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Temperature dependence of the phonon and roton excitations in liquid He
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We report high-precision neutron scattering measurements of the temperature dependence of the
phonon and roton excitations in liquid He at saturated vapor pressure in both the superfluid and
normal-fiuid phases. Two wave vectors were examined in detail: Q =0.4 A in the phonon region

0
and Q=1.925 A ' at the roton minimum. The goal is to understand excitations in Bose liquids by
determining the dynamic structure factor S(Q, tv) accurately in both phases. At Q =0.4 A ' the
sharp peak in S(Q, co) broadens with temperature T, but remains sharp and well defined in the nor-

mal phase (T & Ti ) up to T=3 K. The rate of increase of the width of S(Q, tv) shows a break at
Ti„but otherwise S(Q, tv) is similar in the two phases and a transition could not be identified
through S(Q, co). In contrast at Q=1.925 A ', the sharp component of S(Q, cv) disappears at Tz
and S(Q, cv) is very different above and below Ti. This behavior is documented and values of the
frequencies and linewidths at several temperatures are reported.

I. INTRODUCTION

Liquid He is the most readily accessible Bose quantum
liquid in nature. It exhibits both a superfluid (Bose bro-
ken symmetry) and a normal state. Neutron inelastic
scattering studies have provided detailed information' on
the dynamical response of this fundamental Bose liquid.
Nevertheless, the character and interpretation of the ex-
citations observed in both the superfluid and normal
phases, and especially the relation between the excita-
tions in the two phases, is not clear. ' In this paper we
present high-precision measurements of the scattered in-
tensity at wave vectors Q =0.4 A ' and Q =1.935 A
over a wide temperature range in both the superfluid and
normal phases. Q =0.4 A ' and Q =1.935 A ' lie in
the "phonon" and "roton" regions, respectively, of the
single excitation dispersion curve of the superfluid phase.
The aim is to display the difference in the dynamical
structure factor S (Q, co) in the two phases, in an attempt
to further understand the nature of the excitations.

In the superfluid phase (temperature T (T&=2. 17 K
at saturated vapor pressure (SVP), S(Q, co) contains a sin-

gle sharp peak superimposed on a broad background. '

The sharp peak may be interpreted as the collective
phonon-roton excitation in the fluid density proposed by
Landau and evaluated by Feynman and others.
Within the Green's function' ' or dielectric formula-
tion" ' of Bose fluids, the sharp peak may also be inter-
preted as excitation by the neutron of a single quasispar-
ticle, a single, dressed particle' having momentum

p =fiQ. The broad background may be interpreted as
multiphonon or multiquasiparticle excitation.

Indeed, the dielectric theory shows that S (Q, co) in the
superfluid phase can be represented as the sum of a
"singular" and a "regular" part. The singular part is

defined as that part which is proportional to the single-
particle Green's function Gi(Q, to). In this way, the
single-particle excitations can be observed in S(Q, co).
The appearance of G, (Q, co) in S(Q, co) is due to a finite
condensate fraction no. As Q~O, the poles of S(Q, co)

and G, (Q, ai) coincide. In the normal phase only the
regular part survives in S(Q, co) and single quasiparticle
excitations cannot be observed via S(Q, co). A central
motivation here is therefore to explore possible
differences in S(Q, co) in the superfluid and normal
phases. This is particularly interesting at lower Q where
the dielectric theory should be most applicable ' and
where recent, precise data are not available.

As temperature is increased in the superfluid phase, the
sharp peak broadens. ' This broadening may be well de-
scribed' by quasiparticle-quasiparticle scattering, as pro-
posed initially by Landau and Khalatnikov, ' at least at
low temperature. Precise data 2' at larger wave vectors
(Q & 1 A ') suggest that the sharp peak disappears en-
tirely from S(Q, to) when T is increased to Tz, leaving
only a broad S(Q, co) in the normal phase. This is partic-
ularly clear in the data in the "maxon" region of the
phonon-roton dispersion curve ( Q = l. 1 A ' ). ' This
disappearance, or abrupt change in S(Q, co), at T& sug-
gests that the sharp component in S(Q,ai) is a property
of the superfluid phase. In the normal phase, S (Q, co) is a
broad function of co and largely independent of tempera-
ture. As noted, in the dielectric theory, quasiparticle ex-
citation can no longer be observed in S(Q, co) in the nor-
mal phase where no=0.

On the basis of data at SVP for Q ~0.8 A ', Woods
and Svensson proposed that S(Q, co) could be decom-
posed into two parts, a superfluid component Sz(Q, co)

and a normal component Sz(Q, co). In the superfluid
phase, each component was weighted by the respective
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superfluid and normal densities ps( T) and p~( T) in the
form,

S(g,nI)=[ps(T)/p]Ss(g, co)+[p~(T)/p]S~(g, ro) .

Recently, Talbot et al. made precise measurements of
the temperature dependence of S(g, ro) over a wide range
of co in liquid He under 20 bars pressure. Two wave vec-
tors were studied, Q =1.13 and 2.03 A ', which corre-
spond to the maxon and roton regions of the phonon-
roton dispersion curve, respectively. As at SVP, the
sharp peak in S ( Q, aI ) either vanished or changed abrupt-
ly as T was increased through Tz. However, Talbot
et al. found that the Woods-Svensson decomposition,
with components proportional to ps(T) and p~(T), did
not describe the data accurately enough to have funda-
mental meaning. The important observation by Woods
and Svensson that S(g, co) changed abruptly at TI for
Q & 1 A ' was confirmed.

