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The influence of perturbations (a small, near-resonant signal and noise) on a driven dissipative

dynamical system that is close to undergoing a period-doubling bifurcation is investigated. It is
found that the system is very sensitive, and that periodic perturbations change its stability in a well-

defined way that is a function of the amplitude and the frequency of the signal. New scaling laws

between the amplitude of the signal and the detuning 5 are found; these scaling laws apply to a
variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability and

the amplification of the system are not stationary, but vary with 5. The results in this paper are
found from a linear analysis of the dynamics in the Poincare map. It is thereby shown that several

effects, which previously were believed to be caused by nonlinearity, are in fact linear in the lowest

order. Numerical and analog simulations of a microwave-driven Josephson junction confirm the
theory. Results should be of interest in parametric-amplification studies.

I. INTRODUCTION

Perturbations on a nonlinear system that is close to a
period-doubling bifurcation have attracted considerable
interest, ' and have been studied theoretically by look-
ing at either discrete' or continuous dynamical sys-
tems. From the point of view of applications, the
problem is of particular interest in connection with para-
metric amplification, for example in Josephson-junction
amplifiers, "where the fundamental amplifying mecha-
nism is based on the period-doubling bifurcation. There-
fore the results of this paper might be of relevance to that
problem.

The main concern is the influence of a periodic
(coherent) perturbation that is close to parametric reso-
nance frequencies of the unperturbed system; the unper-
turbed system oscillates with a frequency toD, and the
periodic perturbation is close to the frequencies
—,'coD, coD, —', coD. The effect of noise is also addressed here.

This paper does not focus on a particular dynamical sys-
tem but, rather, on the dynamics in phase space of a gen-
eral system that is close to a period-doubling bifurcation,
and the conclusions are therefore expected to be general.
The results of this paper are based on the fact that the
dynamics of a system at the bifurcation point is confined
to a two-dimensional surface in phase space called the
center manifold this makes a large simplification of the
complexity of the dynamics in the vicinity of the bifurca-
tion point. The existence of this center manifold makes it
possible to make a simple one-dimensional iterative mod-
el describing the dynamics in the Poincare map. The
solution of the model reveals several interesting features
of the influence of perturbations on the period-doubling
bifurcation; some of these features are described here.
Apart from amplification of perturbations close to the bi-

furcation point, a periodic perturbation close to the reso-
nance frequencies —,'kcoD, where k is an odd integer, al-

ways stabilizes the system against bifurcation. Further,
this stabilization, i.e., the shift of the bifurcation point,
follows a particular scaling law. This shift is proportion-
al to the square of the amplitude of the periodic perturba-
tion. This result differs from that of Bryant and Wiesen-
feldt who found the shift of the bifurcation point to be
proportional to the amplitude of the periodic perturba-
tion to the power —', . It is also found that maximum

arnplification or maximum gain of a small signal does not
coincide with the bifurcation point but occurs slightly
below the shifted bifurcation point. A scaling law be-
tween the amplitude of the periodic perturbation and the
detuning 5 (the relative frequency difference between the
periodic perturbation and the parametric resonance fre-
quency) is also found. Surprisingly these results can be
found from a linear analysis, thereby showing that the
effects are not caused by nonlinearities, as found in previ-
ous work. It should be emphasized that it is in general
impossible to determine the actual bifurcation point in
the presence of perturbations by an analysis of the power
spectrum.

Comparison of the theory with numerical and analog
simulations of a microwave-driven Josephson junction
shows good agreement. Experiments on a small Joseph-
son junction have also shown agreement with the scaling
laws derived in this paper. '

Section II contains the theoretical development. In
Sec. II A the problem is formulated, and a model for the
dynamics in the Poincare map is derived. In Sec. II B the
model is solved, and in Secs. II C and II D the results are
shown and interpreted. Section III contains the compar-
ison between the theory and the results of numerical and
analog simulations of a microwave-driven Josephson
junction. Section IV is the conclusion.
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II. THEORY

A. Dynamics in the Poincare map

The motion governed by the dynamical system is
periodic, i.e., the orbits in phase space are closed. There-
fore a tool for investigating the behavior of orbits near
the closed orbit is the Poincare map. Here this map is
given by a local transverse section of an orbit in phase
space at a multiple of the period TD. With the aid of the
Poincare map, the dynamical system given by Eq. (1) is
transformed into a discrete dynamical system

x„+,=P„(x„), x„ER", pEI . (2)

