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Electron and phonon spectra, densities and integrated densities of states, and dynamic-response
functions are investigated for a variety of two-dimensional (2D) quasicrystals. The dynamical prop-
erties of a Fibonacci chain, extended both periodically and quasiperiodically into a second dimen-

sion, are obtained using an exact convolution relationship involving only one-dimensional quanti-
ties. For a particular on-site model we find two successive transitions in the spectrum of the quasi-

periodically extended Fibonacci chain (2D Fibonacci quasilattice) as a function of coupling
strength: from finite to infinite band number and from finite to zero total bandwidth. The periodi-
cally extended Fibonacci chain (Fibonacci superlattice) always has a finite band number and
nonzero total bandwidth. Furthermore, in each case we find the plateaux in the integrated density
of states to follow a gap-labeling rule, as is the case in one dimension. We also present for the first

time a study of the spectrum of a particular 2D Penrose lattice generated via the Robinson tiling ap-
proach. Our study of the spectrum is made by diagonalizing the matrices of finite-size samples, our
results indicating that the gap number is always finite, irrespective of the coupling strengths. Plots
of the integrated electronic and vibrational densities of states indicate a similar gap-labeling rule as
was found for the 2D Fibonacci superlattice and quasilattice. Surface plots of the full wave-vector
and frequency-dependent response functions (dynamic-structure factor) are given for both the 2D
Fibonacci and Penrose lattices, and show very rich structure. That for the Fibonacci quasilattice
can be interpreted by comparison with an exact analytic expression obtained in the equal-coupling
limit, which indicates that the response is strongly peaked along well-defined curves in the
frequency-wave vector plane, unlike that for the Penrose lattice, which shows no apparent regulari-

ty, except in the long-wavelength limit.

I. INTRODUCTION

Since the discovery ' in 1984 of systems exhibiting
sharp diffraction patterns with a symmetry inconsistent
with a perfect crystalline order, and their interpreta-
tion ' as quasiperiodic lattices ("quasicrystals"), many
theoretical studies have investigated the static (e.g. ,
magnetic) and dynamical properties of quasicrystal mod-
els. While the dynamical studies have lagged behind the
static ones, a clear picture is emerging of the dynamical
behavior of one-dimensional quasicrystals, particularly
the Fibonacci chain, following its formulation in terms of
a trace map. ' In particular, the spectrum and the in-
tegrated density of states of the Fibonacci chain have
been investigated "" and, among other studies, the
multifractal aspects have been characterized. ' ' More
recently, ' ' the development of an exact decimation re-
scaling technique for the Fibonacci chain has allowed
direct and accurate determinations of density or integrat-
ed density of states, in addition to the full dynamic
response function.

The present paper is concerned with the dynamical

properties of two-dimensional (2D) quasicrystals. The
systems studied include a particular Penrose lattice'
as well as higher-dimensional variants of the Fibonacci
chain. These variants involve the extension of the chain
into a second dimension in either a periodic manner,
yielding a Fibonacci superlattice, or according to a
second Fibonacci sequence, yielding a Fibonacci (isotro-
pic or anisotropic) quasilattice. ' The particular Pen-
rose lattice we have chosen to study is generated via a re-
cursive construction due to Robinson, ' ' leading to a
succession of finite-size Penrose lattices having fixed tri-
angular boundaries, and this avoids most irregularities in
size dependencies. All previous studies of the electronic
and vibrational properties have focused only on
those Penrose lattices composed of either two types of
rhombs or darts and kites. The Penrose lattice we have
considered is in a different local isomorphism class to
these and hence is expected to have different dynamical
properties. Indeed, it is evident that a Penrose lattice
composed of Robinson tiles is a much more highly con-
nected and rigid structure than those composed of darts
and kites and of rhombs, and so one would expect its
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spectrum to have fewer gaps.
The spectrum of the one-dimensional Fibonacci-chain

quasicrystal is known rigorously to be a Cantor set of
zero Lebesgue measure for any value of the on-site poten-
tial. ' However, the additional degrees of freedom
present in higher dimensions may lead one to conjecture
that fewer, or possibly no gaps, will appear in the spec-
trum of the higher-dimensional generalizations. For a
small enough coupling strength along one direction, the
lattice is essentially composed of noninteracting linear
chains, and so we would expect a spectrum not unlike
that obtained in one dimension. It is thus not unreason-
able to conjecture that as a function of coupling strength,
two transitions in the total bandwidth are likely to occur,
namely the transition from full bandwidth BF, to
BI (0(BI(BF), and finally to zero bandwidth. Unfor-

tunately, there are no rigorous results concerning the na-
ture of the spectrum for any Penrose lattices, and so
apart from the analytical results concerning a few select
eigenstates of a Penrose lattice composed of rhombs,
our understanding of the spectral properties of these
structures is limited to conjectures based on numerical
data for finite-size rhombus-based lattices.

Another feature of one-dimensional quasiperiodic sys-

tems which has received considerable attention concerns
the existence of a so-called gap-labeling theorem
which allows us to label spectral gaps by the integrated
density of states. To be precise, for the case of the
Fibonacci-chain quasicrystal, the integrated density of
states corresponding to an energy (or frequency) in a
spectral gap is given by trna ), where m is a positive or
negative integer, and r= —,'(1+&5) is the golden mean.
Furthermore, the largest gaps correspond to the smallest
integer values. To the best of our knowledge, the possi-
bility that such a gap-labeling theorem also exists for
higher-dimensional quasiperiodic lattices, including the
Penrose lattice, has not been considered.

The organization of this paper is as follows: Section II
is devoted exclusively to those properties of two-
dimensional quasicrystals which depend only on the spec-
trum and includes analyses of the total bandwidth as well
as the density and integrated density of states. For the
higher-dimensional Fibonacci systems (Sec.II A), an exact
convolution technique is developed which provides rela-
tionships to the corresponding dynamical properties of
the Fibonacci chain for which the exact decimation tech-
nique, outlined in Appendix A, can be used. We present
results for the density and integrated density of states for
both the Fibonacci quasilattice and superlattice, and dis-
cuss the extent to which a gap-labeling theorem is applic-
able. Our study of the total bandwidth of these two-
dimensional extensions again relies on the convolution
identity, enabling us to obtain the two-dimensional band-
width from that of the one-dimensional counterparts.
Following Kohmoto we consider periodically repeated
Fibonacci chains and their extension to two dimensions,
for which the notion of bandwidth is well defined. One of
the qualitatively new features seen in the spectrum of the
two-dimensional Fibonacci quasilattice is the appearance
of two transitions: as a ratio of coupling strengths
changes through some critical value, the number of bands

(or gaps) changes from finite to infinite. At a second criti-
cal ratio the total bandwidth changes from finite to zero.
Neither of these transitions is present in one dimension.
A "simple, "but nevertheless not completely solved, mod-
el (convolution of two Cantor sets) which illustrates how
two such transitions can occur, is given in Appendix B.