As noted, the temperature dependence of S ( Q, co ) at
smaller wave vectors ( Q (0.5 A '

) is not so precisely
determined. For 0.2(Q(0.5 A ', Woods and Cow-
ley and Woods observed that the one-phonon line shape
changed little on passing from the superfluid to the nor-
mal phase. The phonon linewidths increased sharply
with T for T just below Tz, but they continued to in-
crease with T for T & Tz. These observations are in
marked contrast to the temperature dependence at larger
wave vectors. Is this a real effect in which S(g, nI) for
Q 0.5 A is similar in the two phases, while at higher Q,
S(g, co) is quite different?

Since the measurements of Cowley and Woods, there
have been significant improvements in signal intensity
and instrumental resolution which permit a more precise
determination of S(g, co), especially of the linewidth.
Our purpose here is to present new data at Q =0.4 A
and to explore the temperature dependence of S(Q, ro)
and the Woods-Svensson decomposition. We also
present new precise data at the roton wave vector
Q= 1.935 A ' for comparison.

The experiment and analysis of data are discussed in
Secs. II and III. The results for Q =0.4 and 1.935 A
are presented in Secs. IV and V. The data are discussed
and compared with theory in Sec. VI.
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1.127 THz (1 THz=4. 135 meV=47. 99 K). Collimation
of 60':60':60' was used since the neutron intensity is low,
even on a high-flux instrument. With these conditions
the experitnental (incoherent scattering) resolution [full
width at half-maximum (FWHM)] was 0.036 THz (1.73
K) and the phonon linewidth (measured FWHM) at the
lowest temperature (1.35 K) was 0.044 THz (2.11 K).
The order-of-magnitude larger roton structure factor per-
mitted higher instrumental resolution; 30' collimation
was used throughout, with a fixed incident energy of
0.913 THz. In this configuration the experimental roton
linewidth (FWHM) at 1.23 K was 0.015 THz (0.72 K).

The high-purity 4He sample (of volume approximately
40 cm ) was condensed into an aluminum cell of a diame-
ter of 3 cm containing vertically spaced cadmium discs, 1

cm apart, to minimize multiple scattering effects. The
sample cell was cooled in a helium flow cryostat and the
sample temperature measured by a calibrated carbon
resistor. "Empty-cell" measurements were made at each
wave vector at the lowest temperatures investigated. In
Fig. 1 we present an example of the "full" and "empty"

II. EXPERIMENTAL DETAILS

The measurements of the dynamic form factor dis-
cussed here were made using the IN12 cold-neutron
triple-axis crystal spectrometer at the high-flux reactor of
the Institute Laue-Langevin (ILL), Grenoble, France.
This instrument is situated on a neutron guide tube from
the ILL vertical cold source and thus has an enhanced
flux of long-wavelength neutrons. Pyrolytic graphite
(002) was used as a monochromator and analyzer for all
experiments, with a cooled beryllium filter to remove
higher-order neutrons. Because of the different energy
and wave vector ranges of the two series of measure-
ments, two different experimental configurations were
employed. For the Q =0.4 A ' experiments (and some
less complete determinations of Q =0.3 A '), the instru-
ment was operated with a

fixed
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FIG. l. Upper: empty-cell (0) and liquid He plus cell (Cl)
inelastic spectrum for the phonon wave vector (g =0.4 A
T =1.35 K). Lower: expanded view of multiphonon peak after
subtraction of the ce11 scattering. The solid line is a Gaussian fit
as described in the text.



4226 W. G. STIRLING AND H. R. GLYDE 41

0

spectra for the phonon wave vector Q =0.4 A '. As is
seen in Fig. 1, the inelastic spectrum is dominated by the
sharp one-phonon peak at 0.16 THz, with a much weaker
broad multiphonon peak at 0.41 THz; this latter feature
is shown with the empty-cell scattering subtracted on an
expanded scale in Fig. 1.

There is, in fact, little published data on the complete
scattering function (one-phonon peak plus, at higher en-

ergies, the multiphonon continuum} at small wave vec-
tors, other than that of Svensson et al. ' for Q =0.3
A '. In the present study, therefore, the widest energy
range that was kinematically possible was investigated at
small wave vectors. The present roton study concentrat-
ed on the peak, the dominant feature of the inelastic spec-
trum, since a wide range of co has been observed by
Woods and Svensson. At this wave vector the empty-
cell scattering was very weak and flat over the range of
the measurement.

III. DATA ANALYSIS

The empty-cell scattering was firstly subtracted from
the full spectra to give the net He scattering. Examples
of the resulting helium spectra are shown in Figs. 2 and
3.

To determine the instrumental resolution width, it was
assumed that the intrinsic width of the one-phonon (ro-
ton} line at T =1.35 K (T =1.23 K) was negligible. For
example, at Q =0.4 A ' and T =1.35 K the intrinsic
half-width at half-maximum (HWHM) of the one-phonon
line measured by Mezei and Stirling using neutron spin
echo techniques is approximately 0.8 X 10 THz. The
observed width here therefore represents the instrument
resolution width.

