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Symmetries of the superconducting order parameters in the doped spin-liquid state
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We show that the Fermi surfaces of the doped holes in the spin-liquid state consist of pairs of
pockets separated by crystal momentum Q, in the low-doping limit. Due to the pocketlike structure
of the Fermi surface and the A-8 sublattice pairing, the spin-singlet superconducting order parame-
ters have unusual symmetry properties. The order parameters are found to have nontrivial quan-
tum numbers of 90' rotation and, sometimes, nonzero crystal momenta. The nonzero crystal mo-

menta carried by the order parameters can be detected by measuring the unusual values (e.g.,
he/4e) of the flux confined to various dislocations in superconducting thin films.

Many people believe that the spin fluctuations play an
important role in high-T, superconductors. Experiments
have established that the Cu spins form a spin-liquid state
in the superconducting phase. Thus it is very important
to understand the properties of doped holes in the spin-
liquid state in order to understand the basic properties of
the high-T, superconductors. The properties of the low-

energy spin fluctuations in the undoped samples have
been interpreted nicely in terms of the effective nonlinear
o. model. '

It was first suggested in Ref. 2 that there are two kinds
of holes in the [resonating-valence-bond (RVB-type)]
spin-liquid state. The holes on A sublattice and 8 sublat-
tice do not mix with each other, at least at low energies.
Later it is shown that the interactions between the spin
fluctuations and the doped holes in the spin-liquid state
can be described by an effective U(1) gauge interaction in
1+2 dimensions. A nonlinear o-model approach to
the quantum spin-liquid state (with holes) was first sug-
gested in Ref. 4. It was independently developed in Ref.
5 in greater details. The nonlinear o. model approach
only applies to the spin-liquid state with a spin-spin
correlation length much larger than the lattice spacing a.
To describe the spin-liquid state with short spin-spin
correlation length, a quantum dimer model is developed,
based on the RVB theory. ' Surprisingly, the quantum
dimer model approach ' and the nonlinear o. model ap-
proach ' give a very similar physical picture for the
spin-liquid state, despite the fact that the mathematical
appearance of the two approaches are very different. In
both approaches, the A holes and 8 holes are found to be
independent and carry opposite charges of the effective
U(1) gauge field. Thus they are attractive to each oth-
er. ' ' ' This attraction may be used to explain the high-
T, superconductivity. In Refs. 11 and 12, the problems
associated to finite hole concentration are addressed and
some interesting physical properties are derived. A dis-
cussion about quantum numbers of quasiparticles in the
spin-liquid state can be found in Ref. 13.

These works are for the time-reversal and parity-
symmetric spin-liquid state. The properties of time-
reversal and parity-broken (chiral) spin-liquid state are
discussed in Ref. 14. In this paper we are going to dis-

cuss the symmetry properties of the superconducting
state in time-reversal and parity-symmetric spin-liquid
state in the low-doping limit.

Assume at temperatures just above T, the doped holes
are described by the Fermi-liquid theory. As indicated in
Ref. 5 and 15, the Fermi surfaces are small pockets in the
low-doping limit. The Luttinger theorem is broken
down. Due to the pocket structure of the Fermi surfaces
and the A-8 sublattice pairing, the superconducting state
may have nontrivial symmetries. '

Let us first review and extend some results obtained in
Refs. 5 and 13. The dynamics of holes and spin fluctua-
tions in the continuum limit is described by the effective
Lagrangian (choosing the spin-wave velocity to be 1)
(Ref. 13),

+ IB 1 Bt IB + IBBi IB
t z

The unit vector n in (1) is the local antiferromagnetic
(AFM) order parameter that is chosen to be parallel to
the spins on the A sublattice. The local AFM order pa-
rameter can be defined if the spin-spin correlation length
is much larger than the lattice spacing.