In Sec. II B we present our results for the two-
dimensional Penrose lattice composed of Robinson tiles.
Unlike the higher-dimensional analogues of the Fibonacci
chain, no exact convolution statement exists for the Pen-
rose lattice due to its complicated geometry. Conse-
quently our results are based on the direct diagonaliza-
tion of finite-size samples, yielding a collection of eigen-
values and their corresponding eigenvectors. Our
analysis of the spectrum indicates that the gap number is
always finite as is the total bandwidth. In addition, plots
of the integrated density of states for both electron and
phonon dynamics are given and a gap-labeling theorem is
d&scussed.

Section III is concerned with the study of the full ener-

gy (or frequency) and wave-vector-dependent response
function S(q, E) for the same two-dimensional quasicrys-
tals studied in Sec. II. The convolution identity for the
two-dimensional density and integrated density of states
developed in Sec. II is extended to the investigation of the
dynamic-structure factor (Sec. III A) allowing us to ex-
press S(q, E) for the two-dimensional Fibonacci systems
as exact con volutions of one-dimensional dynamic-
structure factors, which can be obtained using the de-
cimation method. ' Furthermore, by extending an
analysis for the one-dimensional case, an exact expression
is obtained for the dynamic-response function for the
two-dimensional Fibonacci quasilattice in the limit of
equal couplings, whose support is an infinite family of
"dispersion" curves. For unequal couplings these curves
lose their identity, developing a dense set of gaps at their
crossing points, and this allows both an interpretation of
gap-labeling rules identifiable in the integrated density of
states and of the computed surface plots for the response
function. Rather different features are seen in the com-
puted response function for the Penrose lattice, where no
"equal-coupling" case is ever appropriate, due to the in-
trinsic diSculty associated with the geometry.

II. SPECTRUM AND DENSITY OF STATES

Since rather different techniques are required for the
two-dimensional Fibonacci lattices and for the Penrose
lattice, we discuss these separately in the two subsections
which now follow.

A. Two-dimensional Fibonacci lattices:
Convolution and decimation

The models we have considered are direct extensions to
higher dimensions of the Fibonacci chain. This exists in
both bond and site versions, which can be related. In the
bond version, it is a chain of atoms linked by two types of
nearest-neighbor bonds, A or B, in a Fibonacci sequence,
which can be obtained by projection or by using the re-
cursive process 3~ AB,B~A to construct a sequence
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where I and I~ denote the identity operators acting in

the x and y subspaces, respectively, and the eigenvalues
and eigenstates of the composite system are

(2.2a)

(2.2b)

Now, the density of states of the two-dimensional com-
posite system is, by definition, given by

p(E) =+5(E Ep—)

aP

=+pa(E E) . — (2.3)

Then inserting a 5 function into (2.3) and performing the
sum over a, allows us to write

p(E) = fdE'p„(E')pa(E E'), — (2.4)

which expresses the two-dimensional density of states as
a convolution of the densities of states p„and pz of the
one-dimensional Hamiltonians H„and Hz. A similar
result has been obtained independently by Schwalm and
Schwalm. Furthermore, it follows by straightforward
integration that

N (E)=f dE'p z (E')Na (E E')— (2.5)

is the corresponding result for the two-dimensional in-
tegrated density of states. The generalization of (2.4) to
three dimensions is straightforward and yields the result

p(E)= f fdE'dE"p„(E')pa(E")pc(E E' E") . — —

(2.6)

A special case of Eqs. (2.4) and (2.5) arises when
H„=Hz, corresponding to the convolution of densities
of states associated with two identical Hamiltonians. The
results presented in this chapter for the Fibonacci quasi-
lattice will be for precisely this isotropic situation. The
more general anisotropic case where H„AH& corre-
sponding to two Fibonacci-chain Hamiltonians charac-
terized by difFerent parameters, is not expected to display
any new features. The case of the Fibonacci superlattice
is, however, intrinsically anisotropic, necessitating the
convolution of the densities pz and pp of the one-
dimensional Fibonacci-chain Hamiltonian HF and one-
dimensional periodic Hamiltonian H p, respectively.

of generations. Both electron and phonon dynamics can
be discussed: to maintain generality we will talk in terms
of the tight-binding electronic case, which includes pho-
nons or spin waves as special cases, the latter two con-
taining a Goldstone symmetry.

Let H„and H~ denote two one-dimensional Hamil-
tonians of the tight-binding form, with corresponding ei-
genvalues tE J and IE&I and eigenstates I~a&I and

I ~P& ), respectively. Then, provided the potential of the
two-dimensional system is separable, the Hamiltonian of
the composite system is given by

(2.1}

In what follows we shall consider systems whose dy-
namics is governed by Hamiltonians composed of those
giving rise to the following three one-dimensional linear
equations of motion:

(2.7a)

(2.7b)

gK „—co P„=+K„
m

(2.7c)
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FIG. 1. The electronic density of states for the isotropic 2D
Fibonacci quasilattice for W'„=1 and W& = 1.5.

In (2.7a) V„denotes a site-dependent potential, and 1(„
the wave function at site n E.quation (2.7b} is the usual
tight-binding equation describing a single band, and e„
and 8'„denote, respectively, the on-site energies and
nearest-neighbor hopping-matrix elements. Equation
(2.7c}describes harmonic excitations (scalar phonons), (()„
denoting the displacement at site n, and It.

„

the spring
constant joining sites n and m. If we interpret the force
constants K„asexchange constants J„andreplace the
spectral variable co by co, then (2.7c) describes the dy-
namics of Heisenberg ferromagnetic spin waves at zero
temperature. The two-dimensional generalizations of
these models are then as implied by (2.1}.

Figures 1 and 2 show the resulting density of states
(DOS) for electron and phonon dynamics as described by
(2.7b} and (2.7c},respectively, on the two-dimensional Fi-
bonacci quasilattice and Fibonacci superlattice obtained
using the convolution formula (2.4). The symmetry un-

der E~ E in the fi—rst case arises from having only hop-
ping terms (s„=0)in the Hamiltonian HF. In the case of
phonons (or spin waves) there is obviously no such sym-
metry. Moreover, the local scaling properties in this case
are nonuniform because the invariant of the trace map
for the one-dimensional case involves e explicitly. Re-
sults are given in Figs. 3 and 4 for the phonon and elec-
tronic integrated densities of states (IDOS) on the two-
dimensional Fibonacci quasilattice, which appear to have
a Devil s staircase structure. In addition, the linear be-
havior for small frequencies in the phonon problem im-
plies the validity of a continuum viewpoint in this region.
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FIG. 2. The phonon density of states for the 2D Fibonacci
superlattice for E~ =E& =1 and E& =2.5.