The one-phonon (roton) line at T=1.35 K (T = 1.23

Q=0.4A-i

7=1.35K

A t(g, co) =2
[co—co(Q, T)] +PQ, T)

PQ, T)

[co+co(g, T)] +I (Q, T)
(2)

is the corresponding one-phonon response function.
Here ntt(co) is the Bose factor for temperature T and fre-
quency co, Z(Q, T) is the one-phonon intensity, and
1 (Q, T) is the HWHM. This choice of analytic form for
S,(g, co) is discussed in detail in Ref. 22 and is expected
to be valid when P Q, T) is sufficiently small that the full
frequency-dependent I (Q, co, T) and co(g, co, T) can be

K) was fitted by least squares to a Gaussian function (tak-
en to represent the instrumental resolution function} tak-
ing account of the charging analyzer resolution, where
appropriate. The fitted functions are shown as the lines
of Figs. 2 and 3. This procedure yielded energies and full
widths of 0.161 (+0.001) and 0.044 (+0.002) THz for

Q =0.4 A ', and 0.179 (+0.0005) and 0.0153 (+0.0013)
THz for Q =1.925 A '. These Gaussians were used as
the instrumental resolution functions at all higher tem-
peratures.

The dynamic form factor was expressed as a sum of a
one-phonon part S ( Q, co) plus a multiphonon part

S (Q, ro) =S&(Q, co)+S~(Q,~),
in which SM(g, co) contains any possible interference
terms ' between the one and multiphonon components.
The one-phonon scattering function St(g, co) was
represented, as in the work of Talbot et al. , by a
Lorentzian function at both positive (neutron energy loss)
and negative (neutron energy gain) excitation energies.
S, ( Q, co ) is then written as

S&(g,co)= [ntt(co)+1]Z(Q, T)A&(g, co),
1

2~
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FIG. 2. Net He scattering after subtraction of empty-cell
scattering (Q =0.4 A ', T=1.35 K). The solid line is the re-

sult of a least-squares fit to two Gaussians as described in the
text.

FIG. 3. Net He scattering at the roton wave vector
(Q =1.925 A ', T=1.23 K). The solid line represents a
Gaussian fit.
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IV. PHONON RESULTS (Q =0.4 A ')

Although the bulk of the phonon data was determined
at a wave vector of 0.4 A ', a few measurements were
also made at 0.3 A '. Results for temperatures of 1.35
and 2.96 K at Q =0.3 A ' are displayed in Fig. 4 where
the large line broadening at the higher temperature is
clearly apparent.

Figures 5 and 6 summarize the inelastic scattering re-
sults for Q =0.4 A '. As the temperature is raised, the
phonon line broadens and its peak intensity is reduced,
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FIG. 4. Comparison of superfluid (T=1.35 K) and normal
fluid ( T =2.96 K) spectra for Q =0.3 A

well approximated by their on energy shell values [e.g.,
I (Q, cu, T) = I'(Q, T) at all co]. By combining the
Lorentzians, A&(Q, ro) can be written in the "harmonic
oscillator" function form often used to describe phonon
response functions. Thus the "Lorentzian'* and har-
monic oscillator functions are equivalent provided
co(Q, T) is interpreted as the phonon frequency in each
case and not the sum [co (Q, T)+ I (Q, T)]' . The func-
tions defined in Eqs. (1) and (2) were convoluted with a
Gaussian (instrumental resolution) function of unit area
and FWHM defined by the lowest temperature data, as
described above, and were fitted to the helium data.

For the phonon data, the multiphonon component
SM(Q, co) was modeled by a normalized Gaussian func-
tion Gsr(Q, ro) with peak height scaled by the appropriate
temperature factor of Eq. (1), SM(Q, co) =[ns(co)
+1]Gsr(Q, co). Since the width of G~(Q, co) was large,
instrument resolution effects were not removed.

In practice, the final fitted one-phonon parameters
were only weakly dependent on the particular form used
to describe the multiphoton continuum. For the roton
data the weak multiphoton scattering was considered as a
small temperature-independent "background"; this
simplification has little effect on the one-phonon parame-
ters extracted by the fitting procedure. The fit of
S~(Q, cu) to the multiphonon scattering at Q =0.4 A
is shown in Fig. 1.

ps( ~) px(
S(Q, ru) = Ss(Q, ru)+ S~(Q, ru) .

p
'

p
(3)

In the normal phase where p&=p, S(Q, co) reduces to
Sz(Q, ro). To explore the WS model for Q =0.4 A ', we
determined S~(Q, ro) as S~(Q,co)=S(Q,co) for T=2.32
K. We denote this as S~(Q, co). In the superfiuid phase
where both components of S(Q, co) contribute, we deter-
mined [ps(T) Ip]Ss(Q, ro) as

while the peak position remains essentially constant.
The full lines in Figs. 5 and 6 represent the "best-fit"

convolutions of Gaussian and Lorentzian functions as de-
scribed above in Sec. III. The simple Gaussian. model for
the multiphonon continuum peak introduced in Sec. III
describes this part of the spectrum rather well, except at
the highest temperature (3.94 K) where multiphonon
scattering has largely disappeared as a contribution dis-
tinguishable from S, (Q, ro). Taken overall, the fit of the
simple two-component model to the observed spectra is
very satisfactory.

