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Upward curvature of H, 2 in high-T, superconductors: Possible evidence for s-d pairing

Robert Joynt
Department ofPhysics and Center for Applied Superconductivity, University of Wisconsin Madison,

1150 University Avenue, Madison, 8'iseonsin 53706
and Institute for Theoretical Physics, University of California Sa—nta Barbara, Santa Barbara, California 93106

(Received 18 May 1989; revised manuscript received 31 August 1989)

A mechanism is proposed to explain the upward curvature of the plot of thermodynamic H, 2

versus temperature in the high-T, superconductors, as observed in dc magnetization measurements.
If a multicomponent order parameter is assumed, the internal degrees of freedom of this parameter
change along the H, z(T) curve. In a superconductor with s-d mixing, a pure d wave at low fields

will turn into a superposition of s and d at high fields, with a corresponding change in slope of 0,2.

In a pure d-wave superconductor belonging to a two-dimensional representation, an orthorhombic
distortion can produce the curvature. At low fields the slope of the curve is dominated by coupling
to the orthorhombic distortion; at high fields the coupling of the supercurrent to the field is more

important. Thus the curvature in H, 2(T) can be interpreted as evidence for d-wave pairing or for a
mixture of s and d. The consequences of these two possibilities for other experiments are discussed.
In particular, the mixed s and d picture can be reconciled with penetration-depth measurements,
and therefore seems favored.

I. INTRODUCTION

A fundamental issue that bridges microscopic theory
and experimental phenomenology of high-T, supercon-
ductors is the symmetry of the pairing state. A number
of investigators have proposed on theoretical grounds
that d-wave pairing occurs, ' but there is presently no real
consensus on this. A second intriguing possibility is that
a mixture of s and d-wave-pairing occurs. In mean-field
theory, exact calculations and variational calculations,
it appears that a d wave is slightly lower in energy, and at
T, there would be no mixing, but at lower temperatures a
superposition of s and d-wave-states could have the
lowest energy. Experimental evidence for anisotropic
pairing is the nonexponential temperature dependence of
the Knight shift at low temperature. On the other hand,
the experimental temperature dependence of A, (T) at low
temperature seems to indicate a gap function without
nodes, as in ordinary s-wave BCS theory. In the heavy-
fermion materials, the temperature dependence of ther-
modynamic and transport properties at low temperature
has been very helpful in establishing the unconventional
nature of the pairing. In high-T, systems, disentangling
electronic and phononic contributions to these quantities
has made progress more difficult.

Because of this unsettled situation, it is important to
identify experiments that can reliably distinguish between
one-component and multiple-component superconduc-
tivity in the high-T, materials. In this paper, I propose
that the shape of the upper-critical-field curves can shed
light on this question. In particular, the upward curva-
ture of H, 2 versus temperature plots are adduced as evi-
dence for multicomponent behavior. Upward curvature
near the critical temperature in H, 2( T) has been observed
in both La-Sr-Cu-0 and Y-Ba-Cu-O. ' These are ac

determinations of H, 2 and the curvature has been con-
vincingly attributed to the onset of reversible behavior
due to Aux motion, which implies that it is not a thermo-
dynamic property that is being measured. However,
when H, 2 is taken from reversible dc magnetization mea-
surements on single crystals, ' the upward curvature is
still present, at least in Y-Ba-Cu-O. This method leaves
the sample in equilibrium, so the curvature is truly a
thermodynamic property. The theory proposed here of
the dc measurements, which involves d-wave pairing, is
complementary to the Aux creep theory of the ac mea-
surements. The apparent inconsistency with the penetra-
tion depth measurements will be discussed in detail in the
following.