Indeed, such low-frequency behavior is expected to occur
for any two-dimensional lattice having Goldstone dynam-
ics, and indeed we shall see that it also occurs for the
two-dimensional Penrose lattice. The plateaus in the in-
tegrated density of states for the electron and phonon
cases, Figs. 3 and 4, occur at ordinate values which we
have found to be of the form

H = Im~), (2.8)

where t I denotes the "fractional part of," and m is a
positive or negative integer. The values of m correspond-
ing to a few of the largest gaps are indicated explicitly on
these two figures. This allows the gaps to be labeled by
the integer m, just as in one dimension. However, for the
one-dimensional Fibonacci chain the largest gaps corre-
spond to the smallest integer values in (2.8), whereas in
two (and presumably higher) dimensions this is no longer
the case. The gap-labeling result (2.8) is a generalization

of that observed for the Fibonacci chain, "and its appear-
ance in the two-dimensional Fibonacci system is ex-
plained in Sec. III A, using a perturbative argument start-
ing from an exact result for the dynamic response func-
tion of two-dimensional Fibonacci lattices. Gap-labeling
formulas are a very general property of quasiperiodic
models.

We shall now turn our attention to the more funda-
mental issues regarding the nature of the spectra of mod-
els described by (2.7), and, in particular, questions related
to the total bandwidth and total number of gaps. In one
dimension it is known that the energy or frequency spec-
tra of models described by (2.7) have zero total band-
width ' and infinitely many gaps. We cannot always ex-
pect this in higher dimensions: for example, for the Fi-
bonacci superlattice the total bandwidth Bz and band
number Nz must always be finite, since under convolu-
tion the finite bandwidth 48' of the periodic spectrum
Ek (Ek =a+2 fV cosk) fills any gaps less than 28'z in the
Fibonacci-chain spectrum. Such considerations raise
questions about possible transitions in total bandwidth

BzF and band number NzF for other two-dimensional
quasiperiodic models. To be specific we shall consider
the two-dimensional version of the model whose dynam-
ics is described by (2.7a) where the on-site potential V„
takes two values Vz and Vz according to the Fibonacci
sequence, together with the condition V„=—Vz. Furth-
ermore, we shall assume that the underlying geometry is
that of the two-dimensional Fibonacci quasilattice with
isotropic, and later anisotropic, interactions.

A convenient formalism with which to study the ener-

gy spectrum of the one-dimensional Fibonacci chain is
that based on the transfer matrix, introduced indepen-
dently by Kohmoto, Kadanoff, and Tang and by Ostlund
and Pandit. ' This approach uses the rule
A ~AB,B~ A to produce the following third-order
diff'erence equation for yL =

—,'Tr(TL), where TL is the
transfer matrix describing level I.of the hierarchy:
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FIG. 3. The phonon integrated density of states for the iso-
tropic 2D Fibonacci quasilattice for K„=1 and Ez =3.

FIG. 4. The electronic integrated density of states for the iso-
tropic 2D Fibonacci quasilattice for 8'„=1 and 8'z =3.
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PL+1 2VI. ~L —1 ~L —2 ' (2.9)

yL is found by iterating (2.9} from three initial values,
which for the case of (2.7a) are given by y
yo= —,'(E —Vs), and y, = ,'(E——V„).If we imagine our
Fibonacci chain at level L to be periodically repeated,
then for such an (infinite} chain whose basic unit cell con-
tains FL sites, we expect the energy spectrum to consist
of FL bands (FL =FL,+FI z, with Fo =1, F, =1).The
band edges [a ', b '] of such a system are obtained by
solving the polynomial equation yL =+1 of degree FL.
The band edges of the two-dimensional extension are
then, by Eq. (2.4}, simply obtained by forming
[a '+a' ', bI '+b' '] for all possible i and j from 1 to
Fl . The union of all these bands yields the spectral sup-
port.

We have calculated the total bandwidth Bzz and band
number N2F for the two-dimensional Fibonacci quasilat-
tice as functions of V=V„=—Vz for several system
sizes. Figure 5 is a plot of the total bandwidth Bz+'
versus V for L =3, . . . , 11, where L labels the order of
iteration of the trace map (2.9) [so FL is the length of the
Fibonacci chain used in the composition (2.1)]. The ex-
trapolation to L ~ a in the finite-size extrapolation plot
in Fig. 6 provides strong evidence that the total band-
width vanishes for V & Vz where V2=1.95+0.05. A
finite-size analysis of the band number is given in FiIIs. 7
and 8 in which, respectively, lnN2F' and N2F'/N'2F are
plotted versus V for various values of L, where N'zz' is the
band number at generation L. In the second plot (Fig. 8),
L and L —2 are used to reduce alternation effects from
the recursive construction. The asymptotic value of
N'zF'/N'z~ ' at large V becomes ~, because in that re-

gime the bands become very small, and hence their num-

ber in a two-dimensional system of side length FL is pro-
portional to FL, i.e., to 2, for large L, where
~= —,'(1+&5) is the golden mean. At weak coupling a

2 ~ 5

g(L)
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0 F 05 BIO O. I5 0.20 0.25

FIG. 6. The finite-size extrapolation of the total bandwidth
82F' of the isotropic 2D Fibonacci quasilattice for V =1.9 and
L=6,7, . . . , 13.
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FIG. 5. The total bandwidth 82F' as a function of
V = V& = —

V& for the isotropic 2D Fibonacci quasilattice with
L =5,6, . . . , 11.

FIG. 7. The logarithm of the total number of bands NzF' as a
function of V= V„=—V& for the isotropic 2D Fibonacci
quasilattice with L =5,6, . . . , 11.
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tropic Fibonacci square lattice for I.=7,8, . . . , 11.

FIG. 10. The phase diagram for the anisotropic Fibonacci
square lattice.
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single band is apparent in the figures. There is a small
domain around V =0.5 where two bands can be
identifiable. The two figures clearly show a transition
from finite to infinite band number at V= V, =0.6. The
question of whether there are higher finite numbers of
bands in a narrow region below V& is not clear. The re-
sulting "phase diagram" for the case of electron dynam-
ics on the two-dimensional Fibonacci quasilat tice is
shown in Fig. 9. The region I (V & V, ) is where band
number N2+ and total bandwidth B2+ are both finite; re-

gion II ( V, & V & V2) is where B2F remains finite, but the
transition to infinite N2F has occurred; in region III
( V & V2) the second transition, to zero bandwidth, has
occurred, and so B2F=0 while Nzz is infinite. It is worth
commenting that our results are consistent with those of
Ueda and Tsunetsugu ' who have investigated a particu-
lar anisotropic model with an equation of motion given
by (2.7a) but found only the single transition to zero
bandwidth.

