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Antiferromagnetic planar-rotator model with further-neighbor interactions
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An analysis has been made of the planar-rotator model in the presence of a magnetic field and
further-neighbor interactions. A variety of new phases havebeen observed and described. A partial
classification of the global phase diagram has been made as we11 as experimental realizations.

I. INTRODUCTION

In this paper I will use mean-field theory (see Refs. 1

and 2, and references therein) to address the problem of
competing interactions at different length scales in
planar-rotator systems, and explicitly focus on the tri-
angular lattice with three nearest neighbors (see Fig. 1)
and a magnetic field. This work is motivated by experi-
mental work in which 2&3 X 2&3 ordering was observed
in MnC12 intercalated graphite. Such an ordering clearly
requires scales larger than the &3Xi/3 displacement of
the nearest-neighbor problem.

Whereas the critical properties are not obtained pre-
cisely, this method does have the benefit of yielding con-
siderable information about the structures formed while
allowing an analytic analysis of the thermodynamics.
Ground-state analyses have been performed for the
second-neighbor triangular lattice model by Katsura, Ide,
and Morita.

All the solutions of the variational equations have the
form

p„(8„)=e " " " /[2rrIo(at )] (4)

where R (x)=I, (x)/Io(x) (see Fig. 2), and M„„,Mk r are
the (real) x,y components of the magnetization of the kth
site. Knowing Mk is exactly equivalent to knowing both

a„and Pk. The magnetization per site is defined as

M=+„Mk/N, where N is the number of sites. The self-

consistent equations (SCE's) that relate the a„'s and P„'s
are found to be

with a„~O and 0~/k ~2m. , and I„ is the nth modified

Bessel function of the first kind. This form is indepen-
dent of both the lattice and the Jk~'s. The average mag-
netization of the kth site can be most easily described in
the complex formulation, with

'&k
Mt, =Mk„+iMk =Trs e "pk(8k)=R(ak)e

II. THEORY

0'[p] —:Tr&Ip(8)H(8)+p(8)ln[p(8)]] (2)

with respect to a normalized probability distribution
p(8). Here, 8 is the vector containing the spins of all the
sites, and Tr is the trace over all values of 8. The varia-
tional analysis is done within the restricted set of proba-
bilities

(3)

A. General case

I will perform an analysis of the (reduced) Hamiltonian

g Jkjcos(8k 8J ) —g hkco—s(8k —crk ),
(k,)) k

where (k,j ) runs over the neighboring (i.e., interacting)
pairs of sites of a not yet specified lattice, and L9k is the
angle for a spin on the kth site. The direction of the mag-
netic field on the kth site is the angle o k. The tempera-
ture (I) has been absorbed into the coefficients of H by
choosing H=E/(k&T), where E is the energy. The
method is similar to that described in earlier more re-
stricted models. ' I will attempt to minimize the func-
tional

ake "=hke "—g JkJM~ .
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FIG. 1. The unit cell considered for the triangular lattice is
shown. The sites are indexed so that t1,2,3,4], I5,6,7,8I, and

[9,10,11,12j are the &3X&3 sublattices; and I1,8, 10), [2,7,9J,
(3,6,12], and t4, 5, 11) are the 2X2 sublattices. The displace-
ments for the pair interactions Jl, J2, and J3 are shown.
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The free energy [Eq. (2)] then becomes

0'[p]=Re g JkJR (ak )R (aj)e
& k~ )

k

+ g {ak R (ak ) —1n[2nIo(ak )]I
k

(7)

This last form is only correct as long as the values of
ak and pk satisfy the SCE's, and must not be treated as a
quantity to variationally minimize. However, this form
uncouples the sites and is useful in comparing multiple
roots of the SCE's.

It can be seen from Eq. (7) that by globally rotating the
spins by bP [i.e., p(8)—:p(8 —hP), where EPk =AP for
all k], the free energy may be written

where Re represents the real part of the argument In-
serting the SCE's one finds

4[p]= —Re e' ~ghke
k

'~k"Mk [p] + (9)

4= g I ,'.a&R (—ak) ——,'Re(hke "Mk ) —ln[2mIo(ak )] I
k

(8)

where the ellipsis represent terms invariant under hp.
Here M„[p] indicates the value of M„ in the distribution

p. If gkh„e "M„does not lie on the non-negative real

TABLE I. Summary of the properties of the allowed solutions of the self-consistent equations. The individual phases are preceded
by a number in parentheses, and are grouped together under common classes. For some of the phases the free energy cannot be ex-
pressed simpler than Eqs. (7) and (8) and has not been listed here. Here 4(x)—:—,'a(a)'/" —1n[2nIO(a(a))].