The curved shape of the H, 2 curve near T, can occur
in layered superconductors. " This is usually understood
as a dimensional crossover when H is parallel to the lay-
ers. Proximity effects can also produce curvature when
H is perpendicular to the layers, ' but this appears always
to be a rather small effect. In Y-Ba-Cu-0 very substan-
tial curvature is observed for both directions of field rela-
tive to the Cu02 planes. It also occurs in the heavy-
fermion systems UPt3 (Ref. 13) and URu2Siz (Ref. 14).
Since these materials are thought to be unconventional
superconductors, this is suggestive. A theory of the effect
in these materials has recently been proposed. ' '

I consider two possibilities for the superconducting
state of the high-T, materials: a mixed s- and d-wave
state where both s and d components belong to a one-
dimensional representation, i.e., each is characterized by
a single complex order parameter; and a two-dimensional
d-wave state characterized by a two-component complex
vector. In both cases the symmetry breaking is described
by four real numbers rather than two, as in ordinary s-
wave BCS theory. I also qualitatively investigate the

41 4271 Qc1990 The American Physical Society



4272 ROBERT JOYNT 41

consequences of these two possibilities for penetration
depth and specific-heat measurements. Based on this
analysis it appears that only the s- and d-wave mixing
picture is consistent with present data. It is also pointed
to by microscopic considerations.

II. MIXED s- AND d-WAVE

First, a mixture of an s-wave and a d-wave state is
presented. The s-wave state belongs to the I

&
representa-

tion of the tetragonal point group, with basis function,
e.g. , cosk, +cosk, and a d-wave state belonging to the
I 3 representation with basis function, e.g., cosk„—cosk„.
Both I

&
and r3 are one-dimensional representations. For

a complete discussion of the possible symmetries of the
gap function, see the treatment of Sigrist and Rice, '

whose notation I follow, except that I consider only even,
spin-singlet representations. The complete gap would
have the form

f(k)=fd(cosk„—cosk )+f,(cosk„+cosk ) .

The I 3 representation is indicated by most theoretical
work on the strong-coupling Hubbard model of the high-
T, materials. It is very important to note that in the
large-U limit of this model, the I ] state is very nearly de-
generate tilth the I'& state because at half-filling an SU(2}
symmetry exists in the space of projected wave func-
tions. ' It is therefore natural to assume that the doped
system will show some admixture of 1, with the dom-
inant I 3 state.

I now compute H, 2 for the s-d case. The first step is to
construct the quadratic part of the free energy. For the
gradient terms this is not quite trivial. The operators

8 2e 8 2ep„= i +— A„and p = i +— A»

belong to the I 5 representation. (Here A is the vector
potential. } Because the decomposition

r, xr, xr, xr, =r, +r,+r,+r„
contains the identity representation once, there must be
precisely one term quadratic in the p, and linear in g,
and fd that is invariant under the point group. Adding
this term to the usual Ginzburg-Landau terms yields the
full quadratic free-energy density. Taking H=Hx, we
find

F, =a, (T T, ) I y, I'+ad(T—T, )I q,I'—
+K (Ip @ I +Ip»q I )+Kd(lp @dI +Ip»gdI

+K;(p.4,p.'Wd p, Ap,*W:+c '—) .

Thus, rather remarkably, although there is no coupling of
s and d to quadratic order in the absence of a field, the
field does produce such a coupling, and therefore the
mixing of s and d, while not affecting T„doesdefinitely
influence the upper critical field [or T, (H)]. We will as-
sume, following the microscopic considerations already
given, that Td & T, . Hence Td =T„the zero-field critical
temperature.

To determine H, 2, we must minimize the total free
energy; the phase boundary H, 2(T) is the curve along
which the minimum condensation free energy

y = J'd x F2(H, T) vanishes. To carry this out, it is con-
venient to define the creation and annihilation operators

p+ =(l/&2)(p„+ip ) and p =(l/&2)(p„ip»—),
which satisfy the commutation relation [p,p+]=l.
Here l is the magnetic length: l =Ac/2eH. The equa-
tions 5y /5$; =0 and 5y/5t/id =0 then give

a, l (T T, )g, —+K, ( 2p +p +1)1(,

+K.d(p'++p"- )Wd =o

adl (T Td }Qd+—Kd(2p+p +1)pd

+K,d(p+ +p )g, =0 .