If we fix n to be a constant, (1) can be regarded as the
effective theory of the spin-density-wave (SDW) state.

g~ and qB are fields that describe A sublattice and 8
sublattice holes near the top of the valence band. g~ and

gB are related to A sublattice and 8 sublattice electron
operators c~ and cB according to

—ik x0 A
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/BJ
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where ko is the rnornenturn at the top of the valence band
(for a detail discussion of ko, see Ref. 5 and 16) and

x„(xz)is the coordinate of A(B) sublattice. For the
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holes near the top of the valence band, the A holes (8
holes) have spin parallel (antiparallel) to n. ' ' ' There-
fore, i) „and i)ii in (1) further satisfy the following con-
straint:

charge and creates a long-range a„field, which results in
an infinity energy. Thus z and X fields alone do not corre-
spond to the physical quasiparticles.

The transformation T when acting on the new fields
takes the form:

i)„(1—n cr.)i)„=0,

riii(1+n. o )radii =0, (3) z~o' z, z ~ 0 z2 4 4 2

Xg Xg& Xg ~ (7)
which enforce the ri„(rishi ) field to have spin parallel (anti-
parallel) to n. In this paper we will allow n to fiuctuate
and study the spin-liquid state resulting from the orienta-
tion fiuctuations of n. Equation (3) describes the interac-
tion between the spin Auctuations and the doped holes.
Note that the effective Lagrangian (1) and the constraint
(3) respect the following symmetry:

n~ —n,
9A~ tB ~

'Qa~'9w .

(4)

+ Xw(B; &a; )Xa+—iXa(8, iao)Xa—
2m

+ Xii(B;+ia; )Xi+iXii(B, +iac )Xz
2m

where

+ (f„„)'
2@m

n z cTZ

The transformation (4) (denoted as T) is associated with
the transition by one lattice spacing.

When g in (1) is large enough, the fiuctuations of n
destroy the long-range AFM order. In this case we may
have a spin-liquid state with finite spin-spin correlation
length. In the CP' formalism the effective Lagrangian
describing the spin-liquid state is given by '

I.,~=, {(r)„ia„)zP —Xztz—1

2g

ap~ Qp

Using (6), one can check that (7) reproduces (4). Note
that according to (7) we have T =( —1)~ where q is the
z-charge operator. This seems inconsistent with (4).
However, z and X are not physical operators, i.e., they do
not generate physical states. When restricted to the
physical states (which have q =0) we do have T =1.
Therefore all the physical states have T=+1. We would
like to remark that (7) is not the most general realization
of T on the new fields. Since z and X are not physical
fields, we may include some phase factors on the right-
hand side of (7). Those phase factors do not change T
when restricted in the physical subspace (with zero z
charge). Notice that (5) is invariant under (7), which im-
plies that the spin-liquid state respects the translation
symmetry (by one lattice spacing).

Now let us discuss the T quantum numbers for various
physical quasiparticles. The spin-singlet z-z bound state

is described by z z, which transforms as z z~z z under
T. Thus z z is even under T. The spin triplet z-z* bound
state is given by z crz which transforms as

z crz~ —z crz. Thus z crz is odd under T. Similarly we
find that zX„+0.z*X~ have T=+1, respectively, and

X„Xiihave T=+1 (note X„andXii anticommute). Be-
cause T is related to the translation by one lattice spac-
ing, the preceding results can be translated into the crys-
tal momenta carried by the quasiparticles:

zz: k=O,

z oz: k=Q,

9A&

IB f

z]
z Xg
. 2.

'z'
1

(6)
k =2ko,

zX„+crz*X~: k =ko,

zXg —o z'Xii: k =ko+Q,

(8)

IB)

and a„is the efFective U(1) gauge field. X„andXii is the
operator for the holes in A and B sublattice, respectively.
They carry the same electric charge e and opposite z
charge —the charge for the effective gauge field a„.X~
and X~ are spin singlets. z describes the spin fluctUations,
which carries spin —,

' and zero electric charge.
Since the U(1) gauge field in 1+2 dimensions is

confining, the physical quasiparticles (with finite energies)
are z-charge neutral bound states: Xz-z, Xz-z*, Xz-Xq,
and z -z. Xz-z and Xz-z bound states correspond to
dressed electrons (holes), zt-z correspond to the spin wave
(with spin 1), and X„-Xiicorresponds to the electron pair.
A single z quantum (or X quantum) carries a nonzero z

where Q =(m/a, m/a ). The shift of ko comes from (2).
At the low-doping limit the fermionic quasiparticles in

the spin-liquid state are X-z bound states. According to
(8) they carry crystal momenta near ko and ko+ Q at low
energies. If the holes are described by the Fermi-liquid
theory, they form two small Fermi surfaces around ko
and ko+ Q.