These two transitions can be illustrated in a simple
model involving convolution of two Cantor sets, each
formed by the usual hierarchical process of subdividing,
with a central gap, each subband of the previous genera-
tion. The convolution is described in Appendix 8, first
for a symmetric subdivision, where both transitions
occur together, and then for the much more difficult case
of an asymmetric subdivision, where the transitions occur
at different parameter values. A general solution of this
model has eluded us.

An interesting question is how the phase diagram of
Fig. 9 generalizes for the anisotropic 20 Fibonacci quasi-
lattice with diff'erent potentials V„,V in the two direc-
tions. From the result for the case V„=V, we know that
three regions (corresponding to I, II, and III in Fig. 9)
must occur in the V„,V phase plane. Whether region II
is of finite or infinite extent is not, however, decided by
the isotropic case. The extension of our analysis to the
anisotropic case for specific values of Vz Vy using an ob-
vious generalization of (2.3), yields points on the phase
boundaries, as shown in Fig. 10. While these have pro-
vided some further details of the phase diagram, we are
unable to say whether or not region II is bounded. Fig-
ure 10 incorporates some information about the phase
boundaries obtained by considering the limits V, ~0 or
V ~ 00 (and similarly with V ~V ); these are uncoupled
Fibonacci chains or Fibonacci chains periodically extend-
ed into the second dimension, which are in phases III or
I, respectively, and imply that both these boundaries ap-
proach the axes.

B. Penrose lattice: Construction and spectral properties

Penrose lattices can be generated either by projec-
tion (i.e., from five to two dimensions), by the gen-
eralized dual method, or multigrid method, producing
tilings composed of two types of rhombs, or by a
deflation approach applied to darts and kites. An alter-
nate method is the recursive construction of Robin-
son ' ' based on the successive subdivisions of two tri-
angular tiles (Robinson tiles), according to the following
rules:

FIG. 9. The phase diagram for isotropic Fibonacci square
lattice.

P +2P+Q, —

Q~P+Q,

(2.10a)

(2.I0b)
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where P and Q denote the two basic triangles whose an-

gles are (m /5, 2m. l5, 2m I5) and (3m. l5, m I5, m I5), respec-
tively. It is also worth mentioning that, in addition to the
basic inflation rules (2.10},it is also necessary to impose
matching rules by associating a chirality with each of the
P and Q tiles. After n iterations of the recursion relations
(2.10) starting from a P triangle, we arrive at a tiling con-
taining Fz„P-type triangles and F~„&Q-type triangles,
where F„is again the nth Fibonacci number. In Fig. 11
we illustrate a finite Penrose lattice containing 217 ver-
tices, obtained after six iterations of (2.10) starting from a
P-type triangle. By cutting the darts and kites of a Pen-
rose tiling obtained by projection one obtains the two tri-
angles of the Robinson construction, and so clearly a til-
ing composed of Robinson triangles is more highly con-
nected than one obtained by projection, and this
difference shows up in the excitation spectra of the sys-
tems we have studied on these geometries.

The sites of the resulting finite lattices do not, of
course, lie on a regular lattice, unlike the two-
dimensional Fibonacci lattices just discussed, and so no
convolution relationship of type (2.4) to a lower dimen-
sional system is possible. Instead it is necessary to diago-
nalize a dynamical (or Harniltonian) matrix, character-
ized by nearest-neighbor spring constants EL and ICs (or
hopping matrix elements WL and Ws) between sites
separated by a long and a short bond, respectively.

It is important to note that each iteration of (2.10) does
not always produce new vertices, and so to ensure that
each vertex is enumerated only once, it is necessary to

calculate the coordinates (x„,y„)of every vertex n at each
stage. For the case of electron dynamics, the diagonal
elements (i,i) of the Hamiltonian matrix (i.e., the on-site
energies} are taken to be zero for convenience, the off-

diagonal elements (i.e., the nearest-neighbor hopping-
matrix elements) taking one of two values, Wr or Ws, ac-
cording to the bond length. For the case of phonon dy-
namics the diagonal elements of the dynamical matrix
cannot be zero because the Goldstone symmetry must be
respected. Indeed, it is most convenient to use the Gold-
stone symmetry to generate the diagonal terms from the
off-diagonal terms using the fact that the sum of all en-
tries in any row or column of the dynamical matrix must
be identically zero.

The resulting integrated density of states Nl(E) for
electron dynamics and Nz(co } for phonon dynamics on
the Penrose lattice containing 2191 vertices is shown in
Figs. 12 and 13. Figure 13 shows several clearly resolved
gaps, however, these appear to be fewer in number than
found for the corresponding spectra for Penrose lattices
composed pf darts and kites or rhombs. ' In addi-

tion, in the low frequency or continuum limit the phonon
IDOS clearly displays a linear behavior characterized by
the same exponent, namely d/2, as occurs in regular lat-
tices of the same dimension. For both the phonon and
electron cases, the integrated density of states shows a
gap-labeling feature, the plateaux occurring at ordinate
values which are again given by (2.8). The values of m as-
sociated with a particular gap are indicated on the
figures.

The possibility that the Penrose lattice has the same
two transitions seen in the 2D Fibonacci system is con-
sidered next. Since the numerical technique produces
only discrete states, rather than bands, the method of
analysis used previously cannot be applied to the Penrose
lattice results. Instead, a finite-size analysis is performed
on the total number of gaps H' '(b, } whose size is greater
than b, . Figure 14 is a plot of I' '(b, ) versus 5 for the
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FIG. 11. A finite portion of a Penrose lattice containing 217
sites obtained from a P triangle after six iterations.

FIG. 12. The integrated phonon density of states for a 2D
Penrose lattice composed of Robinson tiles, consisting of 2191
sites, for K„=E~= 1.
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FIG. 13. The integrated electron density of states for a 2D
Penrose lattice composed of Robinson tiles, consisting of 2191
sites, for W„=8'z = 1.

FIG. 14. H (b, ) vs 5 for electrons with 8'L = Wz = 1.

case of equal-coupling electrons for diFerent values of I.,
where L is now the generation number of the Penrose lat-
tice, i.e., the number of times the recursive tiling tech-
nique has been iterated starting from either a P or a Q tri-
angle. The values of L we have used correspond to sys-
tems containing 344, 539, 861, 1365, and 2191 lattice
sites. The data suggests that H' '(6) is a decreasing
function of L, for large enough L, and any fixed b,%0 and
that the gap number is always finite. This statement ap-
pears to be universal (independent of system parameters),
and so the transitions between finite and infinite gap num-
ber and zero and nonzero bandwidth appear not to occur
for the Penrose lattice.