Evidently the left-hand side is a Hermitian operator act-
ing on the state (P„Pz).We need to find the lowest ei-
genvalue, which is a function of H and T, and set it equal
to zero. We treat the problem in perturbation theory, as-
suming that I%',d &&EC, and E,d &&Ed. Then to zeroth or-
der the 1l, and gz satisfy uncoupled harmonic-oscillator
equations, and the ground states of the two are IO), and

IO)d in an occupation number representation, satis-
fying p IO), =0 and p IO) d =0 with eigenvalues

a, l (T T, )+K, —and adl (T T&)+Kd. T—hese would
give upper critical fields

a, Pic
H, 2= (T, —T)

2eK,

and

adamic

H,2= (Td —T},
2eEd

of which the larger of the two would be the actually ob-
served H, 2. These linear curves are in contradiction to
experiment, so (in the context of this theory) we may con-
clude that K,d&0. To first order in K,d, IO), couples
only to I2)d and IO)„couples only to I2), . The two
lowest eigenvalues are given by

—,'[adl (T Td)+Ed+a, l (T—T, )+5E, )——'[[ad—!(T Td)+Ed+a, l (T—T, )+5E, ] +4Kd—j'
and a similar expression with s~d. These eigenvalues are obtained by diagonalization in the two-dimensional subspace.
This is justified if Ed & E, . The upper-critical-field curves belonging to the two eigenvalues can cross at very high fields.
I will not consider this possibility —the data would theoretically show a kink but are not sufhcient to judge whether this
occurs.
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The H, 2 equation obtained by setting the aforementioned eigenvalue to zero is most simply written in the form

[adl (T T—
d )+Ed][SK,+a~l2(T T—, )]=K,z~.

As T~T„wefind from this equation

adA,
H, 2= (Td —T)=s(Td —T)

2eSC„

as before, rejecting the fact that there is no admixture of s wave as H ~0 along the H, 2 curve. For large H, the curve
is also linear: H, z=s, (T, —T), where s, =a,A', /10eK, . If ad/Kd &&a, /K„then we find upward curvature in H, 2.
The high-field H, 2 appears to extrapolate to a value of "T," that is less than the actual T, . This corresponds to the ac-
tual observations. A least-squares fit to the experimental data of Ref. 10 is given in Fig. 1, which yields parameter
values s =0.019 T/K, s, =1.92 T/K, and T, =91.57 K. The number of parameters is rather large and the curve does
not have enough features to pin many of them down. The fit is intended mainly to demonstrate concretely that the
theory contains the basic qualitative elements of the observations. There is particularly large error in the value of s, be-
cause there are not many points at low field. The surprising large ratio of s, to s is discussed in the following.

We now turn to the other direction, H in the a bplan-e. We take H=Hx; then P, and gd can be taken independent
of x. The free energy density becomes

F2=~, (T T, )lg,—I'+cd(T Td)lpga—l'+K, Ipy&, I'+K„p.&, I'+Ed Ipygd I'+Kd, lp, gd I' Kd(py—gp,"Pd+c c. ) .

This can be solved in a fashion analogous to the preceding case. Define annihilation and creation operators

a, =l(K„/4K,)' [p, +i(K, /K„)'~p ],
a, =l(K„/4E,)' [p, i(K,—/K„)'~p ],

and similarly for ad and ad. ~0), and ~0)d are defined by a, ~0), =ad~0)d=0, and so on. This case differs from the
preceding one in that

(K,K, /K„K„)'~'v'2
0 0)d= &1

[(K /K )' +(K /K~, )' ]' '

rather than ~0), and ~0)d having the same functional form. We abbreviate this as, (0~0)d =c. The variational equa-
tions for this case are

a, l (T T, )g, +V'K—,K„(2a,a, +1)g, + ,'K dV'Kd, /K—d(ad ad) fd=0- ,

adl (T Td )fd+V K—dKdz(2adad+ 1 )pd+ ,'K,dV K,z/K—,(a, —a, ) Q, =0 .