The phonon parameters obtained in this manner are
presented in Fig. 7. The phonon frequency is seen to be
largely independent of temperature, although there may
be a slight increase just below T&. At about 4 K there is
an apparent "softening" (somewhat exaggerated by the
suppressed zero of the lower frame of Fig. 7); inspection
of Fig. 6 suggests that this is indeed a real effect as there
is a significant shift of intensity to lower frequency be-
tween 3 and 4 K. The half-width at half-maximum I of
A, (Q, co) increases smoothly through the A, point with lit-
tle sign of any discontinuity, although the rate of increase
decreases above the transition. We note that a small sys-
tematic error is introduced in our analysis since we have
used the 1.35-K linewidth as a measure of the instrumen-
tal broadening. However, the work of Mezei and Stir-
ling, which concentrated on temperatures below 1.7 K,
has shown that the HWHM at 1.35 K for the wave vec-
tor considered is less than 0.001 THz, producing a negli-
gible effect on the phonon widths extracted. Finally, Fig.
7 shows that the one-phonon intensity also shows little
evidence for a discontinuity at the A, point. So there is
indeed little evidence for a qualitative change in the form
of S(Q, co) at or near the A. point. To further support this
contention, we compare spectra just below (2.04 K) and
just above T (2.32 K) in Fig. 8. The only significant
difference is in the peak intensity, while there is a slight
shift to higher frequency just above T& as seen also in

Fig. 7.
Above the A, point the spectra at 2.24, 2.32, 2.56, and

2.96, are similar, except for a slight increase in width
with temperature and some increase in scatter of the data
in the peak region with temperature. The similarity is
displayed in Fig. 9 where a low temperature spectrum is
included for comparison. As noted, the T =3.94 K spec-
trum is significantly displaced toward lower frequency.

In the Woods-Svensson (WS) model, S(Q, co) is ex-
pressed as a sum of a superAuid and normal component



4228 W. G. STIRLING AND H. R. GLYDE 41

[ps( T)/p]Ss(Q m):—S(Q, co) — Sg(Q, ~)

p~( T)
=S&(Q,~)— px( T)

S& (Q, co)+ [n&(co)+1]— [ns(co)+1] G~(Q, co),
p

(4)

where we have used S(Q,co)=S,(Q, co)+Ssc(Q, co) and
SM(Q, co)=[ns(co)+1]GM(Q, co). The Ss(Q, co) deter-
mined in this way is dominated by the one-phonon parts
of S(Q, co). In the co range where G(Q, co) is significant,

I

ns(co) and ns(co) are negligible so that the second term
reduces to [ I —[pz(T)/p]I Gsr(Q, co). This term serves

simply to add a multiphonon component as T decreases
below Tz, w'hich may or may not be meaningful.
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FIG. 5. Temperature dependence of the phonon spectrum (Q =0.4 A '). The solid lines are the fitted Lorentzian convolutions as

described in the text.
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The resulting instrument resolution broadened

[ps(T)lp]S&(Q, co) is shown in Fig. 10. For the lowest
temperatures the ratio of normal to superfluid densities is
relatively small (0.06 for T = l. 35 K) so Ss is only slight-

ly different from the total S,. At higher temperatures,
however, the superfiuid component Sz consists of a sharp
peak which goes slightly negative in the wings, indicating
that too much intensity has been subtracted. Although
this effect is small, of the same order of magnitude as the
scatter in the low intensity data points, we believe the net

negative intensity suggests that Ss(Q, c0) is not physically
meaningful. We have also made the subtraction via the
intrinsic S(Q, co) (not resolution broadened) using Eq. (4)
and the data in Table I and obtained similar negative in-
tensity in the wings. As in our previous study, we find
that (3) is not an accurate enough description to have
compelling fundamental meaning. In addition, the
present data at Q =0.4 A ' do not suggest a priori a
decomposition of the form (3).
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FIG. 9. Comparison of the phonon spectrum (Q =0.4 A ')
above Tq, with the lowest temperature ( T = 1.35 K) result.

FIG. 7. Fitting parameters co(Q, T), I (Q, T), and Z(Q, T) of
Eq. (2) for the phonon spectra (Q =0.4 A '). The dashed line

shows the Gaussian resolution width I G used in the convolu-
tion procedure. The solid lines are previous half-widths at half-

maximum [I (Q, T)] observed by Cowley and Woods (Ref. 24)
and Mezei and Stirling (Ref. 25).
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FIG. 8. Comparison of the phonon spectrum (Q =0.4 A )

just below Ti (2.04K; 0) and just above T» (2.32 K; (&).

V. ROTON RESULTS (Q =1.925 A ')

The observed scattering intensity at the roton wave
vector is displayed in Figs. 11 and 12. The solid lines are
fits of Eqs. (I) and (2) to the data convoluted with a
Gaussian to represent the instrument resolution as dis-
cussed in Sec. III.