Generic plots of the energy spectrum versus
W = 8's/WL and E =Es/EL have been obtained (Figs.
15-17) which exhibit the following additional features:
In the phonon system gaps become small at small co be-
cause of the asymptotic validity of the continuum view
described above. In the high-frequency regime of the two
figures, m and E are becoming linear in 8'or K at large
8'or K: this is because in this limit only the stronger of
the two bonds matters. A similar argument using the
dominance of the unit bonds as 8'~0 explains the 8'in-
dependence of the electronic spectrum at small 8'. In the
phonon case, however, the "Goldstone symmetry" makes
the weak bonds equally important for the low-frequency
behavior and that is indeed seen to depend strongly on K
at small K.

III. DYNAMIC RESPGNSE FUNCTION

The dynamic-structure factor or response function
S(q, E) is the linear response of the system to a dynamic
probe (coupling linearly to the dynamical variable) at en-
ergy E and wave vector q. Its q integral or E integral

A. Two-dimensional Fibonacci systems;
Convolution method for response

The response functions of the periodically and quasi-
periodically extended Fibonacci lattices both satisfy con-
volution statements which arise, as in Sec. II A, from the
separability property of the potential. As before, let ~a)
and

~ p) denote the eigenstates of the one-dimensional
Hamiltonians H„and Hz, corresponding to the eigen-
values E and E&, respectively. Then, by definition, the
response function of the two-dimensional extension is
given by

S(q, E)=y fdxdx'dydy'e'q" "(xy ~aP)
aP

X5(E E~)(aPix 'y')—,
where q=(q„,q ) and r=(x,y).
5(E E&) in the form-

fdE'5(E' E)5(E E' Ep—), — —

Then, rewriting

and using the fact that ( xy ~ aP ) = (x
~
a ) (y ~P ), it follows

that

S(q,E)=fdE'S„(q„,E')S~(q, E E'), —

where S„andSz denote the dynamic-structure factors of
the one-dimensional Hamiltonians H„and Hz, respec-

give, respectively, the density of states p(E), or the static
structure factor S(q) which is measured in diffraction ex-
periments. In simple systems S(q, E) is sharply peaked
where E and q satisfy "dispersion relationships- of the
«rm E =f (q), describing the excitation energies of the
eigenmodes. It will be seen in the following subsections
that a generalization of this statement to many dispersion
curves provides an accurate description of the dynamic
response of the two-dimensional Fibonacci quasicrystals,
for certain regimes of couplings, while the Penrose lattice
response is never of a simple form.
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FIG. 15. The energy spectrum for a 2D Penrose lattice composed of Robinson tiles, consisting of 539 sites (0 W 1).

S(q, E)=S~(q„,E E}—(3.3)

for the dynamic-structure factor for the two-dimensional
Fibonacci superlattice. Furthermore, a simple extension
of this to three dimensions leads to

S(q,E)=S~(q„,E E~ E~ ) . — —(3.4}

tively, and it is implicitly assumed that a finite imaginary
part has been added to the spectral variable E in order to
regularize the functions. Generalizations to three dimen-
sions follow in exactly the same way as in Sec. II for the
density of states.

According to (3.2), the dynamic-structure factor for
the Fibonacci superlattice is equal to the convolution of
the one-dimensional Fibonacci-chain dynamic-structure
factor Sz(q, E}with that of the one-dimensional uniform
chain S~(q, E)=5(E E), where E —=a+28'cosq .

qy
'

qy

It is thus possible to perform the integral in (3.2) leading
to the result

These results illustrate that the dynamic-structure factors
of the two- and three-dimensional Fibonacci superlattices
are determined solely by that of the one-dimensional Fi-
bonacci chain, studied in detail in Ref. 16. Figure 18
shows the resulting structure factor SF~(q, E) for electron
dynamics on the 20 Fibonacci quasilattice as a surface
plot, Szz versus Iqj and E for q in the (1,1) direction.
Figure 19 is the corresponding result for phonon dynam-
ics, namely S(q, co ), again with q along the (1,1) direc-
tion. All the figures show sharp structure suggesting
definite ridges and valleys, very like results obtained pre-
viously for the Fibonacci-chain response function SF. In
particular, results for Szz(q, co ) with q=(q, o) (not
shown) are identical with those obtained previously' for
Sz(q, co ); this is explained by using in (3.2) the result

S~(q~, co —co' ) -5(co —co' ) for small q . The sharp
peaking in Sz(q, co ) at small q is inherited [via (3.2)] by
the two-dimensional response functions.

To see this peaking more clearly, and to see the general
structure of ridges and valleys, we have also plotted the
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FIG. 16. The energy spectrum for a 2D Penrose lattice composed of Robinson tiles, consisting of 539 sites (0 8'» 10).

1x„=an——nw
'T

(3.5)

support of SFF(q, co ), i.e., the regions in (q, co ) space
where SF+(q, co } is appreciable. Figures 20 and 21 are

the supports of SFF(q, co ) for phonon dynamics in the 2D
Fibonacci quasilattice with q=(q, q), for equal and un-

equal coupling ratios respectively. Dispersion curves of
the sort seen earlier for the Fibonacci chain are obvious
in the equal coupling plot, Fig. 20. In Fig. 21 the disper-
sion curves are again identifiable, but they have been
modified by the opening up of gaps at their crossing
points. As in the Fibonacci chain, these figures can be
understood in terms of an exact result for the equal-
coupling case and its perturbation theory extension. An
outline of this description is now given, which also helps
to explain the gap-labeling result (2.8).

For the equal-coupling case, the eigenenergies of the
Fibonacci chain become those (Ek say) of a uniform
chain and the eigenfunctions are of the form ( n

~
k ) =e'""

if n is a site label, whose relationship to the coordinate x
1s

where a = 1+ I /r . The coordinate x„ofthe nth site still
complicates the defining expression for SF(q,E) because
of the Fourier transform involved. But the periodicity of
the fractional part I I can be used to reduce the trans-
form, ' ' ' with the result

SF(q,E)= g F (q)5(E E~,), (3—.6)

where

F (q) = [2(sinq/2r)/(q/r —2mm)]

Inserting into (3.2) yields, for the equal-coupling case,

S+F(q,E)= g F (q„)F.(q }
mm'

X 5(E E.. .. , E.. —.. ,,) . (3—.7}

The result (3.7) involves a sum over branches (labeled by
m, m') for each of which E follows the dispersion curves
of a uniform square lattice (with displaced q). Because of
the F (q) factors, the strongest response at small q



4324 J. A. ASHRAFF, J-M. LUCK, AND R. B.STINCHCOMBE 41

3.0

2.5

2.0

1 ~ 5

5 IP
(J2

KA

20
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FIG. 18. A surface plot of S(q, E) for electron dynamics on
the isotropic Fibonacci square lattice for q in the (1,1) direction
and 8'& =1, 8'~=2. The x axis corresponds to q for 0 q 2~
and the y axis to E/W& for —6 ~ E/W& ~ 6.