A closed orbit of period TD in phase space corresponds
to a fix point in the Poincare map. The stability of the fix
point rejects the stability of the closed orbit. Equation
(2) can be linearized around the fix point to yield an
eigenvector-eigenvalue equation. A period-doubling bi-
furcation is associated with an eigenvalue X= —1 at the
fix point x""of the Poincare map. ' (All other eigenval-
ues have, in this case, magnitudes small compared to 1.)
This means that an orbit y* alternates from one side of
the fix point to the other along the direction of the eigen-
vector ez, (see Fig. 1). In full phase space, orbits simi-
lar to y* are all confined to a two-dimensional surface
called the center manifold. In the case of the period-
doubling bifurcation the center manifold can be described
as a Mobius band' (see Fig. 1). Here it is assumed that

In this section a general equation describing the behav-
ior of a dynamical system close to period-doubling bifur-
cation is derived. The equation is general, i.e., it is in-
dependent of the particular dynamical system. Instead of
working in the full phase space of the dynamical system,
the dynamics are described in the Poincare section. '

Even though this is a large simplification of the complexi-
ty of problem, it preserves the interesting main features
of the bifurcation. A general dissipative dynamical sys-
tem is assumed to be modeled by the following
differential equation:

x=f„(x,t)+s(t)+v(t), (x, t)ER "XR, pEI,
where f„(,t ) =f„(,t + TD) is periodic with the period
TD. The control parameter p is defined in an interval I.
The functions s(t) and v(t) are a small-signal (periodic
perturbation) and a small-noise term (stochastic perturba-
tion), respectively. The period of the signal is denoted Ts
and the corresponding frequency co~ =2m/T~. The noise
term v(t) is assumed to be "white, " such that
(v(t)v(t +r) ) =o 5(r) and (v(t) ) =0. The perturbation
amplitudes ~s ( t)

~

and
~

v(t)
~

are small compared to
i f„(x,t)i.

The unperturbed system is assumed to be close to a
period-doubling bifurcation. This means that by increas-
ing the control parameter p, the response changes from a
periodic solution y, with period TD, to a periodic solu-
tion y', of period 2TD. The value po of the control pa-
rameter for which this happens is called the bifurcation
point. The theory that follows is valid for p close to, and
smaller than this bifurcation value.

ge),

FIG. 1. Intersection of the center manifold of a period-
doubling bifurcation with the Poincare map P. The orbit y of
period TD is confined to the center manifold and intersects P at
the fix point x"". The vector ez is the eigenvector for the eigen-
value A, = —1. The orbit y is periodic with the period 2TD,
and intersects P at the points p &

and p2.

all relevant orbits of a dynamical system close to a
period-doubling bifurcation are confined to this surface.
As a result the Poincare map becomes one dimensional,
regardless of the dimension of the original dynamical sys-
tem. With this in mind, the stability of the fix point can
be analyzed by linearizing the Poincare map around the
fix point. Therefore, the stability equation becomes

where g„ is the deviation from the fix point x"" on the
center manifold, and A, is the corresponding eigenvalue in
this direction (see Fig. 1). It is assumed that the control
parameter p and the eigenvalue A. are linearly related
close to the bifurcation point. The fix point is stable if
~A, ~

( l. If ~A.
~
) 1, the fix point becomes unstable and

period-doubling bifurcation takes place.
If a small periodic perturbation with the frequency co&

is introduced [s(t)%0 in (I)], the function P(x„) on the
right-hand side of (2) changes; it no longer has period TD.
The Poincare map can now be written

x„+,=P„'(x„), x„ER . (4)

Since the perturbation s(t) is small, (4) can be approxi-
mated by

x„+1=P(x„)+P„**(x„—x""), x„ER,
where the first term, P, is the unperturbed Poincare map
and the second term, P„**,is a small correction due to the
period co+ perturbation. The last term is different for
each iteration, as indicated by the subindex n. The
right-hand side of (1) now contains two frequencies,
which yield a periodic or quasiperiodic driving term, de-
pending on the ratio of the frequencies co&/coD. There-
fore the perturbation term P„"*in (5), changes from cycle
to cycle as determined by the right-hand side of (1). Be-
fore writing an explicit expression for P„**,it is useful to
look at the two frequencies from a geometrical point of
view.
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At a given instant of time, the phase angles corre-
sponding to the driving term iI)D and the signal Ps, the
first two terms on the right-hand side of Eq. (1},can be
viewed as coordinates on a torus,