In the first approximation, this problem may be solved in the lowest Landau level alone, the space spanned by

I ~0)„~0)d ]. The secular equation for these two levels is

a, l (T T, )+V'K, K„—, cK,dV Kd,—/Kd =0.
cK,d V'K„/K—„adI ( T Td ) +V Kd Kd—,

This leads to a critical-field equation similar to that given above for H =Hz:

[adl (T Td )+V KdKd,—][a,l (T T, )+V K,K„]—=K~dc QKd, K„/KdK, . (2)

As

adACT~ Td, H, 2= ( Td —T ) =sd ( Td —T ) .
2eV KdK„

(2). The least-squares fit determines the parameters:
sd =0.128 T/K, s„=14.3 T/K, and T, =91.44 K, with sd
particularly inaccurate. Again the ratio of high-field to
low-field slopes is very large.

Again there is no s admixture in this limit. For large H,
H, 2

=s ( T, —T ), where for small K,d

s„= a, /V K,K„.
2e

In Fig. 1, experimental data from Ref. 10 for H, 2 with H
in the a bplane is plotted -together with H, 2(T) from Eq.

The five fitted parameters s, s,sd, s, and T„,together
with Td =92.5 K, are not enough to determine the nine
parameters appearing in the free energy. Nevertheless,
some statements can be made. The low-field slopes s and
sz satisfy the relation s/sd=V Kd, /Kd, and we find
I( d, /Ed =0.023. At high field, assuming that the slope is
dominated by the s-wave component, one finds an ap-
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FIG. 1. Thermodynamic upper-critical field vs temperature
for Y-Ba-Cu-O. The circles (squares) are data for 0 along (per-
pendicular to) the c axis, taken from Ref. 8. The solid curves
are theoretical, as described in the text.

proximate relation s, /s„=+K»/K„so that K»/K,
=0.017. These are essentially effective-mass ratios and
only confirm once more the very large crystalline anisot-
ropy. T, is given as 91.57 and 91.44 from the two
curves —this discrepancy is within the experimental er-
ror. As a whole, the difference between T, and T, is a
good measure of the difference between the tendencies to
s- and d-wave superconductivity. A good experimental
test of the s-d mixing hypothesis would be to measure the
offset between the actual T, and the "T," extrapolated
from the high-field curve as a function of doping. At
zero doping, s and d are degenerate, so the offset should
increase as the doping level increases.

The most striking aspect of the data is the very large
change in slope from low to high fields. If we again as-
sume that this represents a crossover from d to s, this
would imply that the d coherence lengths are about ten
times greater than the very short s coherence lengths of
about 16 A (a bp-lane) and 3 A (c axis). ' Such a cross-
over picture is dictated by the rather linear behavior of
H, 2 at high fields. The Ginzburg-Landau theory does not
suggest any explanation for the mismatch of d and s
coherence lengths given in the a bpl-ane by Kd /ad T, and

K, /a, T„respectively. The coherence length that is usu-

ally quoted would be identified here with the s coherence
length and is anomalously short, as is well known. The d
coherence length, greater than 100 A, has a more conven-
tional magnitude.

III. TWO-DIMENSIONAL PURE d-WAVE STATE

Second, I consider the two-dimensional I 5 representa-
tion with basis functions, e.g., sink, sink and sink, sink .
This is most analogous to states that have been proposed
for Upt3 and URu2Si2. Since these systems are known to
be multicomponent superconductors and also have up-
ward curvature in their critical fields, they form a natural
basis for comparison. However, the mechanism that
gives upward curvature in H, 2 is rather different in the s-
d mixing and in the I 5 cases, as we shall see.

