Or

I11 911

~22 I22

(3.11a)

(3.11b)

By using Eqs. (3.8a), (3.5), and (3.6a) it may be shown
that at x3 =+ ao the strain becomes equal to that of the
homogeneous phase as given by Eqs. (2.26a) and (2.26b),
so that

(3.12a)
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933

The equilibrium condition (2.15}becomes

(3.12b)
tot tot

022
C12 X38, +82 Qosech

APB
(3.23)

tot (3.13)

In view of the boundary condition (3.6a) integration gives

+tot O33 (3.14a}

or

2c12 8
ri33(X3)= — z)~+ Q (X3) . (3.14b)

The equilibrium condition (2.14) becomes

K+Q+4A +Q —D11Q33 =0,
where

(3.15)

481C12E+=E+ —482
C11

281
2C11

It can be shown that

(3.16a)

(3.16b)

(3.17)

Thus for L3= 00 the solution of Eq. (3.15) is a simple
kink:

Their presence is a consequence of the compatibility rela-
tions used in the derivation and arises from the require-
ment that the APB be free of dislocations and disclina-
tions. Thus in order to sustain quasi-1D solutions of the
form as in Eqs. (3.3), (3.4a) and (3.4b) in the presence of a
defect-free APB's surface forces per unit area given by
F1 %0 1 1 (X3 ) and Fz =ko 22'(X3 ) must be applied per-
pendicular to the lateral surfaces x1 =+L1 and x2 =RL2,
respectively, so as to constrain the crystal and keep the
lateral strains g» and rizz constant in accordance with
Eqs. (3.11a), (3.11b), and (3.12a). Removal of these con-
straints leads to a lateral contraction or expansion of the
crystal in the vicinity of the APB so that the OP and the
strains also depend on the lateral variables x1 and x2, and
the simple kink solution (3.18) is no longer valid. It
should be noted, however, that for the boundary condi-
tions (3.5), (3.6a), (3.6b), and (3.23) the preceding solution
is exact and describes a fully 3D configuration with a re-
versal of the OP and a change of the sample dimensions
along x3.

The energy density of an APB can be obtained from

A pg F po x 3 ~ (3.24)

For the preceding solution, (3.18), (3.12a) and (3.20), the
integral can be evaluated in closed from with the result

x3
Q (x 3 ) =Qotanh

kAPB

where

(APB APB /2 = (
—2D 11 /K +

)
'

(3.18)

(3.19)

EAPB $(1++)~+O~dAPB

Q= [C1281 C11B2]
22

C11 C22

3A'C11 .

(3.25)

(3.26)

81 x3
rI33(X 3 }= ri~~

—
Q0 sech

C11 4APB
(3.20)

The elastic displacement component along the tetragonal
axis then becomes

is half the thickness dAPB of the APB. The displacement
pattern of one row of X ions through the APB as de-
scribed by Eqs. (3.2) and (3.18) is illustrated in Fig. 3(c).

The only position-dependent strain component is g33,
which may now be written as

By setting a=0, A'~A in Eqs. (2.25) and (3.25), and
K+~K in Eq. (3.19) one obtains the result for the simple
kink solution for the OP without coupling to the strain.

IV. TWIN BOUNDARY

Twin boundaries in the tetragonal perovskite phase
separate regions with different directions of the
tetragonal-rotational axis and consist of t 110I planes. '

We consider a (110) TB which separates the two regions
with OP's Q=(Q„O,O} and Q=(O, Qz, O). It is con-
venient to introduce the coordinate system

113(x 3 } g~p 3 Q0CAPBtanh
APB

(3.21) S
p 1

X2 (4.1a)

The first term describes the displacement field for a
homogeneously transformed crystal. The second term
arises from the APB and corresponds to a contraction
given by

1

v'2
(4.1b)

81
AL3 = 2 QO/APB (3.22)

Inserting Eq. (3.20} into (3.8a) gives the nonvanishing
and position-dependent stress components

where E represents a rotation by 45' around x3, and s is
in the direction of the TB normal [Fig. 4(a)]. Proceeding
along similar lines as for the APB, the continuous TB
profile is described by the two-component OP
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2Lr

2LI

IL
X& ii X&

(IOOl

TABLE II. Boundary conditions for OP and strain, both re-
ferred to the x &,x2,x3 coordinate system, of a tetragonal bicrys-
tal with a (110) TB at s =0, as shown in Fig. 4. Qo, t)~~, and t)t
are defined by Eqs. (2.24), (2.26a), and (2.26b), respectively.