[PD 4s]= [roDt (mod2n), .
cps t(mod2n )],

as seen in Fig. 2, which illustrates the important case
where the ratio ros/coD is close to one half. After one
iteration ((()D change of 2n) the signal phase angle iI)s in-
creases by n + rr5; after two iterations it becomes
2n5(mod2m). This example is easily generalized to in-
clude the ratio ros/coD = 1, with 5 given by

5=2(cps/coD) —k,
where k is either 0 or 1, such that —

—,
' &5& —,'. In this

way 5 is always measured with respect to the nearest res-
onance frequency, co+/coD =

—,
' or ros/coD =1. It should

be emphasized that the description given here is also val-
id for an arbitrary integer value of k, corresponding to
frequencies mz close to the parametric resonance frequen-
cies —,

'
coD k.

From the preceding considerations, it follows that the
phase of the signal function s (t) on the right-hand side of

Eq. (1) changes b,Ps =m+ n 5 for k = 1 and
6(()s=m5(mod2m} for k =0 for multiples of the driving
period TD. Therefore the perturbation P„,has the same
phase change for each iteration. A simple approximation
to this function around the fix point is

P„"=g„h, (~n5)+ho(nn5), („CR . (7a)

Here h
&

and hp are period 2m. functions. In order to ob-
tain an analytically soluble problem, the functions h I and
hp are chosen to be

h, (nn5) =(—1)""A,e'

(~rt5) ( 1)nkA Oemi~s
(7b)

where A, and Ap are real constants. Although the
preceding functions are complex, this is done for conveni-
ence; the results should be interpreted as "the real part
of" the obtained numbers. It is seen that hp, because of
the factor n in the exponent, has the periodicity already
described, whereas h

&
does not depend on n and is a con-

stant. There are two typical time scales in this problem:
one t„of the order TD, determines the fast variations be-
tween two iterations; the other tp corresponds to the slow
variations, changes that occur over a time scale of the or-
der TD/5. Since t& ((to for small 5, a constant, n in-
dependent of h, , can be justified, since the change in h, is
essentially adiabatic (i.e., many iterations are necessary in
order to observe a sizable change in the g independent
part of P„". The constants Ap and A, are small com-
pared to 1 and are assumed to be proportional to the am-
plitude of the perturbation s(t) in Eq. (1). The function
P„"becomes

P"=(—1)""A,e'" g +( —1)""Aoe'"", g„CC . (7c)

The variable g is now complex. By combining the result
of the linearized unperturbed Poincare map, Eq. (3), with
Eq. (7c), one obtains the basic equation

g„+)
= [A+ ( —1)""A)e' ]g„

(a) (b)
1)nkA inns (8)

FIG. 2. Geometrical view of the two-phase angles for the two
first terms on the right-hand side of Eq. (1). The phase angles
are given as coordinates on a torus. The figure sho~s an exam-
ple where the periodic perturbation is close to the resonance fre-
quency co+/con = —'. (a) shows how the phase P, changes after a

period Tz. (b) shows how the phase P, changes after an interval
2TD equal to two periods. The phase after 2TD differs from the
initial phase by a small angle 2+5. This angle is the geometrical
view of the detuning. The picture in (a) and (b) does not change
if the frequency of the perturbation is close the other parametric
resonances co&/coD= —,'k, for k odd. For even k the only
difference is that Pz almost repeats itself after only one interac-
tion.

This equation is, for 5=0 and k =1, identical to the one
derived previously by the authors. The two constants
Ap and A

&
are in general expected to depend on the pa-

rameters of the system, e.g., the frequencies of the driving
term and the signal, but this dependence is not generally
known and is not necessary to understand the main
features of the results.