FIG. 19. A surface plot of S(q, co ) for phonon dynamics on
the isotropic Fibonacci square lattice for q in the (1,1) direction
and K„=1,K&=2. The x axis corresponds to q for 0 q 2m

and the y axis to co /K„for 0 ~ co /E„~12.
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FIG. 20. A plot of co' vs q for phonon dynamics on the iso-
tropic 2D Fibonacci quasilattice for q along the (1,1) direction
and Eq =E~ =1.

FIG. 21. A plot of co' vs q for phonon dynamics on the iso-
tropic 2D Fibonacci quasilattice for q along the (1,1) direction
and E& = 1 and X& =2.

comes from the (m, m')=(0, 0) branch, which is the
effective-medium branch corresponding to the long-
wavelength probe seeing the system as a square lattice
with average spacing a (the weighted average of the A
and 8 bond lengths). The result (3.7) provides a detailed
explanation of Fig. 20.

To explain Fig. 21 it is necessary now to allow for the
effect of unequal couplings. If the coupling difference is
small, perturbation ideas can be used. These result in a
coupling of the different branches, . at their crossing
points. The gaps that appear there are those seen in Fig.
21. Moreover, these gaps occur in Ez (or ~i, ) at
k=(k„,k ) where (in a reduced zone scheme) k„and k
are given in terms of positive or negative integers n„,n
by equations of the form

where, in practice, we replace the 5 function by a normal-
ized Lorentzian of width g. An alternative approach
based on the equation of motion method of Alben et al. 3

has recently been employed by Patel and Sherrington in
their investigation of the propagating modes on a Penrose
lattice obtained by projection.

The resulting surface plot of the Penrose lattice
response function Sp(q, co ) is shown in Fig. 22 for pho-
non dynamics for the uniform coupling ratio EL =Ez =1
and q=(q, q). The results are much less singular in ap-
pearance than those (Figs. 20 and 21) for the 2D Fibonac-
ci quasilattice and there is little suggestion of anything
analogous to a dispersion curve. This is because, for the
Penrose lattice, there is no simplifying value of the cou-

k =m[n, rj . (3.8)

These lines divide the k-space reduced zone into an
infinity of subzones. So, for weak coupling where k is
both the wave vector and the mode counting label, plass

teaux in the (normalized) integrated density of states
occur at values which are, apart from a factor I/n. , sums
of areas of neighboring subzones. This leads to (2.8) for
the gap labeling and is valid to all orders in perturbation
theory. The theory also explains why the principal gaps
are not associated with the smallest values of rn in (2.8),
as they would be for the Fibonacci chain at weak cou-
pling, and why in general plateaux do not occur for all m.

B. Penrose lattice

$(q, aP)=+5(aP —co )!(q!a)! (3.9)

Since no relationships to lower-dimensional subsystems
apply for the Penrose lattice, its response function
S~(q, co ) for a phonon system, must be calculated from
first principles. We have chosen to calculate S~(q, co ) by
computing the eigenvalues co and eigenvectors!a) of the
dynamical matrix and using the relation FIG. 22. A surface plot of S(q, co ) for phonon dynamics on a

2D Penrose lattice composed of Robinson tiles for q along the
(1,1) direction and KL =K&= 1. The x axis corresponds to q for
0 q 10+and they axis to ~ for 0 a) 12.
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pling ratio E, in contrast to the 2D Fibonacci quasilat-
tice, where the case of equal couplings leads to the family
of curves obvious in Fig. 20. Nevertheless, at small ~q~,

the support is expected to be strongly peaked on an
effective medium or continuum dispersion curve co=c~q~
for the reason discussed earlier that at long wavelengths
the excitation sees the Penrose lattice as an isotropic con-
tinuum (the structures with scales larger than wavelength

1/~q~ having vanishingly small weight in the limit of the
wavelength going to infinity), provided localization effects
do not play an overriding role. This expectation of a
small

~ q~ dispersion curve is supported by Fig. 22.

IV. DISCUSSION

This investigation has produced detailed results for
spectra, densities and integrated densities of states, and
dynamic-response functions for electron and phonon dy-
namics on the two-dimensional Penrose and Fibonacci
quasicrystals. Certain special techniques have been
developed for the investigation, such as the exact convo-
lution relationship between dynamical quantities (i.e.,
densities and integrated densities of states and the
dynamic-structure factor) of the two-dimensional Fi-
bonacci lattices and those of the one-dimensional Fi-
bonacci chains. An important consequence is that the
dynamic-structure factor of the two- and three-
dimensional Fibonacci superlattice is completed deter-
mined by that of the one-dimensional Fibonacci chain.
In addition, the exact reduction of the dynamic-response
function for the equal-coupling 2D Fibonacci quasilattice
provides a useful interpretation of the unequal-coupling
dispersion curves.

By comparing with dynamic properties for the princi-
pal one-dimensional systems investigated previously' '
(the Fibonacci chain) and between the two-dimensional
system investigated here, certain characteristics and
features can be seen to be common, and can be expected
to occur in typical quasicrystals in higher dimensions
also. These include the applicability of continuum
viewpoints and results, for integrated densities of states
(e.g., in phonon dynamics at low frequency) and for dy-
namic response (q small) making the IDOS proportional
to co in low-frequency phonon dynamics, and
S(q, co ) ~5[co —f(q)] at low q and f (q) —

~q~ in the iso-
tropic limit. Other generally applicable features are the
appearance of many gaps in the spectrum (plateaux in the
IDOS) at sufficiently large values of appropriate coupling
ratios, gap-labeling formulas, a complicated structure to
the response function, and a symmetry in the q depen-
dence of the response function S(q, co ) reflecting the n

fold symmetry of the quasicrystal (n =4,2, 2, 5 in the
two-dimensional isotropic Fibonacci, anisotropic Fi-
bonacci, periodically extended Fibonacci, and Penrose
lattices, respectively).