(Qp, 0,0) (0, QO, O)

S

(b)

FIG. 4. (a) Dimensions and orientation of (001) section of
rectangular crystal bar in cubic parent phase with respect to
two coordinate systems. (b) (001) section of bicrystal with con-
tinuous (110) twin boundary at s =0, obtained by ferroelastic
transformation of crystal bar as in (a) into two variants of
tetragonal product phase. The direction of the tetragonal c axis
is for c/a ) 1 indicated by arrows {schematic).

o,3(s) =o „3(s)—:0 . (4.7}

With the ansatz given by Eqs. (4.2) and (4.3) the total
LGFE [Eq. (2.1}]becomes

In addition to Eq. (4.4) we prescribe the boundary condi-
tions

Q =(Q„Q2,0), (4.2a) F=F1 (Q„,Q, )+Fo(Q„„Q,, )

and we seek solutions where Qi, gz depend on the vari-
able s only, but not on r and x 3 ~

+F,t (rlkt }+F, ( Q„,Q„rlkI ), (4.8)

Qi=Qi(s), Qz=gz(s) . (4 2b) where

Then the coupling between Q and the strain and stress
implies that

A„F (g2+g2)+ g(Q2+Q2)2+ "
(Q2 g2)2

rI; =rI; (s},
tot tot(
lJ EJ

(4.3a}

(4.3b)
Drs 2 Dss 2Fo=

2 Q., +
2 Q, ,

(4.9}

(4.10)

lim o' '(s) =0,
s~ + oo

(4.4)

at s ~k te the crystal is in the two homogeneous single
domain tetragonal states that are described in terms of
the boundary conditions for the OP and for the strain,
both referred to the x &,x z, and x 3 axes, as given in Table
II. The corresponding boundary conditions for the Op
and for the strain, referred to the rotated coordinate sys-
tem, become

Consider now an infinitely long rectangular bar-shaped
crystal specimen in the cubic state with dimensions 2L„,
2L, ~~ and 2L3 along the directions r, s, and x3, re-
spectively [Fig. 4(a)] that transforms into a twinned bi-
crystal, consisting of two regions with the tetragonal-
rotational axis along x, for s~ —~, and along x2 for
s ~+ ~, that are separated by a (110) TB at s =0 (Fig.
4b}. Then for stress-free boundaries at s ~2 oo,

and

D„=[D„D,]/2, —

D„=[D»+D,2+2D44]/2 .

(4.11a)

(4.11b)

(4.12a)

P2 = —&2Q„Q, ,

P4 =P5 =0,

(4.12b)

(4.12c)

F„and F, are given by Eqs. (2.9) and (2.10), with e, and
P expressed in terms of the quantities in the new coordi-
nate system as follows:

p Q2

P3 =T Q
0

lim Q„=Qtt /&2,
S~+oo

lim Q, =+go/V2,
S~+oo

lim r)„„= lim i)„=(t)~~+rIi)/2,
S~+ oo S —+ + oo

(4.5a)

(4.5b)

(4.6a)

e,
e3
e6

e, = —&2r)„,

(4.13a)

(4.13b)

(4.13c)

(4.13d)
lim rI +(rIII r)~)/2 . (4.6b)

where
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1

v'3 v 3

1 1

v6
1 —1

1

v'3

2

0

(4.14) and

G(s)=QO —(Q„+Q, ),
H(s)=Q, —Q, ,

c c (c1l +c12}/2+c~

(4.22a)

(4.22b)

(4.23)

Then the components of the total stress tensor become From the boundary conditions (4.5}it is apparent that

6
cr',J"= g H,J t2' e k—P ] (i,j=r, s, 3), (4.15)

lim G(s}= lim H(s)=0 . (4.24)

g„3=g,3=0 . (4.16)

In view of Eq. (4.3a) the compatibility relations [Eqs.
(3.10)] reduce to

a=1

where H;, =(de /Bri;, ) are numerical coeScients 3 that
are determined by Eqs. (4.13) and (4.14). It now follows
immediately from Eqs. (4.7) and (4.15) that

g,", is given by Eq. (4.6b).
According to Eqs. (4.7) and (4.19), four stress com-

ponents vanish identically. The remaining nonzero com-
ponents are obtained by inserting the strains from Eqs.
(4.16), (4.18), and (4.21) into Eq. (4.15) with the result

o'„'„'= [2c~(B,+B2)G(s}
Crr

'Qrr, ss =o
s

933,$$

nr3, $$
=o

(4.17a}

(4.17b)

(4.17c}

—(c»+c,2)B,H(s)],

tot »B~+(»+
2crr

c,2B,H(—s) I .

(4.25a)

(4.25b)

Whereas in view of Eq. (4.16) Eq. (4.17c) is trivially
satisfied, integration of Eqs. (4.17a} and (4.17b) gives, in
conjunction with Eq. (4.6a) and Table II, respectively,

n- =-,'(el+ rii»

933 9l '

(4.18a)

(4.18b)

Since the constancy of q,„danri33 as expressed in Eqs.
(4.18a) and (4.18b), is a consequence of the compatibility
relations in conjunction with the ansatz of Eq. (4.2), it is
apparent that in order to sustain the quasi-1D solution
according to Eqs. (4.2) and (4.3) without interface disloca-
tions and/or disclinations the crystal must be laterally
constrained ("clamped" ) in the r and x3 directions.