B. The dynamical behavior around the Sx point

From Eq. (8), it is possible to find the infiuence of per-
turbations on the period-doubling bifurcation. The main
problem is to find solutions to this equation. As seen in
Eq. (8), the last term changes in each iteration, and there
is no longer a fix point, as was the case in the linearized
Poincare map, Eq. (3). The last term in Eq. (8) can be in-
terpreted as a driving term, so instead of having a single
fix point, the attractor is a circle in the complex plane.
For every other iteration the point on the attractor slow-
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—i rrns (9)

The new coordinate g rotates backwards so as to com-
pensate the rotation in g; it is the equivalent of a "rotat-
ing frame. " Equation (8) therefore transforms into

ly rotates by an angle 2~5. Therefore, it is possible to re-
move the rotation in the complex plane by applying the
following transformation:

C. The stability of the period-doubling bifurcation

The stability of the fix points must now be examined.
This is very important, since it reveals one of the effects
of a periodic perturbation, namely, the shift in the bifur-
cation point. The stability can be investigated by looking
at the asymptotic behavior around a given fix point. The
deviation from the fix point is defined as

(ge —i~s+ 1 nkA ] + 1)nkA —i~h 10ln+' ' '' )" o which leads to the following equation for the asymptotic

This equation can easily be solved:

1+3
fx —i n.5

g2 —2ins (1+A2)
1

(1 la)
O. I

(a)

1+(—1)"A, —
A, e ™5

fix —
( 1 )kA

—its (1 lb)Dodd g2 2ins (1—+ A 2
)1

0.05-
fix

~odd

fix innb
n eleven, odd (12)

The (even, odd) index refers to n. As just seen there is
one fix point for k =0, and two for k =1. In the latter
case the iterates alternate between the two fix points.
The solution to the original equation, Eq. (8), can be
found by applying the inverse of the transformation in
Eq. (9), thereby obtaining

0

-0.05-

1

3 ~ 4

2

fix
~ even

where the lower index refers to the two possible solutions.
Figure 3(a) shows an example where successive iterates

of Eq. (10) are plotted, for k = l. In agreement with the
solution of Eq. (11)—which corresponds to the rotating
frame —the iterates relax along logarithmic spirals to-
wards the two fix points. Figure 3(b) shows the succes-
sive iterates of Eq. (8)—in the original frame. Here the
iterates relax towards a circle, indicating the 2m.5 rotation
for every other iteration. It should be noted from Eqs.
(11) and (12) that the iterates lie on two circles with
slightly different radii, one for even and one for odd
iterates. However, as seen from Eq. (11), the difference is
of second order in Ao and A, and tends to zero for small
values of Ao and 3, .

The dynamics around the fix point in the Poincare map
is revealed by projecting the dynamics in the complex
plane onto the real axis. The attractor in the Poincare
map is a line segment just below the bifurcation point.
Away from bifurcation the attractor for a system with
two frequencies is an ellipse in the Poincare map. When
the system is close to a period-doubling bifurcation, how-
ever, the dynamics is confined to the center manifold,
which in the Poincare map reduces to a one-dimensional
curve (see Fig. 1). The line segment is therefore an
elongated ellipse. After bifurcation is established, the
line segment splits into two line segments: that is what
bifurcation in fact means. A word of caution is neces-
sary: it is not easy to visualize the dynamics both in
phase space and in the complex plane at the same time
(which would require four-dimensional images). The cir-
cle in the complex plane is unrelated to the mentioned el-
lipse in the Poincare map.

-O. I

-0.1

I

0.05 O. I

O. I

~ ~ 0~ Oy g ~~ ~

~ t ~q
~ ~

0
0 ~ ~

~ ~
~ ~
~ ~

~ ~
~ ~

0- ~
2

~ ~

~ ~
0

~ ~
~ ~

W

~ ~ ~
~ ~~r ~ 0+V+ ~ ~ oo 0

(b)

0.05-

—0.05

O. I

-O. I -0.05

&n,r

I

0.05 O. I

FIG. 3. The successive iterations towards the fix points in the
complex plane [Eqs. (8) and (10)] for )(,= —0.9, k = 1,
Ao= A, =0.01, and 8= ~. (a) shows how g„relaxes towards
the two fix points according to Eq. (10); (b) shows the iteration
of the original Eq. (8).
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behavior

heal„+) =[he ™+(—1)""A
) ]kg„.

