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In the general frame of a modified many-body perturbation theory, the single-band Hubbard
model is treated in the limit of weak electron-electron interaction. In this modification the decom-
position of the Hamiltonian into an effective free system and an effective perturbation is rearranged
iteratively in each order of the formalism, resulting in a successive reduction of the interaction part.
In comparison with conventional perturbation techniques, this means an extended range of validity.

Imposing thermodynamic self-consistency, we calculate the wave-vector-dependent electronic self-

energy up to second order and analyze the influence of the Coulomb correlations. Several well-

known physical properties of the Hubbard model are recovered in characteristic single-particle
quantities. Therefore, the effect of the band occupation n and the electron-electron repulsion U on

spectral densities, band structures, densities of states, magnetization, etc. is investigated in detail.
Some of the most remarkable results are: first, a splitting of the free Bloch band into two quasiparti-
cle subbands when the coupling strength reaches moderate values. These subbands are linked by a
small damping-induced background in the density of states and are separated roughly by an energy
of the order of U. In addition, the upper subband is shifted to higher energies in the spectrum pro-
portionally to U while the lower one is nearly fixed. Second, we found a paramagnetic-
ferromagnetic phase diagram that has a critical coupling strength U, and exhibits strong indications
of a lower critical occupation number n, . There is no spontaneous magnetization in the system for
parameters smaller than these values. Compared with the Stoner model, one thus obtains striking
improvements. In many cases our conclusions for the weak-coupling limit are qualitatively in good
agreement with well-known results in the strong-correlation regime.

I. INTRGDUCTION

Much theoretical work in solid-state physics is con-
cerned with the Coulomb interaction between electrons
in conduction bands. In dealing with band magnetism or
insulator-metal transitions, these electronic correlations
are of exceptional significance. A realistic model to de-
scribe these phenomena was proposed some time ago in-
dependently by Gutzwiller, ' Hubbard, ' and Kanamori.
In the simplest case of one s band the Hamiltonian often
1s

H=HO+H)

= g[e(k) —p]n&

k —k, k —k~kf k f k$ k$
1' 2

k3, k4

The creation (annihilation) operators for electrons in
Bloch states with spin o. and wave vector k are given by
cz (cz ). The corresponding number operator is

nk =ck ck . Furthermore, the Hubbard parameter U
characterizes the strength of the intra-atomic Coulomb
interaction. p, symbolizes the chemical potential and E(k)
are the tight-binding Bloch energies. Its center of gravity
To is chosen to coincide with the zero of energy. Thus
the system contains only three parameters: number of
electrons n per lattice site, Coulomb correlation U, and

width 8'of the Bloch band.
Although the Hamiltonian (1.1) surely is one of the

simplest ones to incorporate the electron-electron repul-
sion, there are only a few exotic situations where a
rigorous solution of the related many-body problem has
been found. Hence, before applying the model to realis-
tic substances, it is necessary to find and understand the
inherent properties of the Hamiltonian as unambiguously
as feasible. It seems that the better the required approxi-
mation schemes are able to reproduce the exactly known
limits, the more reliable they are. Up to our knowledge,
the only formalism which interpolates reasonably well be-
tween the opposite limiting cases 8'~0 and U~O is the
functional integral method. ' But most theories are by
concept restricted to one of these situations.

In this respect the strong-correlation regime U&&8'
has gained a lot of interest, on one hand because there is
some experimental evidence for large Coulomb matrix
elements and on the other hand because it is well known
that a large Hubbard U favors the existence of a magneti-
cally ordered phase. " Recent scientific activities concen-
trate mainly on problems in heavy-fermion systems' and
high-temperature superconductors. ' Out of the large
number of proposed approximations we merely mention
as examples the Heise-Jelitto transformation' ' and the
method of spectral moments of Nolting and co-
workers. ' ' The Heise-Jelitto transformation casts
the Hubbard Hamiltonian into a form which takes cor-
rectly into account the low-energy excitations in the
large- U-parameter region. This results in the proper
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mean-field theory in the limit of infinite coupling strength
(note: the conventional Hartree-Fock decoupling
H( ~ ( U/N) g(, q ( n k )n corresponds to the oppo-
site extreme U~O). The major advantage of the mo-
ment method consists in the fact that neither is it of per-
turbation type nor has it the frequently observed arbitrar-
iness of the decoupling of equations of motion for Green
functions. Therefore it is useful in treating systems with
phase transitions. Accordingly, in Refs. 16—19 a detailed
discussion of the para-, ferro-, and antiferromagnetic
phases of the Hubbard model is given. Compared with
the phase diagram of the Stoner model the parameter re-
gions with stable collectively ordered solutions are drasti-
cally reduced. This conclusion is not surprising, because
the Stoner formalism is equivalent to a first-order U-

perturbation theory which is valid only when U&(8'
holds.