In view of Eq. (4.3b) the equilibrium conditions (2.15)
reduce to

D Q„„=E,Q, +43„Q,+43 Q„Q, ,

D„Q, g, =E,Q, +43,Q, +4A~Q, Q„,
where

(4.26a)

(4.26b}

K, =X 1+, +
3C ( ) 3833

(B)+B2)(B)+B2 B,)—
2css

These are the position dependent stresses required to
clamp the crystal laterally so as to sustain the quasi-1D
solutions postulated in (4.2) and (4.3).

The equilibrium conditions (2.14) for the OP become
explicit after expressing the strains in terms of Q, and Q,

tot tot tot
rs, s $$, $ 3$,$ (4.19) (4.27a}

In conjunction with the boundary conditions (4 4), it fol-
lows immediately that K, =E 1+, +

3~ I 1 3~33

&tot 0rs

tot$$7
~tot 03$

(4.20a)

(4.20b)

(4.20c)

(Bi+B2)(Bi+B2+B,)
2Css

(4.27b)

'0 =[(B)—B2)/(c, i
—ci~)]Q,Q, ,

[(B,+B—2 }G(s)+B,H(s))/(2c„„),

where

(4.2la)

(4.2lb}

Equations (4.15) and (4.20c) simply recover the result
7/g3 0 from Eq. (4.16). The remaining two strain com-
ponents, g and g, depend on position and may be ob-
tained from Eqs. (4.15), (4.20a), and (4.20b) in the form

A„
A, =A+

A„
A =A+$4

(Bi+B2 B,)—
8c„

C33

(Bi+B2+B,)
Sess

(B+B ) —B 2$'+
4 2c„

(4.27c)

(4.27d)

(4.27e}
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Equations (4.26) depend on seven material parameters
and must, in general, be solved numerically. However,
for vanishing coupling parameter

CT33 (QQ l4c„„)[—c (3(B) +B,)

+(c»+2c44)B2]sech (s/(TB) . (4.34b)

A =0

the following interrelations exist:

K„/A„=K, /A, =K/(2 A '),

(4.28)

(4.29) +TB 3 ( I+~)~FQ ~d TB (4.35)

For the special case corresponding to Eq. (4.28) the en-

ergy density of a single TB defined in analogy to Eq.
(3.24) can be evaluated in closed from with the result

Q, =Q./~~,

Q, =(QQ/&2)tanh(s/g~B),

(4.30a)

(4.30b)

and for the preceding boundary conditions Eqs. (4.26) have
the analytic solution

where

+ &33 (B)+B2)(B)+B3+B,}
Crr

(4.36)

where

gga=d TB l2= + 2D„/—K, (4.31)
For treating the general case A„WO it is convenient to
introduce dimensionless variables according to

is half the twin boundary thickness d Ta and the super-

script 0 refers to the condition A„=O. The OP corn-

ponents Q& and Qz are given by the kink-type solutions

Q„=(QQ/3/2)q„,

Q. =(QQ/&2)q,

s =yz,

(4.37a)

(4.37b)

(4.37c)

Q ~
= ( QQ /2 )[1 —tanh( s /(TB ) ]

Q2 =(QQ/2)[1+tanh(s/(TB)]
(4.32)

where

y = [D„,D„/K„K, ] ' (4.38)

and describe a continuous transition between the two
homogeneous states of s =+~ (Table II). The associated
position-dependent strain components become

is a characteristic length. Then the boundary conditions
(4.5a) and (4.5b) and the equilibrium conditions (4.26) be-
come, in terms of the dimensionless OP, respectively,

(B33 /2c 33 )Q Q tanh( s 4TB} (4.33a)
lim qr=1,

z —++ 00

lim q, =+1,
z~+ oo

(4.39a}

(4.39b)

ri„=ri,", —(QQ/4c )(B$+B2+B,)sech (s/(TB)

(4.33b)

Equation (4.33a) describes the shape change of the bicrys-
tal that results from the presence of the twin boundary as
illustrated schematically in Fig. 4(b). Equation (4.33b)
describes the longitudinal strain in the direction of the
TB normal; the first term represents a contraction-
dilation and arises from the 0&-D4I, transformation even
in the absence of the TB; the second term represents a
longitudinal length change by the amount

&L,, = —(Q,'/2c„„)(B,+B,+B,)g„

that is due to the TB [Fig. 4(b)]. The associated nonvan-
ishing components of the stress tensor become

o'„", =(Q /4Qc„„}[2c44(B,+B3)

and

—q„"+q„—(1—a„)q„—a„q„q, ,

aq,"+q, —(1—a, )q, —a,q„q, .