Phase

( 1 ) Paramagnetic

2x2

Degeneracy
Symmetry and

conditions

a„.=a, Pk =0, for all k
=h —(6J, +6J +6J )R ( )

M] =Ms =M]P, M2 ™7™9,
M3 =M6 ™]2,M4 ™5™]]

Free energy

per site

(3J]+3J2+3J3 )R (a)
—1n[2nIO(a)]

(2) Continuum ak =a(2J] +2J2 —6J3), for all k
'&k

h =(8J, +8J, )R (a, )g„=,e "/4
C (2J] +2J, —6J, )

—h 2/( 16J]+ 16J2)

(Ferrimagnetic)

(3) c2x2
(4) biaxial 2 X 2
(5) 2x 1

&ax&3:

4
12
6

(2J] +2J2 6J3 )R (k ) =h (8J] +8J2 )M&

nk =ak e '
(nk is real),

Pk =0 or m, k =1,2, 3,4
a2 =a3 =a5%a]
a ] Aa2%a3 =a5
a] =a2%a3 =a5

M, =Mq ™3™4,
M8 =M7 ™6™5,

M]0 M9 M]2 M]],

(Continuum)

(6) Nonhelical

(7) Helical ao X2

ak =a(3J]—6J2+ 3J3), for all k
'&k

h =(9J1+9J5)R(a1)gk=159e "/3

Xk =1,5, 9e
'&k

Xk =1,5, 9e

4(3J] 6J2+3J3 )

h /(18J] + 18J3)

(Ferrimagnetic)

(8) Helical

(9) Nonhelical

(10) 2&3x &3

2&3 x 2v'3.
(11) Uniform

[Continuum(?)]
( 12) Nonuniform

k (3J] 6J2 +3J3 )R (ak ) =h —(9J, +9J3 )M,
iPk

Nk
——ak e "(i' is real),

Pk =0 or m, k =1,5, 9
a, Wa2&a3&a I

a]Wag =a3

M, =M2, M3 ™4,M5 ™6,
M7 Ms jM9 M]0~M]] M]2,

ak =a( —J] +2J2 +3J3 ), for all k

h =(5J, +8J, +9J, )R(a, )gk'=, e "/3
4( J]+2J2+3J3 )

h /( 10J]+ 16J2+ 18J3 )
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B. Triangular lattice

Now, I consider the case where Jk allows for first (J, ),
second (J2), and third (J3) neighbor interactions (see Fig.
1},and the magnetic field is uniform (hk =h, cr k =0 for all
k). Without loss of generality take h &0. The observed
2&3 X 2&3 phase gives a unit cell as suggested in Fig. l.
I will thus restrict myself to this periodicity for the
remainder of this paper. Such a restriction allows six
possible periodicities: 1 X 1 (paramagnetic), 2 X 2, 2 X 1,
+3 X &3, 2&3 X &3, and 2&3 X 2&3. The 2 X 1 case,
however, is actually a special case of the 2 X 2 phase and
the analysis shows it to be completely degenerate with the
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axis, then there is a value of AP such that 4'[p] is even
less. This is true for any set of hk 's and Jk .'s. Thus,

i (7k
gkhke "Mk must be real and non-negative.

It should be said here that the above formalism is valid
for both antiferromagnetic and ferromagnetic bonds.
However, the interesting structural ordering is only ex-
pected for the cases with at least one non-negligible anti-
ferromagnetic interaction.

It is usually necessary to further restrict the possible
p's by assuming some sort of periodicity for p;. However,
this is caused by the computational diSculty of solving
for so many variables, and not by any incompleteness of
the SCE's.

2 X 2 phase. Thus, the 2 X 1 phase will not be treated in-
dependently. The results are summarized in Table I.

Some of the fundamental equations are of the form
x —~R (x)=c, which has either one or three solutions,
depending on v and ~c~ (see Fig. 2). To have three roots
[x;(~,c), i =1,2, 3] requires a &2 and ~c~ &C(~), where
C(~)=a(a) aR—(a(a)) and a( &0) is defined by
R'(a, (a))=~ '. These roots then obey x, ~ —a, ~x2
~ a, ~ x3. Also, xz(a, c) & 0 if and only if c & 0.