In realistic models' the top of the valence band, some
times, may appear at ko=(ir/2a, O), in which case the
Fermi surfaces {in the spin-liquid state) are two pockets
near (n. /2a, O) and (O, m. /2a) [Fig. 1(a)]. For different
coupling constants, the top of the valence band may ap-
pear at ko=(n/2a, ir/2a) and ko=. ( m. /2a, m/2a) as-
well. ' In this case the Fermi surfaces are four pockets
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near (n. /2a, m/2a), (n/2a, —m/2a), (
—m/2a, rr/2a),

and ( —m /2a, —
m /2a ) [Fig. 1(b)]. In general, the

Fermi surfaces always appear in pairs separated by
momentum Q. This is another way to say that the A

holes and the 8 holes are independent (i.e., they do not
mix with each other). We would like to emphasize that
the holes here carry spin —,'. They are not the holons gA
and gB which carry spin 0. Our results are not about the
nonmixing of the unphysical particles gA and gB. What
we have shown is the nonmixing of the physical quasipar-
ticles zgA and o. z*gB. This is different from the non-

mixing of the A holons and the 8 holons suggested in
Ref. 2.

Now let us assume that the superconductivity is due to
the pairing induced by the spin (orientation) fiuctuations
in the spin-liquid state, i.e., by the attractive U(1) gauge
interaction between gA and yB. In this case the super-
conductivity can be regarded as the boson condensation
of the yAgB pairs, which at least gives the correct sym-

metry properties of the superconducting state. The
preceding assumption also implies that the superconduct-

FIG. 2. A quasiparticle in the spin-liquid state can be regard-
ed as a y quantum dressed by a cloud of a z quantum.

ing state must be spin singlet (y„y~ carriers zero spin).
The spin triplet superconducting states are very unlikely
because they must arise from the pairing between zyA
and o2z*yz. The spin (orientation) fiuctuations induce
little attractions between those z-charge neutral bound
states.

For the Fermi surfaces described in [Fig. 1(a)]
ko=(m. /a, 0) and Z„pz carry zero crystal momentum.
Under 90' rotation (around a site in A sublattice)
ko~(0, n. /a)=ko+Q. From (2) we find that

9A ~RA~ XA XA

IB ~ /B& +B ~B
(9)

under 90' rotation. Therefore yAyB is odd under 90' ro-
tation. The condensation of y„y~ leads to a nodeless d-

wave spin singlet superconducting state.
We can also derive the preceding symmetry properties

from the instability of the Fermi surfaces' in Fig. 1(a).
Let us first discuss the interactions between the doped
holes based on the effective theory (5). We may view the
doped hole as a y particle dressed by a cloud of z parti-
cles. We may view the doped hole as a g particle
dressed by a cloud of z particles. The quasiparticle (the
y-z bound state) has a size of order spin-spin correlation
length g (Fig. 2). The potential between two z charges q,

FIG. 1. The small circles represent the Fermi surfaces when
the top of the valence band is {a) at ko=(m/a, 0) (b) at
ko=(m/2a, n/2a) and ko=( —a/2a, m/2a).

FIG. 3. The pairing potentials between two doped holes, (1)
when the two holes on the same sublattice, (2) when the two
holes on the different sublattices and in the spin-triplet state, (3)
on the different sublattices and in the spin-singlet state.
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and q2 induced by the U(1) gauge field a„is given by

—
q & q2 ln

~
r

& r2—~
+const .yM

The interaction between two doped holes can be readily
calculated and the results are sketched in Fig. 3. The in-
teraction between an A hole and a 8 hole in spin-singlet
channel has to be treated separately. In this case the two
z quanta bounded to y„and y~ may annihilate. This
will reduce the energy of the hole pair by an amount of
order spin gap h. Therefore, there is a strong attraction

I

between an A hole and a 8 hole in the spin-singlet chan-
nel as plotted in Fig. 3. For simplicity, we will ignore all
other interactions except the interaction between A holes
and 8 holes in the spin-singlet channel. Mathematically
we assume that the potential between the holes in the
spin-singlet channel take the form