(4.40a)

(4.40b)

a = [D„K„/D„,K, ]'~

a„=A„, /( A„+ A„, ),

a, = A„, /(A, + A„, )

(4.41a)

(4.41b)

(4.41c)

In deriving Eqs. (4.40a) and (4.40b) use has been made of
the relations

K„/(A„+ A„, )=K, /(A, + A )=K/(2A')= —
2QQ .

(4.42}

Here the prime denotes differentiation with respect to z,
and three dimensionless parameters have been defined as

—(c„+c,3 )B,]sech (s /gTB ), (4.34a) The Eqs. (4.40a) and (4.40b) have the first integral

a„a,(q„') +a a„a,(q,') +aa„a,(q„—1)+aa„a,(q, —1)——,'aa„(1—a, )a, (q4 —1)

—( —,
' )aa„a, (1 —a, )(q, —1)—aa2a2(q3q3 —1)=0 (4.43)
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With the aid of Eq. (4.43) the equilibrium conditions may
be integrated by means of a nonlinear initial value scan
method. Figure 5 shows examples of OP profiles for
various parameter values a and a„obtained in this
manner under the assumption a, =a, . The range of pa-
rameter values chosen includes those pertaining to
SrTi03 to be discussed in Sec. V. The curves for q, and

q, shown for the parameter values a„=a,=0 are in-

dependent of the parameter a and represent the analytic
solution given by Eq. (4.30).

It is apparent that for the range of parameter values
covered in Fig. 5 the salient feature of the TB profile is
the kink, described by the q„and that the hump (or dip),
described by q„, plays a secondary role. The hump is
characterized by its relative magnitude ~q„—1 ~,„and its
half width. The kink width dTa is defined by

q, (z)~, d &2
=tanh1=0. 7617, (4.44)

which reduces for a, =a, =0 to the intrinsic value

dTa=2g, given by Eq. (4.31}. Both the height of the
hump ~q„—1 ~,„and the kink width dTa increase with in-

creasing values of a„=a, and a, but the hump is more
affected by the coupling constant a„=a„and the kink by
the parameter a.

It is worth noting that the parameter y is essentially
the geometric mean of the two intrinsic length scales of
q, and q„respectively, viz. ,

y=(g g /2)' '

where in analogy to Eq. (4.31)

g=(-2D„/K )'"
and, furthermore,

(4.45)

(4.46)

y(T)=[K(To)/K(T)]' 'y(To) . (4.48)

Therefore, the temperature dependence of the TB thick-
ness, in view of Eq. (4.44), is given by

(4.47)

It should further be noted that the three parameters
entering Eqs. (4.40a) and (4.40b), and therefore the re-
sults in Fig. 5, are independent of temperature when, as
usual, the temperature enters the LGFE [Eq. (2.1)] only
through the soft-mode harmonic force constant
K =K(T). In this case [because of Eqs. (4.27a), (4.27b),
and (4.29}]the temperature dependence of the TB profile
arises only from the temperature dependence of the
characteristic length y according to

I I
/

I I I I
$

I I I I
i

I I

a =0.5

g 0—

= 0.4

I I } I 1 I I } I l I I

-5 0 5
z = s/Y

FIG. 5. Order-parameter profile from Eqs. (4.40a) and (4.401)
for selected values of input parameters.

dra(T)=[K(To)/K(T)]' dTa(To) . (4.49)

In the general case of nonvanishing coupling constants
the TB energy must be evaluated by numerical integra-
tion. However, since for the range of parameter values
covered in Fig. 5 the height of the hump

~
q„—1

~ m,„(0.25, one may neglect the contribution from

q„, and then use Eq. (4.35} but with the TB width per-
taining to the actual parameter values a,a„,a, as deter-
mined from Eq. (4.44). This is tantamount to approxi-
mating the different kink profiles in Fig. 5 using the un-
coupled solutions q, =tanhs/y with the same initial slope
at s =0 as the actual solutions q, (s /y ). Therefore, in
view of Eq. (4.49) the temperature dependence of the TB
energy is approximately given by

ETa =[K(To)/K(T)]' 'ETa(To) . (4.50)

V. APPLICATION TO SrTi03

SrTi03 is the only perovskite for which all experimen-
tal input data required for the numerical application of
the preceding theory are available. In Table III these
data (except for the elastic constants) plus an average
value of the soft-mode force constant K from Fig. 4 of
Slonczewski and Thomas' are listed for the reference

Experimental input data for SrTiOi at 78 K. Qo denotes a component of the primary
order parameter, o., =(c/a) —1=

g~~
—g, denotes spontaneous strain, co„co3 are soft-mode frequencies in

the tetragonal phase, M =2MO/a' denotes effective mass density of oxygen ions, and I( denotes har-
monic expansion coeScient of order parameter. References are given in parentheses.

