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Electrical conduction in checkerboard geometries
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We consider electrical conduction in a two-dimensional two-phase material. The geometry is that
of conduction perpendicular to fibers of rectangular cross section stacked to form a rectangular lat-

tice in a matrix. An analytic expression for the potential is given in the form of infinite series with

coeScients determined by an infinite set of linear equations. As a numerical example we calculate
the effective conductivity for the special case of square inclusions in a square matrix. This is com-

pared with a square array of circles in the dilute limit.

I. INTRODUCTION

Consider electrical conduction in a two-dimensional
generalized checkerboard, with rectangular inclusions
stacked to form a rectangular lattice; cf. Fig. 1. This
problem is important in a study of inhomogeneous media,
where it represents a system on which various models can
be tested. It is also appropriate for conduction perpen-
dicular to the fiber axis in a fiber composite. Further, the
regular checkerboard geometry has recently become of
considerable interest, since it has been shown' that in a
random composite, statistical composition fluctuations
leading to a right-angle corner geometry give rise to hot
spots and regions of high-field strengths. Thermal and
electrical conduction in planar systems with straight-line
and corner phase boundaries is also of interest in mi-
croelectronics.

There are some previous studies of related systems.
Milton et al. obtained the total effective conductivity for
the geometry of Fig. 1 but with fibers of a square cross
section arranged in a square lattice, and in a numerical
optimization procedure. McPhedran and Perrins et al.
considered transport perpendicular to a square array of
cylinders in a matrix. Fogelholm and Grimvall calculat-
ed the current distribution in the same geometry,
modeled by a resistor network. Soderberg and Grimvall
considered the current distribution in a checkerboard
corner in the limit when the two phases have very
different conductivities. Keller, in the same limit, treat-
ed parallelograms in a checkerboard geometry. Guo-
Qing and Tao developed a theory for periodic structures
of various inclusions in terms of an integral equation us-
ing so-called transformation fields. Berdichevskii' used
conformal invariance to give an exact solution for the
regular checkerboard.

Because of the importance of the geometry considered
here as a model system, it is desirable to have an analytic
expression for the potential. It is the purpose of this pa-
per to derive such an analytic form in terms of a series

expansion. We solve numerically for the expansion
coefficients to obtain the electric field. Our results agree
with those of Milton et al. Furthermore, to give a nu-

merical example and a quantitative measure of the
geometrical effect of having squares instead of circular in-

clusions, we calculate the effective conductivity in the di-
lute limit.

II. AN ANALYTIC SOLUTION

A. Formulation of the problem

An electric field E, is applied along the x axis (Fig. 1).
For symmetry reasons it suffices to consider the unit cell
of Fig. 2. No current flows across the sides EF and E'F',

E
FIG. 1. A generalized checkerboard geometry in an external

field E, .
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and no current flows along E'E and F'F. We now solve
for the potential u(x, y} in the unit cell, using the fact
that within a homogeneous part of the cell
E= —Vu(x, y}, VXE=O, j=o;8, and V j=O, where
i =1,2 denote the two phases that have conductivities o. ,
and 0.z. The unit cell is separated into three regions; I
(the rectangle HH'F'F), II (GG'H'H), and III (EE'G'G)
We introduce the notations

E=clb, g=d/a, s =a, /o 2

A uniform system of phase 2 has e=O, g= 1 and the reg-
ular checker board has e= 1, g=0, a =b
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8. Expansion of the potential

The potential u (x,y) is expanded in eigenfunctions to
the operator V,

E G H F'

FIG. 2. The unit cell for which calculations are performed.