The main spectral features which can differ qualitative-
ly between one- and two-dimensional systems are the
band number N and total bandwidth 8 and the form of
the gap-labeling rules. In the Fibonacci chain N and 8
are (except for the equal-coupling case) infinite and zero,
respectively, while in the two-dimensional periodically
extended Fibonacci lattice both are finite. The 2D Fi-
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APPENDIX A: THE DECIMATION METHOD

The generating function approach provides an a priori
exact means of computing lattice Green functions 6;.
and, in particular, the average density or integrated den-
sity of states. This formalism is based on the following
Gaussian generating function:

VN(E) =1n=~(E),

where

(A1)

:-N(&)=f2)uexp
iA(E)

2

with

bonacci quasilattice is still more interesting in having two
transitions between three regions (I, II, III} in which X,B
can be both finite, or infinite and finite, or infinite and
zero. The Penrose lattice has N finite, and so 8 is always

nonzero. As for the one-dimensional Fibonacci-chain
quasicrystal, the plateaux in the integrated density of
states for the two-dimensional Fibonacci superlattice and

quasilattice, as well as a particular two-dimensional Pen-

rose lattice, can be labeled by integers. However, unlike

the one-dimensional case, the largest gaps in the two-

dimensional spectra do not correspond to the smallest in-

teger values and will be explained in a future publication.
We expect that all these types of behavior can occur in

various higher-dimensional quasicrystalline models.
Equal-coupling limits can be trivial (e.g., for the densi-

ties of states of one- and two-dimensional Fibonacci lat-
tices}, simple enough to allow exact but nontrivial results
to be obtained (e.g., for the response functions of one-
and two-dimensional Fibonacci lattices), or very compli-
cated, in the sense that no analytic simplifications occur
and numerical computation is needed (Penrose lattice). It
is again clear that examples of all of these types of situa-
tions can occur in various higher-dimensional models.

The present investigation therefore shows that a great
variety of different dynamic behaviors wi11 occur in
higher-dimensional quasicrystals, unlike what is suggest-
ed by the previous detailed knowledge from the Fibonac-
ci chain.

Further studies are desirable to provide a more de-
tailed catalog of behaviors, to consider other dynamic
properties, e.g., transport, and to address additional ques-
tions, such as the validity of a continuum limit, the effects
of disorder on dynamics, and the relationship, if any, of
the type of viewpoints used here to traditional methods
for incommensurate systems.
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N(E) =—+e(E E, )
—=

—,'+ ImP)v(E),1, 2

Nn

1 2 dPN(E)
p(E) =—+5(E E)=— Im

a Nm

(A2)

(A3)

In most cases it is not possible to find a transformation
T which diagonalizes H, and so, in the spirit of the renor-
malization group, we shall successively perform the
Gaussian integrals over a fraction of the u ("decima-
tion" of the sites they occupy}. This leads at once to the
relationship

P~(E; IPkI )=C(E; IPk) )+PNlb(E; IPk I ), (A4)

where I Pk ) denotes the set of parameters characterizing
the Hamiltonian H (i.e., exchange interactions, on-site
energies, magnetic fields, etc.), IPk ) is the renormalized
set of parameters, C is an additive term arising from
completing the square in (Al}, and b is the decimation re-
scaling factor. In the case of a Fibonacci chain, if we
take the Hamiltonian H to be of the tight-binding form
characterized by site energies e„s&,and c„which depend
on the local environment, and nearest-neighbor hopping-
matrix elements V„and Vz, then one can show that de-
cimation of the P-type sites leads to

N(E) =
—,
' ——g, Im ln(E+i g e&" "—

) ', (A5)
n=1

—1
"

1
g(n —()

p(E) = g Im+1E+ egg(n&)

where

(A6)

a(E -E("))
g(n)

aE
Finally, the recursion relations for the parameters cj and
V; aregivenby

(Vq+ Va)
6~= Fy+ E cp

Va
Gp=F +

A(E)=U [(E+iri)I—H]U,
N

Jnu=g I" du, ,
j=1

and U denotes a column vector whose elements are the

u, . Note that the addition of the small positive imagi-
nary part ri to the spectral variable E is necessary for the
convergence of the integrals. Changing variables to
V=TU, where T is the transformation which diagonal-
izes H, it is straightforward to show that

I()")=(Rg „)"[0,1] . (Bl)

This set is, at the nth stage, actually the union of 2" non-
overlapping elementary intervals, whose total width (Le-
besgue measure) is (A, +(u )". So the limit set
I,=lim„„I&"' is a Cantor set with infinite band number
and zero width. We can consider now the set I2 defined
as the limit as n ~ 00 of the convolution I2"' of I',"' with
itself.

We first consider the simple case where the Cantor set
I& is symmetric, obtained by setting p =A, . Then it is easy
to show using (Bl) and the convolution relation that
I2 =lim„„I2n',where

I(n +1) g I(n)
2 A. 2 (82)

with I(z '=[0,2] and where S)„takes any interval [a,b]
into the union of the three intervals [a,a+A(b —a)],
[a +—,'(1—A)(b —a), a + ) (1+A,)(b —a)], [b —

A,

(b a), b] T—hese t.hree intervals are nonoverlapping if
A, & —, and overlapping (so their union is the whole inter-

val [a,b]} if A, )—,'. So A, =—,
' divides the regime A, & —,

' in

which the band number N and total width B are infinite
and zero (I2 is a Cantor set with zero measure), from that
(A, )—,') in which N = 1 and 8 =2 are finite, since

I2=[0,2]. These are the two phases III and I, respec-
tively, of Sec. II A, and the transition at A, = —,

' joins them

with no intermediate phase II in this case.
To see the appearance of phase II, it is necessary to

take the general, asymmetric model (AA)M}. For this
case, no simple equation of type (B2} can apply. A pic-
torial reason for this is given in Fig. 23. In Figs. 23(a)

E, )

kXXXXXXXXXX%XXX&X 8

APPENDIX B:
CONVOLUTION OF TWO CANTOR SETS

The transitions between finite and infinite band num-
ber, and between finite and zero bandwidth, can be illus-
trated by considering the simpler example of the convolu-
tion of two identical Cantor sets.

If R)( „(with A. +(M & 1) is the operator taking any inter-
val [a,b] into the union of the two intervals
[a,a+A(b —a)], [b p(—b a),—b], we define I, as the
asymmetric Cantor set obtained as the n ~ ~ limit of the
sequence

Ey
=E~+ E —c,p

(A7)
—E&

(b)