Qo (7)

(nm)

cr, (45)

(10 )

a)i ( 1 )

( 10"sec ')

co3 (1)

(10' sec ') (10'kgm ')
E/M (10)

{10 sec )

0.0047 4.0 2.167 6.593 0.898 —15.45
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temperature To =78 K. Table IV contains the remaining
(in addition to K) expansion coefficients of the Landau-
Ginzburg free energy, Eqs. (2.1) to (2.5). Ir„and B„„
were calculated from the data of Table III in the same
manner as in Ref. 10. Specifically, the small volume
change associated with the 01, -D4& transition was
neglected, so that B,+ZBz =0. The elastic constants c„„
were extrapolated linearly from experimental data in
the high-temperature regime of the cubic phase so as to
eliminate the contributions from fluctuations of the pri-
mary order parameter. ' ' The rotation gradient
coefficients D„„were calculated by means of the pro-
cedure outlined in the Appendix from experimental pho-
non dispersion data of the soft mode in the vicinity of
the R point.

Figures 6(a) and 6(b) show a schematic representation
of the displacement pattern of the oxygen ions across the
TB and the OP profile Q&(s},Qz(s) in physical units, re-
spectively. The latter was obtained by numerical integra-
tion of Eqs. (4.40a) and (4.40b) with the paratneter values
[cf. Eqs. (4.41a},(4.41b), and (4.41c)]

a =0.983, b=0.433, c=0.440

E

O

e ~ ( p)l I 'p

p. 9 g~ Pm 6 8 )
e r~ I & + e " e y'

I

0
s (nm)

as calculated from the data of Table IV. The curves fog
the quantities q„(s), q, (s) pertaining to the dimensionless
variables in the rotated coordinate system (r, s, x3) are ap-
proximately equal to the set for a =1, a„=a,=0.4 in
Fig. 5.

In Figs. 7(a) and 7(b} the induced-strain components
ri," [ij =11, 22, 33, 12 and ij =rr, ss, rs; see Fig. 3] and
the surface-stress components 0'„'„' and 0.

33 required to
sustain the quasi-1D OP profile of Fig. 6(b) are shown
versus position. It is apparent that at the TB center
[s =0] the crystal symmetry is approximately tetragonal,
but with the tetragonal axis being contracted along the
x3 axis. However, there is a small monoclinic deforma-
tion present at the center. The maximum stress
0.

33 4.76X10 Nm is smaller than the yield stress
[about 10 times the appropriate shear modulus], so
that no plastic deformation in the TB should occur.
However, for a bicrystal with free boundaries the twin
boundary would bulge out both in the r and the 3 direc-
tion and the solutions for the primary OP and for the
strain would depend on all three spatial variables.

Finally, Fig. 8 shows the widths dopa and drB, and the
energy densities EAps and Ezz for the APB's and for the
TB's versus temperature as calculated from the mean of

TABLE IV. Expansion coefficients of Landau-Ginzburg free
energy [Eqs. (2.1)—(2.5)] for SrTiO, in Voigt notation. It is
@II=2A& KIP:2A + Art~ 811 =BI& 81~ =82~ 844=8t ~

}

722—

O
0

X
rg2—

(h

z,'

o

(a)

Sr Ti 0&
78K

I I

I I

FIG. 6. (a) Displacement pattern of X ions in vicinity of twin
boundary at s =0 (schematic). The open circle is a discontinu-
ous twin boundary; the dashed circle is a continuous order pa-
rameter profile according to this model. Shape change due to
induced elastic transformation strain is not shown. (b) Order-
parameter profile in physical units for SrTi03 at 78 K.

~„„(10 Nm )

c„(10"N m )

8„(10 Nm )

D„(10 Nm ')

3.63

3.365

2.80

0.07

12

3.82

1.047

—1.40

—1.86

1.269

2.54

1.80

Ref.