The two cases k =0 and k = 1 are treated separately.
(1) For k=O. The fix point of Eq. (11) is stable if

(13)

ing decreases the effect according to Eqs. (18). Once
again the results in Eqs. (18) are valid for small 5, i.e., in
the adiabatic limit. A slow modulation of A

&
results in

the convergence also exhibiting a slow modulation. '

D. Ampli6cation of perturbations

At the limit of stability the left-hand side is equal to 1.
Therefore,

A )cos7T5 1 (15a)

For A, = —1 —p, where p is the control parameter near
the bifurcation, an equation for the shift of the bifurca-
tion point is obtained:

Les ~ A, cos775, (15b)

bri„+2=(A, e ' —A f )bri„.

The criterion for stability becomes

(16)

(17)

Once again at the limit of stability

k —A, cos2~5 = 1, (18a)

which leads to the following equation for the shift of the
control parameter at the bifurcation point:

hp~ ~ —,
' A, eos2m. 5 .

For small 5

(18b)

(19)

This equation gives a second important result: When the
periodic perturbation is close in frequency to half the
driving frequency, co+/AD= —,', the periodic perturbation
always stabilizes the system against a period-doubling bi-
furcation. The shift in the control parameter at the bifur-
cation point is always positive, and proportional to the
square of the amplitude of the perturbation. The detun-

where A, is assumed to be proportional to the amplitude
of the periodic perturbation, and the change in stability
depends therefore on the sign of the amplitude and there-
by on the instantaneous phase difference between the per-
turbation and the drive. For small 5 the variation of h

&
is

very slow; therefore the preceding result, Eqs. (15), is the
adiabatic limit. For small 5 the sign of A, does change
for every half period of h, [Eq. (7b)]. The system, there-
fore, may slowly drift in and out of bifurcation with a fre-
quency of 2n 5. There is a change of the stability
condition —although not a change with a well-defined
sign —when the frequency of the perturbation is close to
the frequency of the drive, co&/coa =1. The shift in the
value of the control parameter p at bifurcation can be de-
creased by increasing the value of the detuning 5, accord-
ing to Eq. (15b).

(2) For k=1. In this case the sign of A, changes for
each iteration. Therefore, the stability has to be investi-
gated for every other iteration, which leads to the equa-
tion

Another important property of a period-doubling bi-
furcation is its ability to amplify perturbations. In the
case of a periodic perturbation this can be seen from Eq.
(11). As the control parameter approaches the bifurca-
tion point, the fix points (Eqs. (11)] move away from the
original unperturbed fix point, which corresponds to a
dynamic amplification —a resonance —in the dynamical
system. This resonance can be found in Eq. (11) as the
minimum of the magnitude of the denominator —which
also corresponds to the real part of the denominator
becoming zero. It yields

A, =(1+A
&

)cos2n.5 .

which, for small 5, becomes

hp„~ —,
' A, —(n5)

(20a)

(20b)

The subindex on pz indicates the value of the control pa-
rameter at resonance. This equation shows that the con-
trol parameters p at resonance differ from the unper-
turbed bifurcation value by an amount that is a function
of both A, and 5. Comparison of the control parameters
at bifurcation and resonance, JM& and p&, give the in-

equality

~Pa —~Pa . (21)

E. Inclusion of noise

Noise in the system [the term v(t) in Eq. (1)] can be
modeled by adding a noise term v„ in Eq. (8), which pro-
duces fluctuations in g„. The noise is characterized by

& v„v ) =o'5„, & v„)=0 . (22)

This is equivalent to the addition of a noise term v'„ in

Eq. (10) for g„; the spectral conditions for v„' are identi-
cal to those for v„, Eq. (22). This noise gives rise to fluc-
tuations in hg„, which, in turn, yield random intersec-
tions of the trajectory in the Poincare map. The Auctua-
tions are assumed to be restricted to the center manifold,
i.e., one-dimensional noise in the Poincare map.

Once again the two eases k =0 and k =1 must be con-
sidered separately.