We must again construct the invariant free energy.
The gradient operators [p„,p~ ) belong to I ~, so gradient
terms in the free energy will transform as I 5XI"5XI 5

X I s, whose decomposition is 4(I, + I 2+ I 3+ I 4). Only
the 41, terms are admissible invariants. To be consistent
with Ref. 19, I choose a notation in which these are pro-
portional to E, , E2, E3, and E, . The quadratic free-
energy density for an arbitrary Geld direction is' '

F2 =&a( T To@ g*+ g—(K)p; q/p;"qj*+K2p; qpj'P&'+K3p; &Jp,"q;)+K4 g Ip, q; '+K5 g Ip; g; I'+~(
I y. ' —

Iyy I').

Here the indices i and j run over the Cartesian components x and y of the basal plane. g has two complex components:
f=(P„,g, ). A small correction proportional to 5 has been added to take into account the orthorhombic distortion.
This shifts the critical temperature: T, =TO+ 5I/ao. One should note that similar results would be obtained from
some other multicomponent forms, including p wave.

I now compute H, 2 for this two-dimensional case.
Case 1:H=Hz. Now [p„p]= i/I, wh—ere t =Pic/2eH Fz simplifie. s to

@*+fi(lg I Igyl )+K(lp 0 I +Ipygyl )+K)(p 0yp*0y+pyg py y*)

+K2(p 4p 0 +p 0 p 4)+K3(p 0 p P +p 0 p

where K=K, +K2+K3+K5. We minimize this in two stages, a simple generalization of the Abrikosov procedure.
First, ' define g+=(1/&2)(P +if ) and p+ =(1 &/2)(p„+ip ). Then choose P+ and g in the lowest Landau level:

p g+ =p 1(t =0. This leads to a total free energy

r= fd'~[~.(T T.)(ly. l'+I@—I')+fi(q. y +q:y')+(K, +K, +K, )lq. l'/i'+(K, +K, +K, )Iq I'/I').

Second, diagonalize the quadratic form and set the lowest eigenvalue (which is a function of H and Q equal to zero,
yielding H, 2( T):
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ao(T T—o)+ (K+Ki )—eH
'2

(K~ K—i ) +5
1/2

=0. (3)

As a function of H and T, this is essentially the same as (1). At T„we find a slope dH—,i Id T
~
z.

C

=s' =aoiiic /e(K+ K i ). This crosses over to the larger value

dH—,i/dT aortic le(K+K, —~Ki —K3 ~
) =s,',

when H ))Ac 5/e ~Ki K3—
~. Hence H, z( T) shows upward curvature in this case as well, but only if 5%0—it is a conse-

quence of the orthorhombic distortion. When 5 is small, the curved portion is pushed closer to T, . Since Eq. (3) has
the same form as Eq. (1), the fit to the data is the same, and the same values are obtained for the parameters: s' =0.019
T/K, s,'=1.92 T/K, and ~5/ao~ =0.96 K.

Case 2: H=Hx, A= —zy. Now we choose f uniform in x, obtaining

Jd «[ao(T Tii)it g +5(10 I l@yI )+KIpygyI +KiIpyg I +K4(Ip P I +Ip @yI

In an untwinned crystal 5 has a definite sign, but in a twinned sample 5 will change sign across the boundary. I work
out the twinned case since this is important experimentally. The sign of 5 does not matter for H=Hz, because H, i de-
pended only on 5, but here it has an effect and the differently oriented twins have different H, z values. Choosing g„
and l( in the lowest Landau level, we now find H, i(T) to be straight in one twin and piecewise straight in the other.
This is rather similar to Upt3. ' '

Pic
twin 1: H, z( T) = ~ max

2e+K,
5—ao(T To) ——5—ao(T To)—

twin 2: H, z(T)= Rc[—5+ao(T To)]/2e—+K,K4 .

In the first case the crossover is determined by the anisot-
ropy parameter 5.