10

10

28

-5-
—5 0

z =s/K

FIG. 7. Position dependence of strain and surface stress com-
ponents across twin boundary for SrTi03 at 78 K. (a) Strain
profile. (b) Surface stresses.
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FIG. 8. Energy E and width d of antiphase boundary (APB)
and twin boundary (TB), respectively, vs temperature for
SrTi03.

the empirically determined nonlinear temperature varia-
tion E(T) of Slonczewski and Thomas [Fig. 4 of Ref. 10]
according to Eqs. (3.19), (4.49), (3.25), and (4.50), respec-
tively. Above 105 K the curves are given in dashed form
to indicate the uncertainty associated with the present re-
sults based on mean-field theory as the critical point is
approached. As usual for APB's, the APB for SrTi03 is
atomically sharp at practically all temperatures: the cal-
culated width is 0.32 ao [ao denotes the lattice parameter

0
which is 3.90 A] at absolute zero and increases to about
1.03ao at (T, —2)E =106 K. The calculated width of the
TB is 3.1 aQ at T =0, 4.9 aQ at T =90 K, and about 10 aQ
at 106 K. Although ferroelastic domains have been ob-
served in SrTi03 by optical microscopy, ' no measure-
ments of dTs are available. However, the ferroelectric
TB's in KDP have been studied by x-ray diffraction' and
found to behave semiquantitatively very similar to the
calculated results of Fig. 8: the measured values of dTB
[as defined here] are 4.2 ao, 7.4 ao and 9.7 ao at T =0,90
K, and T, —2=119.4 K, respectively. '

According to Fig. 8, the energy of the APB (TB) de-
creases approximately linearly with temperature from
0.075 erg cm [0.38 erg cm ] at absolute zero, to zero a
T, . The approximately linear temperature dependence
arises from the nonlinear temperature dependence of
E(T) determined by Slonczewski and Thoinas' in con-
junction with the dependence ETs-K [Eq. (4.50)].
For the APB's 4%, and for the TB's S%%uo of the interface
energy arises from the coupling between the OP and the
strain.

For comparison, the TB energy for InQ 79T1Q 2$ at 206
K, which undergoes a proper OI, -D4I, ferroelastic transi-
tion at 326 K, has been calculated from a Landau-
Ginzburg model as 1.1 erg cm . Theoretical estimates
for the energy of ferroelectric domain-wall energies in Ba-
Ti03 (at 300 K) are 2—4 erg cm and 3.5 erg cm [Refs.
20 and 21, respectively] for 90 walls, and about ' ' 10
erg cm for 180 walls.

VI. DISCUSSION

A. Significance and motivation

This work was envisioned as a rigorous treatment of a
physically plausible and realistic model for interfaces in
ferroic materials and constitutes a first step toward the
study of the static and dynamic properties of interfaces in

improper ferroelastics and their effect on physical proper-
ties, which show well known but not fully understood
anomalous behavior near the transition temperature.
The Oh -D4h improper ferroelastic transition in
perovskites was chosen because of all ternary compounds
with composition ABX3 the perovskites "are probably
the most numerous, the most widely studied, and the
most important" (Ref. 54). Specifically, since SrTi03 is
probably the most thoroughly studied improper ferroelas-
tic, all empirical input parameters are known, and nu-
merical application of the theory was possible. In fact,
we believe that this work and numerical results represent
the first consistent and complete theoretical treatment
(within the framework of the chosen model and with
empirical input parameters) of interfaces in a ferroic ma-
terial.

Because the symmetry properties of the zone corner
R25 mode in perovskites are identical with those of the
ferroelectric zone-center I,s mode the LGFE, Eqs. (2.1)
to (2.5) is formally very similar to that used in the early
work on proper ferroelectric-improper ferroelastics,
except that the rotational invariance and the anisotropy
of the (in that work, polarization) gradient terms were
not taken into account, and the numerical values used for
the gradient terms were not based on empirically input
data. We will show in a forthcoming paper how our re-
sults can be carried over with minor modifications to fet-
roelectric domain walls in perovskites.

B. EfFect of coupling between order parameter and strain

Coupling between the OP and strain was already in-
cluded in the early work on proper ferroelectric domain,
walls in perovskites and shown to result in a quasi-1D
strain profile. ' ' More recently, Lajzerowicz con-
sidered a Landau-Ginzburg model for domain walls in an
elastically isotropic uniaxial proper ferroelectric. undergo-
ing a first-order phase transition with electrostrictive cou-
pling between the (scalar) order parameter and strain in-
cluded. For elastic isotropy (c»-c,z=2c~) and with
Bi=8,=0 the preceding kink solution [Eq. (3.18)] and
the energy [Eq. (3.25)] for the APB become identical with
Lajzerowicz s result if the coefficient of the sixth-order
term in his Ginzburg-Landau free energy is set equal to
zero.

The main objective of Ref. 57 was to show that for a
first-order transition without electrostrictive coupling the
width of the domain wall diverges at the transition tem-
perature, but that by including this coupling the transi-
tion temperature in the domain wall is changed and "the
domain wall does not diverge being clamped by the elas-
tic coupling with the bulk" [Ref. 57]. We consider the
wording of this conclusion to be misleading, because the
transition temperature is not changed "by the elastic cou-
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pling with the bulk" (Ref. 57) but because the domain
wall must be laterally stressed by surface forces that are
required to sustain a quasi 1D solution.