(1) For k=O. Here the behavior of the bifurcation
[Eqs. (15)] and the resonance [Eqs. (20)] are quite
different. For m & n the autocorrelation function of Ag„

This inequality shows that the resonance maximum (or
maximum gain point) always appears before the bifurca-
tion, as the control parameter is increased. It also indi-
cates that, in general, it is almost impossible to find the
actual bifurcation point in a frequency spectrum, since
the resonance effects dominate in the spectrum. For
zero detuning, 5=0, the bifurcation and maximum reso-
nance (maximum gain) points coincide.
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become
its+ A )m

—n

1 —(A, + A, +2k, A icosn5)
(23)

I I I I I I I li

AI1, -

which diverges at the bifurcation point given by Eqs. (15).
(2) For k= 1. In this more interesting case the behavior

of Eqs. (18) and Eqs. (20) are quite similar. For m ) n

and rn —n even, the autocorrelation function of hg„be-
comes

o'[1+A. + A z&
—(

—1)"2A &Acosn5]

1 —(k + A —2A, A os2n5}

10

10

X (g2& 2n—is A 2 )(n m)l—z
1 (24}

which diverges at the bifurcation point given by Eqs. (1S}.
Thus the noise is also amplified as the bifurcation point

is approached. ' It is important to note that the noise
does not influence the stability of the system, only the
periodic perturbation has this effect. This conclusion is
of course based on the particular way noise is modeled in
here, namely, as a additive uncorrelated noise with zero
mean. Other work on this problem has found that noise
may influence the stability, ' ' but in that work the bi-
furcation point is defined from changes in the distribution
function of the Poincare map.

III. NUMERICAL AND ANALOG SIMULATIONS

In order to illustrate some of the features of the theory
just presented, the differential equation describing a
microwave-driven Josephson junction was solved both
numerically and by analog simulation. The governing
differential equation is'

IQ

10
~ ~ t s i & gal

10
I I I ~ I I I i

As

FIG. 4. Results of numerical calculations for the change in
the control parameter bp, necessary to reach the bifurcation
point, as a function of the perturbation amplitude As for three
values of the detuning: circles correspond to 25/coD equal to

triangles correspond to 25/aD equal to —»~', and

squares correspond to 25/coD equal to —6'4. The fitted straight
lines in the logarithmic graph have slopes of 2 and 1.

P„+a/, +sing=aDsincoDt +assimost +rt . (25)
I I I I I

Here P is the quantum-mechanical phase difference
across the junction and a is the damping parameter
(a= 1/+Pc, where Pc is the McCumber parameter for
the junction). The quantities aD = AD /IC and

as = As/Ic are the normalized amplitudes of the driving
and resonant perturbing signals (normalized to the criti-
cal current of the junction, Ic); coD and tos are the corre-
sponding frequencies [normalized to the junction max-
imum plasma frequency co~=(2eIC/hC)'~, where C is
the junction capacitance]; rI=IDC/Ic is the normalized
dc bias. It should be noted that this equation also de-
scribes a driven, damped pendulum subject to two period-
ic perturbing forces.

In order to integrate Eq. (25) numerically, a fourth-
order Runge-Kutta method with 32 points per period of
the driving signal was used. The motion of P was fol-
lowed over 256 periods of the drive and the first 128
periods were discarded in order to remove transients.
Throughout the calculations the following fixed parame-
ter values were used: a=0.2, coD=1.6, and q=0. 73; the
parameters aD and az were varied. The amplitude of the
driving force, aD, was chosen as the control parameter p
of the system: its value was such that the system was
near a period-doubling bifurcation.

The results of the digital calculations for co+/AD

=a
—,
'

ndd three different values of 5 are shown in Fig. 4. The

I I I I I I I I I I I I I I I

As

FIG. 5. The quadratic scaling law of Eqs. (18) as investigated
by analog simulation. The shift in the bifurcation point is
defined as hp= AD (AD)0 where (AD)o is the pump ampli-
tude at the bifurcation point of the unperturbed system. The
figure shows a logarithmic plot of the signal amplitude As vs

hp. Curve (a) is for k = 1, i.e., for co+ = —'coD, (fD =8021 Hz and

fr=3955 Hz). Curve (b) is for k =3, i.e., for co~= —', coD,

(fD =8058 Hz and fz = 12035 Hz). The solid straight lines have
slope 2, and the circles are the data from the simulation. Both
the Ap and the As axis are in arbitrary units.
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10
As

FIG. 6. The values of the detuning 5 and of the input signal
amplitude Az for constant amplification of the perturbating sig-
nal Az. The solid line has slope 1, and the circles are the data
from the simulation. The curve is made for k =1, i.e., for
co+ = 2coD, (fD =7987 Hz).