As observed in previous studies, the roton linewidth in-
creases and the roton peak intensity drops rapidly with
increasing T for T ( T&. The increase in the linewidth is
particularly rapid in the temperature range just below
Tx. The rapid change in character of the scattered inten-
sity just below T& is displayed in Fig. 13 where the scat-
tered intensity at T=1.79, 2.02, 2.09, and 2.17 K are
compared. It is clear that there is a qualitative change in
the inelastic spectrum between 2.09 and 2.17 K. In the
superfluid phase there remains an identifiable peak in the
scattered intensity which has disappeared at T&. Above
T& there is relatively little change in the shape of the ob-
served scattering intensity with temperature, although
the frequency m(Q, T) decreases significantly and the
linewidth I (Q, T) continues to increase as T is increased
above T&. The similarity of the observed intensity at all
temperatures in the normal phase above Tz is displayed
in Fig. 14, where the spectra at 2.33, 2.48, and 2.96 K are
compared. In general, the shape of the scattered intensi-
ty is quite different in the superAuid and normal phases,
particularly in its temperature dependence.
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As seen from Figs. 11 and 12, the fitted S, (Q, co} of
Eqs. (1) and (2) provide a very satisfactory description of
the temperature dependence of the scattering intensity.
A single Lorentzian function was also fitted to the data
and, while providing a reasonable fit at low and high tern-
peratures, this form was unsatisfactory between 1.93 and
2.33 K. The roton parameters Z(Q, T), co(Q, T), and
I (Q, T) obtained using Eqs. (1) and (2) are shown in Fig.
15. The co(Q, T) and I (Q, T) reported here agree well
with previous measurements. For example, the roton
HWHM at 1.37 K found here is 0.1 K, while Mezei re-
ports 0.11 K at T =1.4 K. Comparing Fig. 7 and Fig. 15
we see that the roton linewidth increases significantly
more rapidly with temperature than does the phonon
line width. Indeed, at T& and above, the spectral

0
linewidth at Q =1.925 A ' is approximately three times
greater than the linewidth at Q =0.4 A ', whereas at
T=1 K both lines are extremely narrow. Below T& the
roton co(Q, T) also decreases with increasing T (a fre-
quency shift 6=[co(Q, T) co(Q, T—=O K)] spiv(T))
(Refs. 19 and 27), while the phonon co(Q, T) is essentially
independent of T. In the normal phase the temperature
dependence of co(Q, T}at Q =1.925 and 0.4 A ' is quite
difFerent. In particular, at Q =0.4 A ' the ratio of
I'(Q, T)/co(Q, T) in the normal phase is sufficiently small
that the scattered intensity can reasonably be attributed
to a single collective excitation. This is not the case at
the roton wave vector.
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FIG. 10. Resolution broadened values of pz(T)lp)S&(Q, co)

obtained by subtracting a "normal fluid component" from the
superfluid phase phonon spectra (Q =0.4 A '), as described in

the text.

To obtain the energies co(Q) and inverse lifetimes I (Q)
we fitted the response function A, (Q, co) in (2) to the in-
trinsic one-phonon part of the data. This A, (Q, co) is the
exact response function' for a boson (a Bose quasiparti-
cle or phonon) in which the self energy X(Q, co)
=b,(Q, co) —iI (Q, co) is approximated by its "on-shell"
value X(Q, co }=X[Q, co( Q) ]. In this approximation, X be-
comes independent of frequency and the full' A, (Q, co)
reduces to (2) in which co(Q)=co (Q)+b[Q, co(Q)],
I (Q)=I [Q,co(Q)], and coo(Q) is the noninteracting bo-
son energy.

By combining the two Lorentzians in (2), A, (Q, co)
takes the form

8col(Q)co(Q)

t
~' —[~'(Q)+ r'(Q)] I'+4~'r(Q)' (5)

Equation (5) is often referred to as the harmonic oscilla-
tor (HO) function. The Lorentzian (2), which has a
Stokes and anti-Stokes term, is clearly the same as the
HO function. However, in using (5) the sum
E (Q) =co (Q)+I (Q) is often interpreted as the phonon
energy. The relation E (Q) =co (Q)+ I (Q) may be used
to relate the present co(Q) in Table I to the values E(Q)
quoted by Tarvin and Passell for the roton energy.
Given the fundamental nature of (2), we believe co(Q) is
the most appropriate energy. However, when S(Q,co) is
very broad and A, (Q, co) is needed over a wide range of
co, defining a frequency-independent co(Q) and 1 (Q) may



4232 %'. G. STIRLING AND H. R. GLYDE 41

not be meaningful.
The present half-width I (Q) at Q =0.4 A ' is com-

pared with the values quoted by Cowley and Woods
and by Mezei and Stirling in Fig. 7. The values quoted
by Cowley and Woods include the instrument resolu-
tion and are therefore larger than the present values. The
present values at low T are larger than those quoted by
Mezei and Stirling. We believe this is because the
present instrument resolution I G is much larger than the

intrinsic 1(Q) at low T, which makes is difficult to ex-
tract a sinall I (Q) with precision. At low T the Mezei
and Stirling values are more reliable.