Case 3: H in an arbitrary direction in the basal plane.
The phase boundary may be obtained following the
second part of the procedure for Case 1. There will al-
ways be curvature in H, z(T) as long as H is not along a
crystal axis. In the experiment of Ref. 10 the field direc-
tion is not known. The result for a 45' orientation is that
the two curves for the twins collapse on to a single one.
The curve is once more essentially as in Eq. (1),
specifically

[aol (T To)+2+K&K—4][aol (T T&)+2+KK—&]=5,
which gives a low-field slope

dH, 2
sd = — =acmic /2e QKK4,T=T

and a high-field slope

s„'=aofic /2e(QKK4 QK, K4) . —

This quadratic equation for H can be solved and gives the
same curves as we obtained in Sec. II. The high-field
curve extrapolates back to To. Again the fit to the data is
as in Fig. 1.

It is evident that if H is in the basal plane, the mea-
sured curve will depend on experimental details. An
ideal resistance measurement would always give the
highest H, z and the curvature would depend strongly on
direction. This does seem to be observed in some
presently existing data. A magnetization measurement
may measure an average H, 2. This would always show
some curvature but not necessarily large anisotropy, since

I

the average phase boundary would tend to lie near the 45'
value. For H neither perpendicular nor parallel to the
basal plane, no exact solution exists, though some varia-
tional calculations have been carried out for similar prob-
lems.

The physical mechanism underlying the unusual shape
of the H, i curve for the pure d-wave curve is very simple.
At high fields the internal orientation (in f space) is
determined by its relationship to the field direction. If
H =Hz, then the angular momentum of the Cooper pair
(in the direction itiX i'') will tend to align or antialign
(depending on the sign of Kz —K&) with the field. The
slope of the curve is determined by the energy of the cou-
pling of the angular momentum to the field. At very low
fields, on the other hand, the coupling to the orthorhom-
bic distortion locks the direction of f into one of the
crystal axes of the basal plane, and f no longer has a
definite angular momentum, leading to a quite different
coupling. %hen H is in the basal plane, a similar
phenomenon is at work. Here the coupling of the field is
to the direction of iP itself. i' tends to point either per-
pendicular or parallel to H at high fields (depending on
the sign of Kz+K3). At low fields, the crossover to a re-

gime where the direction of tP is dominated by 5 again
takes place. Very near T„the small anisotropy can play
an important role, because small energies are involved.

IV. DISCUSSION

There is no way to distinguish between the possibilities
of s-d mixing and two-dimensional d wave on the basis of
the H, 2 data in Y-Ba-Cu-O. The only numerical distinc-
tion is that the high field extrapolated T, should be the
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same in the x and z direction for the pure d wave. Exper-
imentally they are, in fact, close: 91.44 K and 91.57 K,
respectively, which is within the fitting and experimental
errors. The observations are therefore probably con-
sistent with both models. There is a simple way that fur-
ther experimentation could distinguish, however. Up-
ward curvature for the two-dimensional case is produced
only by the orthorhombic distortion, whereas the s and d
order parameters are split apart even in the absence of
such a distortion. For the tetragonal high-T, materials,
we expect no curvature in the H, 2 plots for pure d and
curvature for s-d mixing. Thus the question of the ex-
istence of curvature for tetragonal Bi-Sr-Ca-Cu-0 is
clearly very important for understanding the internal
structure of the order parameter. Experimentally, this
is completely unclear at this time, ' presumably again be-
cause of contributions to the resistance from the move-
ment of flux.

There is a second and very important difference be-
tween the I,—I 3 mixing and the I s states. The fourth-
order invariants for the I

&

—I 3 states are: '

P, I y, I', Pd I gd I', Pl g, qd I' and P,g(p,'qd'+c. c. ).
P,d )0, then the equilibrium P, and fd have a relative
phase of m/2. The gap function would be

P(it)= ~g, ~(cosk„+cosk»)+i~Pd ~(cosk„—cosk») .

(~g(k)~ )', the energy gap, vanishes only at isolated
points in the Brillouin zone. There will then be no nodes
on the Fermi surface and an activated quasiparticle den-
sity. This would be consistent with penetration depth
measurements, which indicate a very low density of
quasiparticles at low temperatures. The I

& representa-
tion does not have this property, since in order to give an
even representation, the basis functions must be odd un-
der reflection in k„e.g., have the form k,k„,k, k . Any
gap constructed from functions of this kind must have
nodes.