Since the LGFE as given in Eqs. (2.1) to (2.5) describes
a second-order phase transition the coupling between OP
and strain does not affect the transition temperature in
interphase boundaries. As is well known in mean-field
theory, their width diverges, consistent within experi-
mental resolution with measurements for the proper fer
roeiectric KDP. '

Finally, it should be noted that although for SrTi03 the
surface stress required to sustain quasi-1D solutions and
its contribution to the domain-wa11 energy are small and
therefore seemingly of little practica1 significance, it is, of
course, crucially important for the linear stability
analysis and for future calculations of the vibrational ex-
citation spectrum and its influence on all thermal proper-
ties.

C. Antiphase boundary lattice and bein band

The solutions for APB's and TB's already obtained de-
scribe individual interfaces and are defined by the bound-
ary conditions, Eqs. (3.5), (3.6), and (4.4)-(4.7) over the
infinite interval (

—~, ~) for x& or s, respectively. For
finite specimen length at the longitudinal faces (xi =+I.,
or s=+L, } the OP does not reach its extremal value

+Qo, as in Eqs. (3.5) and (4.5), corresponding to the
minimum of the Landau free energy for the homogeneous
phase, Eq. (2.20), but assumes a values Q'(Q0. This
value is determined by I.3 or L„and by the number of
kinks and antikinks in the interval ( —L &,L & ) or
( —L„L,), respectively. In this case the stress com-
ponents do not any longer all vanish at the lateral sur-
faces. The solutions for the APB lattice and, for the spe-
cial case A„, =0, for the twin band are periodic and are
given by the Jacobi elliptic function ' sn (x, k), with the
modulus k determined by Q .

D. Limitations of theory

It goes without saying that the numerous approxima-
tions underlying our model, while resulting in conceptual
and mathematical simplicity, are also responsible for its
limitations. First, the model is phenomenological and re-
quires no less than 13 empirical parameters, viz. , the 12
expansion coefficients of the LGFE, Eqs. (2.1)—(2.5), plus
the temperature coefticient of the harmonic soft-made
force constant E. Reduction of the truncation errors im-
plied in this expansion would further increase the number
of parameters. Second, its continuum theoretical nature
limits applicability to interface widths large compared to
the lattice spacing a. In practice, this means d ~ 3a, so
that for SrTiQ3 numerical application to TB s is justified,
but that the calculated values for the width and energy of
APB's are no more than estimates. Furthermore, some
parameter values were determined by using equations of
questionable validity, ' and in the tetragonal phase the
soft-mode force constant K, when calculated from experi-
mental data within the framework of the Landau model
of Slonczewski and Thomas' does not follow a linear

temperature dependence.
Possibilities for alternative approaches and improve-

ment of the theory include use of the semimicroscopic

phenomenological model of Pytte and Feder ' and in-

clusion of fluctuations beyond mean-field theory. 62

VII. SUMMARY AND CONCLUSIONS

We have presented a continuum theoretical model for
APB's and TB's in the tetragonal phase of perovskites
that results from the zone corner (R2s) mode-driven im
proper FE phase transition from the cubic prototype
phase. The LGFE has been truncated so as to retain non-
linear terms in the local, and nonlocal gradient terms in
the harmonic approximation for the primary OP, plus
elastic energy terms in the harmonic approximation and
lowest-order anharmonic coupling terms between the pri-
mary OP and strain. Our aim was to obtain solutions for
the primary OP and for the strain that depend only on
the spatial coordinate norma1 to the interface plane and
that describe the shape change associated with planar in-
terfaces in ferroelastics. For APB's these solutions are
given by the familiar P -type kinks for the primary OP.
For TB's, in general, numerica1 solution of two coupled
nonlinear second-order ordinary differential equations for
a two-component OP is necessary. In both cases, for a
crystal that is free of dislocations and disclinations, la-
teral surface forces are required over the thickness of the
interfaces in order to sustain the dependence on only one
spatial variable. On the other hand, for stress-free sur-
faces lateral strains in the interface plane would occur;
the solution of this fully 3D case remains as a future task.

Numerical application to SrTi03 indicates atomically
sharp APB's with energy decreasing from 0.075 erg cm
at T=O to zero at the transition temperature 7;. 'lhe
calculated width of TB's in SrTi03 increases from three
(at T =0) to ten lattice constants (at T, —2 K},and their

energy decreases from 0.35 erg cm at T =0 to zero at
T, . For APB's (TB's) only about 4%%uo (S%%uo) of the inter-

face energy is due to the contribution from the strain.
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APPENDIX: DETERMINATION OF ROTATIONAL
GRADIENT COEFFICIENTS

Here we show how the rotational gradient coeScients
D», D,z, and D44 in the LGFE, Eq. (2.1) can be deter-
mined from the dispersion of the phonon branches into
which the soft R2& mode frequency splits along the prin-
cipal symmetry directions in the vicinity of the R point.