In Fig. 16 we compare the present I (Q) for the roton
with those obtained by Woods and Svensson At SVP
and by Talbot et al. at 20 bar pressure. The present
I (Q) agree with the WS values at low T but are larger at
higher T [T near T&]. The present I (Q) are larger be-
cause we have fitted (2) to the whole of the one-phonon
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FIG. 11. Temperature dependence of the roton spectrum (Q =0.1925 A '). The solid lines are the fitted Lorentzian couvoutions
as described in the text.
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peak rather than that part of it identified by WS as the
one-phonon peak in the superfluid component of S ( Q, co).
The present analysis is similar to the simple subtraction
method used by Talbot et al. If the interpretation dis-
cussed in Sec. VI that the sharp component of S(Q, co)
for the roton arises from single quasiparticle excitation is
indeed correct, then the lifetimes extracted by WS may be
a better representation of the quasiparticle lifetime.

8. Comparison of normal liquid He
with other Suids

To interpret the observed scattering from normal He
we make comparisons with liquid He, heavier fluids, and
solid He. In Fig. 17 we compare our observed intensity
for normal He in the phonon region (Q =0.4 A ') and
T=2.32 K with S(Q, co) observed in liquid He at
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FIG. 12. As Fig. 11.
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a FWHM =21"=0. 1 THz for He and 0.05 THz for He.
Since the peak position and width ' in He is quite suc-
cessfully interpreted as a collective zero sound mode, it is
natural to interpret the peak in normal He in the same
way. Liquid Ne supports a well-defined collective density
excitation up to Q=0. 16 A ' but not3 for Q~0. 8
A '. Liquid Rb and other liquid metals support a
well-defined collective mode at Q =0.3 A ' (the FWHM
is approximately one-half the peak frequency), but the
peak is certainly gone by Q =1.0 A '. Historically' and
on the basis of these comparisons, the peak in S ( Q, co) in
normal 4He at Q =0.4 A ' may be interpreted as a col-
lective zero sound mode in the fluid density.

In Fig. 18 we compare the scattering intensity at
Q =1.13 A ' (maxon) and at Q =1.93 A ' (roton) from
normal He at p =20 bar at several temperatures with

S(Q,co) observed in liquid 3He at Q =1.2 and 2.0 A
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FIG. 13. Comparison of roton spectra (Q =1.925 A ')
below Tq and at T& (T=2.17 K). For clarity, some data are
presented twice.

Q =0.5 A ' and T =0.12 K by Scherm et al. The
peak in S (Q, E) in liquid He at v=0. 18 THz is identified
as scattering from the collective zero sound (phonon)
mode with spin Iluctuation scattering at lower v. The
width of the one-phonon peak is similar in the two cases;
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above Tz.

FIG. 15. Fitting parameters co(g, T), I (g, T), and Z(g, T) of
Eq. (2) for the roton spectra (Q =1.925 A '). The dashed line
shows the Gaussian resolution width used in the deconvolution
procedure. Results for the superQuid phase are also displayed
multiplied by 10; for comparison results of Mezei (Ref. 27) and
Landau and Khalatnikov (Ref. 19) are shown as the dot-dashed
line.
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Q =1.926 A ': open circles with error bar present values ob-
tained by fitting (2) to the whole of the "one-phonon" peak (see
text); open squares with error bar represent Woods and
Svensson (WS) values (Ref. 20) obtained by fitting to the one-
phonon peak showing intensity approximately proportional to
pz(Q, T); closed circles with error bar represent values at p =20
bar obtained by Talbot et aI. (Ref. 22) following the WS
analysis. Lines are the Landau-Khalatnikov (Ref. 19) theory.
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FIG. 17. S(Q, co) observed in liquid 'He at Q =0.5 A ' (Ref.
29) and in liquid He at Q =0.4 A ' (present).

The intensity observed in normal liquid He is largely
temperature independent. In liquid He between T =40
mK and 1.2 K, S(g,co) also differs little. Thus in normal
He and liquid He, S(g, co) is largely independent of

temperature. In He there is no collective excitation for
Q & 1.2 A '. Rather, S(g, co) represents broad scatter-
ing from particle-hole excitations. The scattering ob-
served at Q =1.13 A ' in normal liquid He is broader
than S(g, co) in He (i.e., FWHM=0. 6 THz in He com-
pared with FWHM=0. 4 THz in He}. To set the scale,
the zero sound mode width at Q = 1 A ' in He is
2I =0.2 THz and the width of a typical longitudinal
phonon midway in the Brillouin zone of bcc He (p =25
bar) is 2I =0.2S THz. ' These comparisons suggest
strongly that normal He does not support a collective
excitation at Q = 1. 1 A '. Rather, S(g, co) at Q = 1.13
A ' in normal He represents scattering from pairs of
single-particle excitations. Also, the data of Woods and
Svensson and of Talbot et aI. for T &T&, reproduced
here in Fig. 19, suggest that the sharp peak in S(g, co) in
the superfluid phase disappears at T=Tz leaving only
broad scattering. The situation is similar but not so clear
at the roton wave vector, chiefly because the roton energy
is so small. However, there is probably no collective

mode in normal He at the roton wave vector. On the
basis of their data and comparison with other fluids,
Pederson and Carneiro also suggest there is no collec-
tive excitation in normal He at the roton Q.