Va Vz
V~= E E,p

Va=V~-

FIG. 23. Convolution of two Cantor sets: (a) for the sym-

metric case p=A. (—,
' (in phase III); (b) for the asymmetric case

3 p I 5
(in phase II)~ In both cases, only the first genera-

tion (n =1) is illustrated.
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and 23(b) the abscissa and ordinate play the role of E)
and Ei in the convolution equation (2.3). The subdi-

vision of the interval [0,1] along each axis is that provid-
ed by Ri „asdefined above. In Fig. 23(a) this is a sym-

metric subdivision (}(,=((t}, and in Fig. 23(b) it is asym-
metric. Projections from any point (E(,Ez) in the plane
onto the diagonal line parametrized by E (ranging from 0
to 2) arrive at E =E, +E2. The shaded parts of the

plane are those in which both E, and E2 belong to I&,
i.e., both p')"(E, ) and (o'("(E2) are nonzero. The process
given in (B2) thus implies that in Fig. 23(a), I~(" is the
projection onto the diagonal line of the shaded regions of
the figure. Obviously, at higher n each shaded square
subdivides as the whole square has done previously, and
(B2) is a mathematical expression of this. However, in
the asymmetric case [Fig. 23(b}) the shaded regions (again
shown for the generation n = 1) are distorted versions of
those occurring in the previous generation, and this
affects their projection in a highly nontrivial way. The
parameter values A, ,p in Fig. 23(b) are such that it is plau-
sible that continuing to higher n will leave a finite total
width (total length of projected regions, shown for n =1
as a heavy line along the diagonal}, while continuing to
introduce more and more gaps in the top right-hand
corner of the square. This is, in fact, so: the parameter
values are such that B is finite and N infinite, correspond-
ing to phase II, and thus all three phases appear in the
model. It is interesting to note that in the descriptions
just used, the problem has become that of projecting a
fractal with no uniform scaling law.

%e now present a more quantitative, albeit incomplete,
study of the three phases. We define for further reference
the sets

J(n)(a) = (I(n) +ar'"' ),1
1 1

where a is an arbitrary scaling factor, and the usual
definition of the (pointwise} sum of two sets is used. The
definition (Bl) shows that J'"+"(a) is the union of the
following four sets: aJ'"'(a), 1 —)(t+((tJ'"'(a),

a(1 —
(M} A+a(M ( ) ap

a+I + a+1' A.

and
r

1 —
((t ah+(u ( ) aA,

1+a 1+a p

Moreover, I'2"' =2J'"'(1).
It can be shown that phase I is exactly given by the ine-

qualities: 2A, +(M~ 1; A, +2((t~ l. Indeed, it is easy to
prove by recursion that

J(n)( 1 )
—J(n) —J(n) P —[0 1 ]

p

if both above inequalities hold, and that the band number
N diverges with the iteration label n if either of those ine-
qualities is violated. The boundary between phases II
and III is much more difficult to locate in an exact way.
A set of recursive inequalities for the widths 8'")(a) of
the sets J'"'(a) can be derived, which shows, in particu-
lar, that 8(")(1) is bounded by (A,

'~ +p, '
) ". Hence,

phase III contains at least the region defined by
A,

'~ +((t'~ & 1. This lower bound for phase III intersects
the bissectrix at A. =@=—,', whereas the transition is
known to occur for A, =p= —,'. It is quite possible that the
actual boundary between phases II and III exhibits a
richer structure than a single smooth curve.

'D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys.
Rev. Lett. 53, 1951 (1984).

2D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477
(1984).

~P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals

(World-Scientific, Singapore, 1987).
4C. Godreche, J. M. Luck, and H. Orland, J. Stat. Phys. 45, 777

(1986).
~Y. Achiam, T. C. Lubensky, and E. W. Marshall, Phys. Rev. B

33, 6460 (1986).
J. M. Luck, J. Phys. A 20, 1259 (1987).

7J. M. Luck and Th. M. Nieuwenhuizen, Europhys. Lett. 2, 257

(1986).
R. B.Stinchcombe, J. Phys. A 20, L251 (1987).
M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett.

50, 1870 (1983).
~OS. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984).

J. M. Luck and D. Petritis, J. Stat. Phys. 42, 289 (1986).
~ J. P. Lu, T. Odagaki, and J. L. Birman, Phys. Rev. B 33, 4809

(1986).
M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35,
1020 (1987).

' S. Evangelou, J. Phys. C 20, L295 (1987).
J. A. Ashraff and R. B. Stinchcombe, Phys. Rev. B 37, 5723
(1988).
J. A. Ashraff and R. B. Stinchcombe, Phys. Rev. B 39, 2670
(1989)~

'~R. Penrose, Math. Intell. 2, 32 (1979).
' R. M. Robinson (unpublished).
'9B. Grunbaum and G. C. Shephard, Tilings and Patterns (Free-

man, New York, 1986).
R. Merlin, K. Bajema, R. Clarke, F.-Y. Juang, and P. K.
Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985).

'K. Ueda and H. Tsunetsugu, Phys. Rev. Lett. 58, 1272 (1987).
W. A. Schwalm and M. K. Schwalm, Phys. Rev. B 37, 9524
(1988).
T. C. Choy, Phys. Rev. Lett. 55, 2915 (1985).

24T. Odagaki and D. Nguyen, Phys. Rev. B 33, 2184 (1986).
M. Kohmoto and B. Sutherland, Phys. Rev. Lett. 56, 2740
(1986).
M. Kohmoto and B.Sutherland, Phys. Rev. B 34, 3849 (1986).

""7H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, J.
Phys. Soc. Jpn. 55, 1420 (1986).
V. Kumar and G. Athithan, Phys. Rev. B 35, 906 (1987).



DYNAMICAL PROPERTIES OF TWO-DIMENSIONAL QUASICRYSTALS 4329

N. Nishiguchi and T. Sakuma, Phys. Rev. B 38, 7370 (1988).
D. Levine and P. J. Steinhardt, Phys. Rev. B 34, 82 (1986).
A. Suto (unpublished).
B.Sutherland, Phys. Rev. B 34, 3904 (1986).
T. Tokihiro, T. Fujiwara, and M. Arai, Phys. Rev. B 38, 5981
(1988).
B.Simon, Adv. Appl. Math. 3, 463 (1982).
J. Bellissard, in Statistical Mechanics and Field Theory:
Mathematical Aspects, Vol. 257 of Lecture ¹tes in Physics

(Springer, Berlin, 1986).
V. Elser, Phys. Rev. B 32, 4892 (1985).

7A. Katz and M. Duneau, J. Phys. (Paris) 47, 181 (1986).
J. E. S. Socolar, P. J. Steinhardt, and D. Levine, Phys. Rev. B

32, 5547 (1985).
F. Gahler and J. Rhyner, J. Phys. A 19, 267 (1986).

~M. Gardner, Sci. Am. 236, 110 (1977).
D. Levine, J. Phys. (Paris) 46, C8-397 (1985).

42R. B.Stinchcombe (unpublished).
R. Alben, S. Kirkpatrick, and D. Beeman, Phys. Rev. B 15,
346 (1977).

~H. Patel and D. Sherrington, Phys. Rev. B 40, 11 185 (1989).
45A.-M. S. Tremblay and B. W. Southern, J. Phys. Lett. 44,

L843 (1983).
M.-A. Lemieux and A.-M. S. Tremblay, Phys. Rev. B 36, 1463
(1987).

47J. A. Ashraff, D. Phil. thesis, Oxford, 1989.