The Ginzburg-Landau theory of multicomponent su-
perconductors in a magnetic field is generally quite rich.
Unusual effects may be expected not only at the normal-
superconducting phase boundary, but also in the H —T
plane as a whole, where transitions can occur between su-
perconducting phases belonging to single representation
of the point group, but having different orientations in
the internal space. ' These orientations depend on the
direction of the external field, as we have seen, so the
phase boundaries are expected to move as the direction of
the field changes. This seems to be the case in UPt3.
These boundaries can be detected in ultrasound or mag-
netization measurements at finite fields. At zero field, ad-

ditional phase boundaries are also possible, and have
probably recently been observed in the specific heat of
UPt 2

The picture given here is based on the Ginzburg-
Landau theory of BCS superconductors. In view of pro-
posals that the usual picture of normal Fermi liquids
breaks down in high-T, materials, it is reasonable to
question whether the Ginzburg-Landau theory is really
valid in Y-Ba-Cu-O. In answer to this, it is important to
distinguish two cases. If the normal state is a "spin
liquid, " i.e., breaks no symmetry of the Hamiltonian, the
Ginzburg-Landau theory is justifiable on general
grounds, even if the Gorkov derivation from microscopic
theory would break down. If, on the other hand, the nor-
mal state breaks some subtle symmetry, such as parity,
then a full theory of the normal-superconducting phase
boundary would need to include coupling of the super-
conducting order parameter to the order parameter of
the "normal" state. This would be very analogous to the
case of the antiferromagnetic heavy fermion supercon-
ductors, and could also produce unusual H, 2 curves.

In summary, two physical ingredients are required to
produce the unusual H, 2 curves: an order parameter with
internal degrees of freedom and a mechanism to split any
possible degeneracy of these degrees of freedom. In the
two-dimensional I 5 case the splitting is produced by an
orthorhombic distortion. In the I,—I 3 case, the two are
nondegenerate at finite doping levels. Hence both can ex-
plain H, 2. However, based on overall phenomenology
and microscopic theory, the I

&

—I 3 s-d mixed phase is
the most likely candidate for the actual superconducting
state of Y-Ba-Cu-O.

The preceding discussion assumes that the upward cur-
vature in 8,2 is an intrinsic property of Y-Ba-Cu-O. Re-
cent magnetization data on single untwinned crystals
may indicate that this is not the case. This would sup-
port the hypothesis that H, 2 is strongly affected by twin
boundaries. '

ACKNOWLEDGMENTS

I am very grateful to G. Crabtree for discussions of
data prior to publication, and to D. C. Larbalestier, J. A.
Sauls, A. Malozemoff, Z. Tesanovic, and M. Beasley for
helpful discussions. This research was supported in part
by the National Science Foundation (NSF) under Grant
No. PHY82-17853, supplemented by funds from the Na-
tional Aeronautics and Space Administration, at the Uni-
versity of California at Santa Barbara. This research was
also supported by NSF Grant No. DMR-88128852 and
the Electric Power Research Institute.

Some early proposals were H. J. Schulz, Europhys. Lett. 4, 609
(1987); C. Gros, R. Joynt, and T M. Rice, Z. Phys. B 68, 425
(1987).

Arguments against d-wave pairing are given by, e.g., V. J. Em-
ery and G. Reiter, Phys. Rev. 8 38, 4547 (1988); and W. A.
Little, Science 242, 390 (1988).

G. Kotliar, Phys. Rev. B 37, 3664 (1988);D. Poilblanc, ibid. 39,
140 (1989).

4F. C. Zhang, C. Gros, T. M. Rice, and F. Shiba, Supercond.
Sci. Tech. 1, 36 (1988).

5M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk, Phys.
Rev. B 39, 7371 (1989).