Another fundamental equation, x =nR (x) always has
the solution x =0. For ~ & 2, there is exactly one positive
root a(n). Some states are of this form: a„='R(ak}.
Because the sites have been decoupled in Eq. (8), clearly
(for these states) all sites prefer ak =0 or all sites prefer
ak =a(v}. The solution consisting of all zeros is
paramagnetic (1 X 1) and is considered elsewhere.

1. Uniform continuum states

Assume that aj =a for all j, and a =a /R (a). Then the
SCE's can be written in a matrix equation

g (a5 I+J t )e 'R(a) =h for all j .
I

(10)

If the matrix afikt+ Jk' is nonsingular, then all the e 's
are real and uniquely determined. Of course, the con-
straint ~e '~ =1 must be enforced for any "solution" of
this matrix equation. Thus there may be cases with no
solutions. The interesting solutions are associated with z
such that the matrix is singular. A tedious, but straight-
forward calculation gives those values (see Table II). I
have accounted for all of these continua as associated
with corresponding continuum phases.

TABLE II ~ The uniform continuum solutions are given,
where K=a /R (a) ~ K is the eigenvalue of the matrix —J«, and
its degeneracy is related to the dimension of the corresponding
continuum.

2. 2~9X2~3 phases

Due to the complexity of solving for 24 variables from
24 equations, it is not possible to say much about all
2&3 X 2~3 solutions. But it is possible to look at specific
types of solutions. Because of the existence of continuum
states for the 2 X 2 and ~3 X ~3 phases, a logical guess is
to try the form ak =a for all k. Under these conditions
the SCE's may be written

FIG. 2. The functions R (x)—:I 1 (x)/Io(x) is shown. The re-
lated functions a( K) and a, ( K) are illustrated. The line of slope
Kl 1S C(KI ) x KIR (a (Kl ) ).

—6J —6J —6JI 2 3

2J, +2J2 —6J3
3Jl —6J2 +3J3—Jl +2J2 +3J3

Degeneracy Phase

Paramagnetic
2 X 2 continuum
&3 X +3 continuum
2&3 X 2&3 continuum
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e "[a —R (a)( —Ji+2J2+3J3}]=h—R(a)I J, [Si —S2(k) —S~3(k)]+J22S&3(k)+J&3S2(k)I

for all k, where Si =—gj,e '. Here S2(k) and S&3(k),
i/irespectively, are defined as the sums of e over sites I (in

the unit cell} on the 2X2 and +3Xv'3 sublattices, re-
spectively, containing k. In analogy with other solutions,

l

if the left-hand side of Eq. (11}is zero, then except for
special values of the J„'s, it follows that 4S2(k)
=3S&3(k)=Si = 12M/R (a), for all k, and

h =(5J, +8J2 +9J3)M. Solutions do exist for all h such
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FIG. 3. The symmetries of the ferrimagnetic solutions are shown. Here different symbols must have different values of the site
magnetization. The phases are (a) 2 X 1; (b) c2 X 2; (c) biaxial 2 X 2; (d) helical &3 X &3; and (e) nonhelical &3 X &3.
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that ~M/R (a)l & l.
At h =0, all the solutions [except those described later

in Eq. (12)] have the form P„=ALII, +p„, where gk has
2X2 symmetry and pk has &3X&3 symmetry, and

S2(k) =S~3(k)=0 is required. I call these solutions fac-
torized continua. This is valid only for h =0, but clearly
a small nonzero h cannot instantly make higher-
symmetry phases thermodynamically preferable, if this

(a)

ra

0
I
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(c)

Para

h/J,

0 0.5 2

(e)
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FIG. 4. The h vs T phase diagrams of five types are displayed. Units are chosen to be dirnensionless. (a) J, =1/T, J&=0, J3=0;
(b) Jl = 1/T Jp:0.15/T J3:0 (c) Jl:1/T J2 = 1/T J3 ={

9 )/T {d)Jl:1/T J2 s T J3 =0' (e) Jl =0 J2 = 1/T J =0 Para
stands for the paramagnetic phase. CEP stands for critical end point.
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solution was best at h =0. Notice also that this phase
has the helicity inherited from the &3X~3 aspect.