u, (x,y)= Ao(1 —x/a}+2 g A„(sinh[A, „a(1—x/a)]/sinh(A, „a)JY, „(y)
n=1

for r) &x/a &1,

(2)

u»(x, y}=aE,—20[1+(e/2)(s —1)](x/a)+ g fC sinh[5 a(x/a)]+D cosh[5 a(x/a)]J cos[5 b(y/b)]
m=1

for —g&x/a &g, and

(3)

u»&(x, y) =2aE, — Ao (1+x/a)+2 g A„sinh[A, „a(1+x/a)]/sinh(A, „a) Y&» „(y)
n=1

for —1&x/a —r). Here

5 =m ~/(2b),

(4)

cos[A,„b(2—y/b)]/cos[A„b(2 —e)], ,e&y/b &2
Y

cos[A,„b(y/b)]/cos(A, „be), 0&y/b &e,

cos[A,„b(2—y/b)]/cos(A, „be), 2 @& y /b & 2—

( )='
cos[A,„b(y/b)]/cos[A, „b(2—e}], 0&y/b &2—e .

C. Boundary conditions

We require continuity of the current normal to a boundary and the 6eld parallel to a boundary for aB the boundaries
between phases 1 and 2 and between regions I, II, and III. These conditions, applied at E"6"and H"F", give the fol-
lowing equation for the characteristic values A,„(n = 1,2, 3, . . . ):

s tan(A, „be)+tan[A.„b (2—e)]=0 .

It remains to 6nd the coeNcients A, A, C, and D. The total current flowing into the unit cell is equal to the total out-
going current. Further, symmetry requires that for any x, u, (x,O)+ u», ( —x, 2b) =2aE, . These two conditions yield

30=30,
To satisfy the matching conditions at x =+8 we make an auxiliary expansion,

(9)
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~r n(y)=L„O/2+ g L„cos[5 b(y/b)],
m=1 (10)

and analogous expansions for some other quantities appearing in the potentials u (x,y). The conductivity o (x,y), which
has a step at the phase boundary, is also expanded in a Fourier series analogous to (10}. Then, after a considerable
amount of algebra, the matching conditions for u, E, and j yield

Cz sinh(5z ari)=2(s —1) g A„f, (A,„,5z ),
n=1

D ~z, c osh(5 ~z, o ir) =2(s —1 ) g A „f, ( A,„,5z~, ),
n=1

C2m —1 =D2m =0,
where m =1,2, 3, . . . and

f, (A,„,5~ )=A,„tan(A, „be)sinh[k„a(1 ri)]c—os(5 be)/[b(5 —
A,„)sinh(l, „a)] .

The matching also yields

(12)

(13)

(14)

2aE, = Ao[2+rie(s 1)]+—2(1 —s ) g A„tan(bk, „e)sinh[ak, „(1—q)]/[bi, „sinh(A, „a )] .
n=1

Further, the requirement (13) and the matching conditions yield

(15)

and

2 g A„[fz(A,„,5z }sinh(5z ari)+ f, (A,„,5z )cosh(5z~arl)]+ Ao f3(5z )sinh(5z arI) =0
n=1

(16)

2 g A„[fz(A.„,5z~ &)cosh(5z~, ari)+f, (A,„,5 ~z&)sinh(5z~, az))]+ Aof3(5z, )cosh(5z, ari)=0,
n=1

where

(17)

fz(A, „,5 )=A,„sin(5 be)cosh[A, „a(1—g)]/[b(5 —
A,„)sinh(A, „o)],

f3(5 ) =sin(5 be)/(ab5 ) . (19)

III. GENERAL RESULTS
FOR THE EFFECTIVE CONDUCTIVITY

A dual transformation of a material is defined by inter-
changing phases 1 and 2, without altering the shape of
the phase boundaries; cf. Fig. 1. For such systems, Kell-
er" has derived the relation

ed through j=cr;E, where i =1 or 2. Angular brackets
( ) and ( ); denote spatial averages over the en-
tire specimen and over all regions of phase i, respectively.
Then, with E, being the applied field, j, the correspond-
ing current, 0&c, &1,cz=1—cl, and p, =l/o„

1.04

o„(c,)o (1—c, )=o',o'z, (20)
1.03

where subscripts x and y denote the two coordinate axes.
The ordinary checkerboard has the property of being
self-dual, i.e., invariant under the transformation (cf.
Dykhne' ), and has o „=o~ =o, and c, =cz =0.5, with

(21)

We now seek the effective conductivity o„expressed as
averages over the electric field in the composite. The
phase boundaries are assumed to be squares, so that the
effective conductivity is isotropic. A calculation of the
conductivities o. and cr along the principal axes for a
system with rectangular phase boundaries is a straight-
forward generalization.