IV. DISCUSSION AND CONCLUSION

In this paper the influence of perturbations on a
dynamical system that is close to undergoing period-
doubling bifurcation has been investigated. The method
employed is based on the existence of a center manifold
close to the bifurcation. This center manifold makes the

shift of the bifurcation point, as measured by the change
in the drive amplitude aD, is plotted against the perturba-
tion amplitude a&. From Fig. 4 it is seen that for the cal-
culated values the quadratic scaling law predicted by Eq.
(20), haD ~as, holds as long as the perturbation ampli-
tude is small. Above a certain level of perturbation,
which depends on the relative detuning 5, the relation-
ship between aD and az becomes almost linear. This de-
viation from the theory is believed to be caused by non-
linear effects.

Equation (25) was also simulated by using a
Magerlein-type analog circuit (described in Ref. 19). The
amplitude of the drive AD is taken as the bifurcation pa-
rameter p. In Fig. 5 the quadratic scaling law of Eqs. (18)
is shown, both for k = 1 and for k =3, i.e., cps = —,'coD and

co~ = —,'coD. The amplitude of the signal was one order of
magnitude larger in the last case. It is not known wheth-
er the quadratic scaling law for co&= —,'~D is caused by
mixing of frequencies down to a=coz —coD = —,'coD', these
frequencies cannot be separated in the nonlinear system.
The calculation is in good agreement with the theoretical
scaling law of Eqs. (18). By a variation of the input am-
plitude of the signal Az and of the detuning 6 in such a
way that the amplification of the signal is kept constant,
it is possible to check Eq. (20b). Figure 6 shows those re-
sults. They confirm the prediction of Eqs. (20), i.e.,

oc Q

dynamics in the Poincare map essentially one dimension-
al. The dynamics around the unperturbed fix point in the
Poincare map was examined. The solution of the result-
ing equation reveals several interesting features of the
perturbed period-doubling bifurcation.

It was found that even the smallest near-resonant
periodic perturbations (signals) aff'ect the stability of the
system. This stability is not a static property: the con-
vergence changes periodically in time, with a long period
of the order 1/5, where 5 is the frequency detuning. The
system may slowly drift in and out of the bifurcation.

It is instructive to compare the criteria of stability with
Floquet's theory: there stability considerations are
based on the total period of the system, i.e., the combined
period of the drive and the signal (I /5, where 5 is now as-
suined to be rational). Therefore the stability is based on
the long period. Even though this period is stable, the re-
sults found here show that it is possible for the system to
drift in and out of the bifurcation within one such (long)
period. Floquet's theory is therefore not a convenient
way to examine stability in these conditions.

The amplification of periodic perturbations (signals) is
not a steady-state process, since it depends on the stabili-

ty of the system. Usually the amplification of a signal is
determined from a power spectrum, and thus involves
averaging over a certain time interval. Therefore period-
ic changes that take place over time intervals that are
small compared to that time are not seen. It is clear,
however, that the spectrum must be influenced by the in-
stabilities inherent in the system when it is close to the bi-
furcation point. For example, the superconducting
Josephson junction parametric amplifiers have been
plagued by very high noise levels in the amplifying mode;
the dynamical amplification discussed in this paper may
have an influence on the noise level.

The theory presented here also provides a scaling law
for the shift in the bifurcation point. It was found that
the change in the control parameter at bifurcation hp is
proportional to (As ), the square of the signal amplitude,
for co+ ———,'coD. It was also discovered that the

amplification is a function of the ratio As/5; i.e., for con-
stant amplification the signal amplitude and the detuning
parameter are proportional to each other. These two
scalings law were investigated by numerical and analog
simulations and found to be in good agreement with the
theory presented here (see Figs. 4—6). Also experiments
on Josephson junctions have confirmed these scaling
laws. '

An interesting feature of the theory is that it is linear
in the perturbations. Therefore the effects found in this
paper are not in the lowest-order nonlinear effects, in con-
trast to what has been believed earlier. Nonlinear effects
are important for large perturbations, but in that case no
definite scaling laws (such as those for the shift of the bi-
furcation point) are expected to exist. The theory
presented here of course breaks down for large perturba-
tions.
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