(10)

where f(i) is a positive smooth function, and the poten-
tial to be zero in the spin-triplet channel. In the momen-
tum space the interaction Hamiltonian is

Hi= g [C& C +I, V(q)CI, C q+I,
—Cz aC +I, V(q)CI, aC ~+I, ]

q, kl, k2

(C„icr'Ci, V(q)(Cq+I, i~'C, +I, ),
q, kl, k2

where C; is the quasiparticle operator

zg„, if i is in 3 sublattice,

o z*yz, if i is in 8 sublattice where

—V(q)b, q+q
(E2 +g2 )1f2

q k+q k+q
(14)

From (10) we see that V(q) has a negative peak near
q =0, a positive peak near q =Q and is zero elsewhere
(see Fig. 4). From the symmetry of the Fermi surface
[Fig. 1(a)], we can see that if k lies near a Fermi surface,—k also lies near a Fermi surface. Therefore we may
consider a pairing between Ck and C k. Such a pairing
in the spin-singlet channel is described by the supercon-
ducting order parameter

(Cl, tC q( CI, )C I, t ) —=y(k)=y( —k) . (12)

—C~+„&C z —I t )+H.c. ] . (13)

Such a mean-field Hamiltonian leads to a gap equation

Substituting (12) into (11) we find that the mean-field
Hamiltonian of superconducting state takes a form

Hr= P [y(k)V(q)(C +„&C,
q, k

—2y( k )(E2+Q2 )1/2

The gap equation can be easily solved in the low-doping
limit. We find a solution satisfying y(k) = —y(k +Q)
y(k) is nonzero only near k =(n/a, O) a. nd k =(O, m. /a)
and is plotted in Fig. 5. The superconducting state has a
d-wave symmetry.

Notice the interaction (11) does not couple to the spin-
triplet superconduc ting order parameter ( Cz &

C
+Cl, &C „&). Therefore HI can never induce a spin-
triplet superconducting state.

For the Fermi surfaces in Fig. 1(b) we have two fami-
lies of the hole operators, g„and yz arising from
ko = ( m /2a, ~/2a ) and y'„and yz arising from
ko=( —n. /2a, n/2a). Both the bound states y„y~ and

have a crystal momentum Q. The condensation of
y~yz and y'„yz lead to an unusual nodeless spin-singlet

V(q)

FIG. 4. The pairing potential V(q) is plotted in the momen-
tum space.

FIG. 5. The solution of the gap equation, y(k), is plotted.
y(k) is peaked near the small circles. y(k)=0 on the dotted
lines.
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superconducting state. Although the superconducting
order parameter carries nonzero crystal momentum, I do
not want to say the translation by one lattice spacing is
broken in the superconducting state. This is because un-
der such a translation the superconducting order parame-
ter just changes sign. Therefore the order parameter is
invariant under the combined transformation of the
translation and the gauge transformation. The supercon-
ducting state does not carry supercurrent despite the
nonzero crystal momentum carried by the order parame-
ter. The simplest way to see this is to notice that the
state respects 180' rotation symmetry. The real charac-
teristic physical effect of such an order parameter is that
a dislocation in x or y direction (Fig. 6) has to bound with
hc/4e flux. This result can be understood by noticing
that the superconducting order parameter takes opposite
sign on the A sublattice and the B sublattice [Fig. 7(a)].
The dislocation described in Fig. 6 creates frustrations in
such a superconducting state [Fig. 7(b)], which costs
infinite energy. However, the frustration can be removed
by binding hc/4e flux to the dislocation (notice that the
superconducting order parameter carries charge 2e).
Therefore if the superconducting order parameter carries
a crystal momentum Q, the dislocation in the supercon-
ducting state is confined with hc/4e flux. We would like
to emphasize that the flux quantum in the superconduct-
ing state is still hc/2e. The hc/4e flux can only appear
(and must appear) with the dislocations.