L. Krusin-Elbaum, R. L. Greene, F. Holtzberg, A. P.
MalozemofF, and Y. Yeshurun, Phys. Rev. Lett. 62, 217
(1989).

Y. Hidaka, Y. Enomoto, M. Suzuki, M. Oda, and T. Mu-



41 UPWARD CURVATURE OF H, ~ IN HIGH-T, . . . 4277

rakami, Jpn. J. Appl. Phys. , Part 2, 26, L377 (1987).
T. K. Worthington, W. J. Gallagher, and T. R. Dinger, Phys.

Rev. Lett. 59, 1160 (1987). Also see Ref. 13.
A. P. Malozemoff, L. Krusin-Elbaum, D. C. Cronemeyer, Y.

Yeshurun, and F. Holtzberg, Phys. Rev. B 38, 7203 (1988).
' U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort,

and J. Z. Liu, Phys. Rev. Lett. 62, 1908 (1989).
' S. Ruggiero, T. Barbie, and M. Beasley, Phys. Rev. B 26, 4894

(1982).
' N. Theodorakis and Z. Tesanovic, Phys. Lett. A 132, 372

(1988); K. Biagi, V. Kogan, and J. Clem, Phys. Rev. B 32,
7165 (1985).

' B. S. Shivaram, T. F. Rosenbaum, and D. G. Hinks, Phys.
Rev. Lett. 57, 1259 (1986).

' W. K. Kwok, L. E. DeLong, G. W. Crabtree, D. J. Hinks, and
R. Joynt (unpublished).

' D. Hess, T. Tokuyasu, and J. A. Sauls, J. Phys. : Cond. Matter
1, 8135 (1989); K. Machida, M. Ozaki, and T. Ohmi, J. Phys.
Soc. Jpn. 58, 2244 (1989).

S. K. Sundaram and R. Joynt, Phys. Rev. B 40, 8780 (1989).
' M. Sigrist and T. M. Rice, Z. Phys. B 68, 9 (1987).

I. AfBeck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B
38, 745 (1988).

' R. Joynt, Supercond. Sci. Technol. 1, 210 (1988).
G. E. Volovik and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 88, 1412

(1985) [Sov. Phys. —JETP 61, 843 (1985)].
G. E. Volovik, J. Phys. C 21, L221 (1988). Other solutions

may be possible; see Ref. 19.
Y. Hidaka, Y. Enomoto, M. Suzuki, M. Oda, A. Katsui, and
T. Murakami, Jpn. J. Appl. Phys. , Part 2 26, L726 (1987); Y.
Iye, T. Tamegai, H. Takeya, and H. Takei, ibid. 26, L1057
(1987).

~3L. T. Burlachkov, Zh. Eksp. Teor. Fiz. 89, 1382 (1985) [Sov.
Phys. —JETP 62, 800 (1985)]; K. Scharnberg and R. A.
Klemm, Phys. Rev. Lett. 54, 2445 (1985); K. Machida, T.
Ohmi, and M. Ozaki, J. Phys. Soc. Jpn. 54, 1552 (1985).
T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, R. B. van
Dover, and J. V. Waszczak, Phys. Rev. B 38, 5102 (1988).

5T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V.
Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
D. Sahu, A. Langner, and T. F. George, Phys. Rev. B 38, 2466
(1988).
A. Schenstrom, M.-F. Xu, Y. Hong, D. Bein, M. Levy, B. K.
Sarma, S. Adenwalla, Z. Zhao, T. Tokuyasu, D. W. Hess, J.
B. Ketterson, J. A. Sauls, and D. G. Hinks, Phys. Rev. Lett.
62, 338 (1989).
R. A. Fisher, S. Kim, B.W. Woodfield, N. E. Phillips, L. Tail-
lefer, K. Hasselbach, J. Flouquet, A. L. Giorgi, and J. L.
Smith, Phys. Rev. Lett. 62, 1411 (1989).
X.-G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413
(1989)~

U. Welp and G. Crabtree (private communication).
A. A. Abrikosov, A. I. Buzdin, M. L. Kulic, and D. A.
Kuptsov, Supercond. Sci. Technol. 1, 260 (1989).