For general h it is possible to construct the solution

X=—MlR (a),
I+r =4/(3X +1),
$0—=cos 'X,

e *=(3X—e ')—,'( lair),

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

3. Ferrimagnetic solutions

The 2 X 2 and ~3 X ~3 solutions can be completely ac-
counted for (see Fig. 3). Besides the uniform continua all
the other states (denoted as ferrimagnetic in Table I) have
the spins parallel or antiparallel to the magnetic field
direction. Any structure in the ferrimagnetic states must
involve the magnitude of the ak's. Furthermore, these
states do not have the infinite degeneracy of the continu-
um states. These ferrimagnetic states can be found by
computer and the continuum states can be found analyti-
cally. Also, in the &3 X ~3 ordering there is also a heli-
cal transition similar to that discussed in Ref. 1.

4. Possibility of other solutions

I have given a complete classification of the available
solutions with 1X1,2X2, or &3X~3 symmetry. I have
also accounted for all phases with uniform ak. This
leaves only phases with either 2&3XV'3 or 2~3X2&3
symmetry that do not have uniform ak. At this point, I
cannot say much about such phases, if they exist.

III. RESULTS

With the above classification of the possible solutions,
it is now appropriate to exam. ine the possible phase dia-
grams. Portions of the J, ,Jz,J3,h phase space have been
examined with the aid of a computer. The computer

(12g)

After applying lattice symmetries there are a large num-
ber of such equivalent states. These sublattices all have
zero helicity (for X & —,') or all have nonzero helicity (for
X (—,'). There are some pairings of spins here, but not in

a way to change the periodicity from 2P3X2v'3. It is
unclear whether a continuum of solutions exists. It is
possible that the ak's are not independent of k for some
solutions, but this case is too difficult to solve. If such
(nonuniform) continua existed for hAO, and they kept
the helicity, then there would be two degenerate phases,
just as in the simple nearest-neighbor problem.

J1+2J2+3J3 & 2J] +2J2 6J3

J]+2J2+3J3 + 3J1 6J2+3J3
(13)

A more precise statement could be made by attempting
to fit the curves to the experimental data. This has not
been done.

There are at least two modifications that can be done
to improve the results while staying in the above formal-
ism. First, vacancies may be allowed for, so that spins
are absent from some sites. Secondly, interactions of
spins in different layers may be taken into account. Of
course if there is any reason to expect other periodicities
or incommensuration, then that must be handled. But
that was not observed experimentally for the case I am
considering. Such modifications are left for the future.

One can argue that the mean-field theory cannot obtain
the Kosterlitz-Thouless (KT) behavior correctly, and
thus it should be abandoned. But the structural ordering
observed is believed to be in addition to the KT behavior
and thus is probably not invalidated. Monte Carlo esti-
mates of the nearest-neighbor problem bear this out, and
give good agreement with most of the mean-field predic-
tions.

scans wide portions of an h versus T cross section for
given ratios of J„J2,J3. At each point all the phases
which can be found are compared, in order to find the
lowest value of the free energy %. As long as the correct
global minimum is examined, it is irrelevant how many
"bad guesses" are checked.

In all cases examined, the ferrimagnetic solutions were
never the global minima. It is possible that they are al-
ways saddle points of 4', but this has not been proven.
This is the most difficult portion of the numerical calcula-
tions, however.

On the other hand, the 2 X 2, &3 X &3, and 2&3 X 2V3
have been described well enough to easily and unequivo-
cally find them. Examples of each of these are shown in
Fig. 4. There are also rather interesting phase diagrams
shown, in which there are entire regions of coexistence.
Although not shown here, the same type of diagram also
exists for the &3 X &3 and 2&3 X 2&3 coexistence.
These special coexistences result because of the special
orientation of the coexistence "surface" in the full

J&,J2,J3,h space. It occurs only for very special choices
of J] J2 J3 A and is not a violation of the Gibbs phase
rule. When this coexistence region contains a helical
transition, then this helical transition line is actually a
line of critical end points (CEP's) in the full space. There
are even very special conditions under which all three of
these ordered phases can coexist in the same region. This
very rich behavior means that when corrections to mean
field are applied, different cross sections will probably cut
through in different ways, and a multitude of rich behav-
ior must be present.

These calculations suggest the range of interactions
suitable to observe a 2&3 X 2&3 phase in the MnC12 ex-
periments may be
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