C. Some speculative remarks
0

The present data at Q =0.4 A ' and previous data for
Q &1.1 A ' show that the temperature dependence of
S(g, co) is quite different at these two Q values. At
Q50.4 A ', the peak in S(g,co) broadens gradually
with increasing T, but has the same basic shape in the
superfluid and normal phases. In the normal phase, the
peak remains well dered as expected for a collective
density mode. At Q & 1.1 A ' the sharp peak in
S(g,co), seen in the superfluid phase, apparently disap-
pears at T&. In the normal phase, S(g,co) is very broad,
which is characteristic of scattering from pairs (or high
multiples} of quasiparticles and no collective mode. We
make some speculative remarks relating this behavior to
microscopic theories of liquid He.

Landau, and Feynman and Cohen proposed that
superfluid He supports a collective excitation in the Quid
density p(r)= fdr e'~'p(g). This excitation appears as
the sharp component in S ( Q, co },
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TABLE I. One-phonon parameters appearing in the response function A, (g, co) of Eq. (2) at the
phonon (Q =0.4 A ') and roton (Q =1.925 A ') wave vectors.

1.35
1.72
1.89
1.95
2.04
2.08
2.14
2.24
2.32
2.56
2.95
3.94

co(Q, T) (THz)

0.161+0.001
0.161+0.0015
0.160
0.159
0.159
0.160
0.163
0.165+0.004
0.164
0.165
0.157
0.105+0.008

I (Q, T) (THz)

Phonon (Q =0.4 A ')

0.007(4)+0.002
0.011(1)
0.015(0)
0.023(6)
0.026(9)
0.031(4)
0.043(8)+0.006
0.045(0)
0.049(4)
0.061(0)
0.070(6)+0.011

Z(Q, T) (arb. units)

2.97+0.09
3.22
3.26
4.04
4.13
4.00
4.52+0.30
5.14
5.49
7.21
7.56+0.50

Roton (Q =1.925 A ')
1.23
1.37
1.51
1.72
1.79
1.93
2.02
2.09
2.17
2.33
2.48
2.96

0.1789+0.0005
0.1785+0.0005
0.1770
0.1739
0.1734
0.1671
0.1642
0.1603
0.1428+0.004
0.1048
0.0758
0.0249+0.015

0.002 +0.003
0.005
0.012(5)
0.0150
0.029
0.046
0.066
0.123 +0.010
0.183
0.223
0.26 +0.02

5.70+0. 15
6.44
7.60
7.54
8.64
9.90

11.3
16.4 +1.2
26.8
54.0

187.2 +200.0
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a macroscopic fraction Xo of the N atoms in the zero
momentum state (k =0) &o and ao may be replaced
by numbers (au ~k =0)=au ~k =0)=+No ~k =0) ).
The density operator therefore separates into two
parts p(g)=+No(ct&+ct &)+p'(Q), where p'(Q)
=g'k al, ctk+& involves particles above the condensate
(kAO) only. Substituting p(g) into (7), and the dynamic
susceptibility g separates into two parts

y(g, co)=no g A G tt(g, co)Att+ytt(g co)
aP

where

S(g, co) = — [n—tt(co)+1]Imp(g, co) .1

Here nz(co) is the Bose function and no=No/N. The
singular part y~ =noAGA is proportional to single-
particle Green's functions of the form G»(g, t)

i ( T—a&(t)a& (0) ). This comes from the first term of
p(g) and represents excitation of single quasiparticles
having momentum Q. The regular part is

yIt ( Q, t) = —i ( Tp'(Q, t)p' (Q, O) &,

I
I
I

0-

0-

0 ~I
-0.2 0 0.2 0.4 0.6 0.8

v (THz)

I.O I.2

FIG. 19. Temperature dependence of the net scattering in-
tensity from liquid He at p =20 bar and Q =1.13 A ', from
Talbot et al. (Ref. 22).

S ( Q, co ) = f dt e ' '( p( Q, T)p ( Q, 0) ) .=1

The corresponding dynamic susceptibility is

y(g, t)= i ( pT(g,—t)p (Q, O)) . (7)

Here p (Q)= gk ak+&ak is the density creation opera-+

tor which may be expressed as a coherent sum of particle
(ak+Q) and hole (ak) pair excitations. The collective
density excitation follows ' from the strong interaction
between the He atoms and Bose statistics. The tempera-
ture dependence of the collective mode was not fully dis-
cussed.

Alternatively, Bogolubov, Hugenholtz and Pines,
Gavoret and Nozieres, and the subsequent dielectric for-
mulation ' present a somewhat different view based on
Green's functions. ' The Bose broken symmetry and the
condensate play a central role. Specifically, when there is

which represents excitation of particle-hole pairs, involv-

ing atoms outside the condensate only.
The functions A (Q, co) are given by A (Q, co)

=[1—P (Q, co)] in which the P (Q, co) incorporates the
interference between scattering, which excites a single
particle (G &) and pairs of particles (yIt). The expres-
sion (8) is formally the same form as S ( Q, co) for phonons
in solids ' in which scattering from single phonons,
pairs of phonons, and one-two phonon interference terms
are retained.