The two order parameters g AgB and y'AyB are related
by 90' rotation. Under 90' rotation

JL
%F

JE
1F

JE
1F

JL'IF JE
1F

JE
1F

(LL JE
1F

JE
1F

JE
1F

JE
1F

tained through the instability of the Fermi surfaces in
Fig. 1(b). The interaction between the holes is still given
by (11). Let us first consider the spin-singlet pairing be-
tween Ck and C z [see (12)]. The gap equation for such
a superconducting state is given by (14), however, now Ek
give rise to the Fermi surfaces in Fig. 1(b). In the weak
coupling limit, 6k is nonzero only near the Fermi sur-
faces, in our case, near k=(+m/2a, +sr/2a). Because
b (rr/2a, rr/2a ) =b (rr/2a, —m. /2a ) as implied by (12),
one can easily check that the gap equation (14) only sup-
ports a zero solution 6k =0, at least in low-doping limit.
This is because the pairing potential V~ (Fig. 4) requires

ko~ko, ko~ko+Q,
I I

XA ~1A ~ XB~LB
I I

XA ~LA& XB~ XB

(15)

+A+B

+A+B

0 1 &AXB

' 0. X'AXB
(16)

The order parameters are odd under 180' rotation and
correspond to p-wave pairing. Notice that the order pa-
rameters are spin singlet despite their p-wave symmetry.
This is possible because the order parameter carry
nonzero crystal momentum.

Again the preceding superconducting state can be ob-

IL
1F && 4J

/

FIG. 6. A dislocation in I direction.

FIG. 7. (a) The superconducting order parameter carrying a
crystal momentum Q has opposite signs on the two sublattices.
0 represents a positive value of the order parameter and ~
represents a negative value of the order parameter. (b) A dislo-
cation introduces frustrations (represented by the dotted lines)
in the superconducting order parameter. The frustrations
(mismatches of a minus sign) can be removed by adding hc/4e
flux to the dislocation.
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the superconducting gap to satisfy

~(m/2a, m/2a ) ~4'm/2a, ~/2a )+Q ~( —~/2a, —n /2a )

However, notice that if (m/2a, qr/2a )+k is near a Fermi
surface in Fig. 1(b), (ir/2a, ir/2a ) —k is also near a Fermi
surface, at least in the low-doping limit. Let us denote

qi =(qr/2a, qr/2a). We may consider the superconduct-
ing state arised from the pairing between C +k and

q&

C k. The spin-singlet order parameter is given by
q&

(C +ktc k$ C +kic —kt) Xl(k) 71(

—~i, k+q V(e)
2 ~ 2 2 1/2

q (Ek+q+q +~i,k+q)
(19)

where

bi i, =2yi(k)(Ep+qi+b, i k)'

The "Fermi surface" of Ek+q is plotted in Fig. 8. y, (k)+ql
is nonzero only near k =0, Q, (her/a, 0), and (0, +m/a ).
The pairing potential V(q) favors a superconducting or-
der parameter that satisfies y, (k)= —y, (k+Q). Such a
solution is parametrized by two complex numbers y and
y'. y, (k) is represented in Fig. 8. Notice that the order
parameter y, carries a crystal momentum Q. y and y'
correspond to the order parameters y„qadi and y'„qadi.

FIG. 8. The order parameter yl(k) is plotted. y&(k) is
parametrized by two independent complex numbers, y&(0) =y
and yl(0, ~/a )=y'.

The Bardeen-Cooper Schrieffer (BCS) mean-field Hamil-
tonian for the order parameter in (17) is given by

HJ Xlp(k)V(C)(C +„+ tc „+
q, k

Cq+k+qi icq k+qi t)+H. c. ] .

(18)
Equation (18) is equivalent to the usual BCS mean-field
Hamiltonian except the momenta of the electron opera-
tors are shifted by q, . Equation (18) results in the follow-
ing gap equation:

FIG. 9. A dislocation in x+y direction.

&c, +„,c, „,—c, +«c,

qi+kt q ki
—

qi+k) q kt ) —y3(k),
(21)

where q2
= (qr/2a, 0) and q3

= (0, ir/2a). The solutions y2
and y3 of the gap equation are plotted in Fig. 10, they
correspond to the two order parameters yAyB+gBy'A
and XAXB XBXA

In general, a dislocation in two dimensions is charac-
terized by the Burgers vector b =n x+ n y. If the super-
conducting order parameter carries a crystal momentum
K, the dislocation in the superconducting state must car-
ry the magnetic flux given by

4=(K 1+2vrn ).Ac

2e

where n is an integer. This result can be obtained by a
similar argument presented in Fig. 7.