Considering small amplitude oscillations of the octahe-
dra, we obtain the equations of motion Q,. =5F/5Q; in
the linearized form (no summation convention)
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TABLE V. Parameter 8'„(q) for different irreducible repre-
sentations with k in the directions R —I, R —X, R —M.

8'„{q)

TABLE VI. Comparison of experimental (Ref. 52) and calcu-
lated values of A„(q) for SrTi03 at RT.

A„(rn /sec )

[111]
[111]
[110]
[110]
[110]
[001]
[001]

A2

A3

X]
X2

X4

(D]]+2D]2+4D44)/3
(D]1 D12+D44) j 3

(D» —D»)y2

(D] l +D 12+2D44 ) /2

[111]
[110]
[001]
[001]

A3

Xl

Expt.

131+23
112+22
205+27

82 2

Calc.

138.7
107.31
201.5

8

Mgi D[tgijj D't2(gj ji+Qk ttt ) D44(Q;,, +Q; kk+Q, ;, +Qk;k )+Ikgt =0,(ij,k, = 1,2, 3, i' Wk) (Al)

M =2m„/a is the effective mass density for the rotation
of the BX6 octahedra around any of the three cubic axes.
Equation (A 1) has plane-wave solutions

tors (100) that correspond to the rotation of the octahe-
dra around one of the cubic axes. When k differs slightly
from k&,

g ( t ) QOei(k x ntt)— (A2) k=k„—q, Iql «lkjtl, (A4)

For k =n /a [1,1, 1]= kit, the octahedron at the lattice
site x=ct[l, m, n] oscillates according to

Eq. (A2) becomes

g (x t) go( 1)(i+tn+n)e i{q x—+tot) (A5)

g ( t) —go( 1)(I+tn+n)e intt— (A3)

Thus in the R2& mode, all neighboring octahedra rotate
with the same amplitude, but in opposite directions.
Frt3m Eqs. (Al) and (A3) one obtains the triply degen-
era'. e 823 mode frequency co+ =(K/M)'~ and eigenvec-

Hu =Mco2u

with Q =Q u and

(A6}

First-order perturbation theory leads to the following ei-

genvalue problem:

(Dt2+D44) (D,2+D44)q2q3

It. +D))q, +D44(q2+q3 ) (D„+D44)q, q,

0= (D&2+D44)q&qz ++Diiqz+D44(q i +q3 )

(D i3+D44 )q

(D,3+D44)q2q3

& +D» q 3+D44(qf +q z )

(A7)

Mctt„(k) =E+ W„(q)q (A8)

one obtains immediately the expansion coefficients p'„(q)
along the three principal symmetry directions as given in
Table V. There the branches p are labeled according to
the irreducible representations in the notation of
Bouckaert et al. , and the linear combinations of the ro-
tational gradient coefficients are identical to those of the
elastic constants in the corresponding eigenvalues of the
Christoffel tensor.

For SrTi03 experimental phonon dispersion data for

Except for a factor M, this matrix is identical with the
truncated Taylor expansion of the 3 X 3 R25 block of the
dynamical matrix of the perovskite structure with respect
to q as given by Gesi et t2/. , with their expansion
coefficients related to those in Eq. (A7) according to
A, , =D»/M, A2=D44/M, and A3=D, z+D44)/M These.
authors point out that, because the group of the wave
vector at the R point has 0& point-group symmetry, the
matrix H-KI (I denotes the unit matrix} is formally iden-
tical with the Christoffel tensor, which has the eigenval-
ues pctt&, where ctt& (t(, =1,2, 3) are the long-wavelength
acoustic mode frequencies in the direction q. Therefore,
writing the eigenvalues of H in the form

co„(k)=coR +A„(q)q (A9)

are compared with those calculated from the fitted data
in Table IV and the relations in Table V according to
A„(q)=$'„(q)/ MThe agreement is well within the
stated experimental error, indicating good internal con-
sistency of the data. The consistency relation

(A10)38'A =28'~ +8'~

which follows from the Table V, is satisfied to within 9%.
In SrTi03 the 0„-D4& transition occurs at about 108

K. Although data below this temperature were also re-
ported, here we have considered only room-temperature
data because the observed temperature dependence is
small and because in the LG theory all expansion
coefficients, except the harmonic one, are usually taken as
temperature independent and are referred to the high-
symmetry phase.

t

four different modes into which the R25 mode splits in

the vicinity of the R point are available. By means of
least-squares fitting we have determined the three in-

dependent coefficients D», D,z, and D44 from these data
and included the results in Table IV. In Table VI the ex-

perimental data of A„(q) as defined by Stirling in the

form
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