The general result (8) has several interesting features'
which motivated this experiment. Within this descrip-
tion of superfluid He, S(Q, co) contains a singular part,
proportional to no, which involves excitation of a single
quasiparticle having wave vector Q. Thus any pole in the
single quasiparticle Green s function G tt(g, co) will be
observed in S(g, co) when no@0. Since no=No/N -0.1,
the intensity in S(g, co) resulting from ys may be small.
For T ) Tz, in the normal phase, the poles in G & can no
longer be observed in S ( g, co).

The y'R(g, co) is the dynamic susceptibility involving
quasiparticles above the condensate. As in liquid He
and heavier fiuids, gz ( g, co ) may display a collective
(sound) mode, at least at low Q. It is this mode in yz
[strictly in the total g(g, co)], which is discussed by Feyn-
man and evaluated in detail using correlated basis func-
tion methods. Both yz and yz can contain singular
structure arising from long-lived quasiparticles and a col-
lective density mode, respectively. Unfortunately, the
spectral shape of G tt, A(Q, co), and y„'(Q, co) is not
known for strongly interacting fluids. When both yz and

yz have sharp, singular structure, it may not be useful to
separate y into two parts.

Gavoret and Nozieres show that the total y(g, co) and
single-particle Green s functions in G&(g, co) have a single
common pole as Q~O. This occurs at frequency co=cQ
where c is the macroscopic sound velocity. Thus as
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Q~0 it is not meaningful to distinguish between single-
particle and collective density excitations —there is only
a single excitation at co=cQ, as shown by Bogolubov in

the dilute gas limit. As Q =0.4 A ' the observed
S (Q, co) in Figs. 5 and 6 is concentrated almost entirely in
a single peak with a very small tail reaching to higher co

This is true in both the superfluid and normal phases.
This single peak is most readily interpreted ' as due
chiefly to a collective mode in y„' at T & Tz and a collec-
tive mode in the total g for T )Tz. For T & Tz the in-

tensity due to y& must also lie in the same single peak.
Indeed, if Q =0.4 A ' may be regarded as low Q, then
we expect G& and g to peak at the same energy. The
present resolution width I G =1 K is certainly not small

enough to resolve two closely lying peaks, if G, and gz
peak at slightly different energies. Also, since no~0. 1

most of the observed intensity in the single peak is prob-
ably due chiefly to y„' rather than ys. On the basis of
comparison with liquid He and other fluids, we expect g
to show rather little temperature dependence.

In contrast, at the maxon and roton Q vectors, S ( Q, co)

consists of a sharp peak superimposed on a broad back-
ground in the superfluid phase. Particularly at Q =1.13
A ', a large fraction of the intensity lies in the broad
background (see Fig. 19). We might interpret the sharp
peak as the single quasiparticle peak of G in ys and the
broad background as due to gz. In this case y~ does not
contain a collective mode in the superfluid phase. As T is
increased, the sharp peak in S(Q, co) decreases in intensi-
ty. This is expected from (8) since ys may continue to
have sharp structure for T & T&, but the contribution to
g, which is what is observed by neutrons, decreases with
no( T) and vanishes at T) . At T & T) in the normal
phase we observe only y =yz which, from the discussion
in Sec. VI 8, does not appear to show a collective mode.
This interpretation suggests that y„' is broad and does
not have singular structure in both phases. In this case
the separation of y into gz and y„ is very useful and
offers a possible interpretation of the data not open to
other formulations. This picture, originally suggested by
Woods and Svensson, is especially attractive at
Q =1.13 A '. In the roton region the data are not so
clear because the roton energy is low, and above Tz it is
not clear whether y, has a collective mode or not. How-

ever, from Fig. 13 the sharp roton peak seen in the
superfluid phase does seem to disappear at Tz. Also, at
the roton Q we find I (Q, T}& co( Q, T) for T & Ti„when
(2} is fitted to the observed intensity. This is uncharac-
teristic of a weil-defined single mode suggesting the inten-
sity is not due to scattering from a single mode. This also
means that fitting (2), a single mode expression, to the ob-
served intensity is not meaningful for T ) T& at the roton

In this picture, the phonon and roton regions are
significantly different. The y contains a collective mode
at low Q but not for Q & l. 1 A '. At low Q the peak in

S(Q, co) is predominantly due to the collective mode in y.
As Q~0 it is meaningless to distinguish the peak in y
and G since there is only one mode having a single ener-
gy. At Q&1. 1 A ' the sharp peak in S(Q, co) for
T & T& is the quasiparticle peak in G. In this model
liquid He does not support a collective density mode at
higher Q. The sharp peak in S(Q, co) disappears at Ti
because G no longer contributes to S ( Q, co ) when

no( T) =0. Thus liquid He apparently behaves like a nor-
mal cold liquid in that it supports a collective density
mode at small wave vector and this mode dominates
S(Q,co). In addition, the existence of a finite no in the
superfluid phase means that single quasiparticle excita-
tions can be observed in S(Q, co) and these constitute the
sharp component of S(Q, co) in the superfiuid at larger
wavevectors. This interpretation will be elaborated fur-
ther in a forthcoming paper (Glyde and Griffin).
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