In the above we have considered spin-singlet supercon-
ducting states in the doped spin-liquid states. The dy-
namics of the effective theory (5) favors spin-singlet pair-
ing. This is because the spin-singlet pairing corresponds

Another possible superconducting state for the Fermi
surfaces in Fig. 1(b) comes from the condensation of
yAyB+yBy'A and yAyB —/By'A which carry crystal
momentum (n. /i2, 0) and (O, n. /a), respectively. Again
the two order parameters are related by 90' rotation

~ A+B +~BXA 0 1 +A~B ++B+A
/ + (20)

+A+B ~B+A . , +A+B +B+A

The detailed properties of the superconducting state de-
pend on how the two order parameters condense, which
is determined by the potential energy term in the e6'ective
Ginzburg-Landau (GL) theory. However, in general,
dislocations in certain directions are bounded with hc/4e
flux. For example, in the superconducting state charac-
terized by yzys=y~y'„%0 the dislocations in y direc-
tion are bounded with hc /4e flux. While in the supercon-
ducting state given by y„y~%0and yiig'„=0, the dislo-
cations in xky directions (Fig. 9) are bounded with hc/4e
flux.

In terms of C; operator, the preceding superconducting
state are described by the order parameters
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FIG. 10. The order parameters y2(k) and y, (k) are plotted in

(a) and (b), respectively.

to the pairing between gz and yz, which we find to have
a strong attractive interaction between them. The spin-
triplet pairing is not favored by the spin-liquid state. For
the Fermi surfaces in Fig. 1(a), the fact that the pairing is
between holes in different sublattices and the pairing is
spin singlet determines the superconducting state to be a
nodeless 1-wave superconducting state. For the Fermi
surface in Fig. 1(b) the superconducting states remain to
be nodeless. However, the A-B sublattice pairing and
spin singlet conditions require the superconducting order

parameters to carry nonzero crystal momenta. In this
case, some dislocations must carry hc/4e Aux. Because
the pocketlike structure of the Fermi surfaces and the
A-B sublattice pairing, the superconducting order param-
eters in general form nontrivial representations of 90 ro-
tation, at least in the low-doping limit.

The superconducting states in the spin-liquid state dis-
cussed in this paper are closely related to the supercon-
ducting states in SDW state discussed in Ref. 16. For ex-
ample, the d-wave superconducting order parameter for
the Fermi surfaces in Fig. 1(a) is just the projection of the
d-wave superconducting order parameter in Ref. 16 to
the spin-singlet and the zero crystal momentum tensor.
The p-wave superconducting order parameters with crys-
tal momentum Q for the Fermi surfaces in Fig. 1(b) is the
projection of the p-wave superconducting order parame-
ter in Ref. 16 to the spin singlet and the crystal momen-
tum Q sector. (Note the superconducting order parame-
ters in SDW state are a mixture of spin singlet and trip-
let, as well as 0 and Q crystal momenta. )

In this paper we discussed the shape of the Fermi sur-
faces of the doped holes in the spin-liquid state, based on
the effective theory obtained in Refs. 5 and 13. The Fer-
mi surfaces are found to consist of pairs of pockets
separated by crystal momentum Q. We studied the sym-
metry properties of the spin-singlet superconducting state
for the Fermi surfaces in Fig. 1(a) and Fig. 1(b). The su-
perconducting order parameters are found to carry non-
trivial 90' rotation quantum numbers, and in some cases
nonzero crystal momenta. The nonzero crystal momenta
carried by the order parameters can be measured by
measuring the Aux confined to dislocations in certain
directions. It would be very interesting to determine ex-
perimentally whether an unusual Aux quantum is bound-
ed to a dislocation or not.

From the preceding discussions we see that the super-
conducting order parameters in the spin-liquid state of
the high-T, superconductors may have nontrivial symme-
try properties, at least in the low-doping limit. It is very
important to experimentally test those predictions in
high- T, superconductors.
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