Let E and j be the local electric field and current, relat-
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FIG. 3. a(s, cl) for o&/o. 2=2( —.—.—.), 50 (
———) and

200 ( ) in the interval 0.01 ~ c, &0.1. The arrow indicates
the ratio of the conductances between a square array of squares
and a square array of circles, for o2/o. , =50. The value for the
square array of circles is from Perrins et al. (Ref. 5).



ELECTRICAL CONDUCTION IN CHECKERBOARD GEOMETRIES 4333

E, =&E&=c,&E&,+c &E&,

=f c, /o&)& j&,+(c,/o. , )& j&, ,

j.=& j& =ct & j&t+c2& j&2

c]tr]&E & /+cpo2& E &2

& j.E& =
& j&.&E& =j, E, =o, &E&'=p, & j&' .

From (22)-(24) we write the elfective conductivity as

(23}

o, /cr2=(R +s )/(R +1), (25)

R —=.,&E&,/c, &E&, . (26)

Using the expressions for the potential tt (x,y) derived
in Sec. II, and with E= —Vu(x, y), the averages c, & E&,
and c2 & E &2 can be obtained analytically. One finds

ac, &E&~= Ace /2+ g A„sinh(A, „ae}tan(i,„be)/[bk. „sinh(A, „a)],
n=1

(27}

ac& & E&2= Ao I 1 —[1—(1—e)s e/2]] —s g A„sinh(A, „ae)tan(A, „be)/[bk, „sinh(A, „a)] .
n=1

(28)

ac& &E &
&

= [aE, —Ac[1+(s —1)e/2] I /(1 —s ), (29}

ac2&E &2= Is aE, —Au[1+(s —1)e/2]]/( I —s ) . (30)

IV. DILUTE SUSPENSION

As an illustration of our method and a quantitative
measure of the difference between squares and circles we
consider a dilute suspension. For square inclusions with
one side of the squares parallel to the applied field E„we
have, to lowest order in the surface fraction c, of phase 1,

cr, /o2=[1+(s —1)c,&E&,/E, ) . (31)

For circular inclusions the effective medium result' is ex-
act in the dilute limit, and to lowest order in the surface
fraction we have

To get R in Eq. (26), we need Ao and all A„. They are
obtained from an infinite set of linear equations which
have to be solved numerically. We note that the ap-
proaches by Perrins et al. and Gu-Qing and Tao also
lead to similar systems of equations. Here they are
solved by a truncation of the system. Using that
E, =c, & E & &+c2 & E &2, Eq. (22), we can write

For circles, when c, ~0, a(s, c
&

) = 1 to lowest order in c &.

In Fig. 3 we give a(s, c
~

) for various values of s and c
&

for
square inclusions. %'e note that the conductivity for cir-
cular inclusions, in the dilute limit, agrees with the lower
Hashin-Shtrikman'4 bound and thus is the lowest possi-
ble for a given c, (when s ) 1).

V. CONCLUSIONS

We conclude by noting that the potential u (x,y) is ob-
tained as follows. First, )(,„are determined from Eq. (8).
The expansion coefficients Ao, A„are found from Eqs.
(15), (16), and (17) and Ao, A„' from (9). C and D fol-

low from Eqs. (11)—(13). Although the method is exact,
one has to solve numerically an infinite set of linear equa-
tions, and one is forced to make a truncation. Compar-
ing with similar work by Perrins et al. and Guo-ging
and Tao similar sets of equations always seem to arise
when treating an array of inclusions. In the dilute limit
we find that an array of circles has almost the same con-
ductivity as an array of squares. For high concentra-
tions, when the inclusions get close to touching, their
effective properties of course differ considerably.
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