Remarkably, up to now this limit of the parameter
domain has not attracted much attention in the litera-
ture. From a physical point of view it is at least as im-
portant as the strong-correlation regime because there
are some indications that bandwidth and intra-atomic
Coulomb repulsion are of the same order of magnitude in
the transition metals. Therefore an approach to the re-
gion U = F from the weak-coupling limit is clearly desir-
able. In looking for progress beyond Hartree-Fock
theory one has to mention the work of Kishore et al. ,
who used a projection-operator formalism related to the
theory of Mori ' and obtained a second-order perturba-
tional expression for the electronic self-energy. Presum-
ably due to complicated Brillouin-zone summations no
explicit computation was done and the importance of the
correction term is unclear. Treglia, Ducastelle, and Span-
jaard (in the following cited as TDS) also have calcu-
lated the self-energy up to U for a d-band Hubbard mod-
el without intra-atomic exchange interaction. Identifying
the Stoner spectrum with density-functional theory band
structures, it was their intention to describe the fer-
romagnetic transition metals both qualitatively and quan-
titatively. Special emphasis was put on the treatment of
nickel because it shows some significant differences be-
tween photoemission experiments and band structure
calculations. For instance, the computed and measured
d bandwidth differ by an amount of 30%%uo and one ob-
serves a satellite structure in the density of states roughly
6 eV below the Fermi level. Although, at first glance, the
TDS results seem to be convincing, we believe that the
simplifications they made are too drastic to lead to reli-
able conclusions. This point of view is clearly supported
by a recently published letter of Taranko, Taranko, and
Malek ' who used a much improved version of the TDS
formalism. We shall come back to these points in some
detail on discussing our results later on.

Kleinman and Mednick, ' too, found the same
second-order expression for the self-energy and discussed
its application to ferromagnetic Ni. If one reduces —by a
suitable choice of parameters —the extended single-band
Hubbard model dealt with by Taranko and Taranko to
the standard Hamiltonian (1.1), their term also corre-
sponds to the second-order self-energy. The main disad-
vantage of these theories, and similarly of the TDS work,

(riz —e(k)+p —Xi, (z)

one generally has to make approximations because the in-
teraction part of a physically realistic Hamiltonian leads
in almost every case to a self-energy X(, (z) which cannot
be calculated exactly. In a perturbational treatment of
this self-energy, in contrast to breaking off the Dyson
series,

G (z)=&ko l(((iz —&o —H }

= (ko lGO+Go(H, /A')Go

+Go(H, /A)GO(H(/fi)GO+ . . l«),
(2.2}

Go= Go(z) =R(fiz —Ho) (2.3)

after a finite number of steps, one has already completely
summed up some partial series of (2.2).

For example, using conventional perturbation theory
(CPT) the self-energy is expanded in powers of Hi ..

(z) —y y( )(z) y( ) —y( ([G ]
n=1

(2.4)

In each order the term X'"' depends only on the matrix
elements of the interaction and is a functional of the free

is the lack of (thermodynamic) self-consistency.
In the present paper we propose a generally applicable

many-body perturbation theory which works on the basis
of the standard procedures but uses a modified partition-
ing of the Hamiltonian. Its single-particle analogue and
applications to some simple problems are described else-
where. The details of the iterated decomposition of the
Hamiltonian will be explained in Sec. II. In Sec. III the
formalism is used to calculate the single-particle proper-
ties of the s-band Hubbard model (1.1). We find that the
self-energy in second-order modified perturbation theory
(MPT} interpolates in a very reasonable manner between
standard and self-consistent perturbation formalisms
without requiring the large numerical computational
effort of the latter. Sec. IV discusses the thermodynami-
cally self-consistent solutions of the MPT. We compare
the results with those of standard procedures with special
emphasis to possible satellite structures and their physi-
cal significance. A systematic analysis of the paramag-
netic region reveals for a certain parameter range a split-
ting of the Stoner excitations into two well-defined quasi-
particles. This splitting persists into the region of fer-
romagnetic solutions which were also found. A phase di-
agram for para- versus ferromagnetism is constructed
and compared with Hartree-Fock results.

Whether other collectively ordered structures, as for
example ABAB antiferromagnetism, are possible or not
has to be left to further investigations and shall not be ad-
dressed in this paper.

II. PERTURBATION THEORY WITH ITERATED
PARTITIONING OF THE HAMILTONIAN

In solving the Dyson equation for the single-particle
Green function,
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propagator G0. Then, normally, the exact Green func-
tion is calculated up to an order N:

g(N)( )

))'i[g„o(z)] ' —g X„'"'(z;[G()])
n=1

(2.5)

In an alternative procedure, called self-consistent per-
turbation theory, the self-energy contributions are taken
to be functionals of the full propagator. But then one has
to take into account the so-called skeleton terms only in
order to avoid multiple counting of some contributions:

Xi, (z)= g Xi,"'(z), Xi,"'=X(i,"'[G] .
n=1

(2.6)

Now, computing the ¹horder approximation of the
Green function, far more partial sums of (2.2) are incor-
porated:

g(N)(
kyar N

(ri[gi, ()(z)] ' —g X i,"'(z;[G' '])
n=1

(2.7)

Whether such perturbation expansions are convergent,
and whether the necessary rearrangements of special par-
tial series are allowed, are mathematically difficult prob-
lems and yet unanswered for many physical systems. We
have no intention to address this matter, but let us state
that the MPT will surely converge if the CPT does.

It is worth noting that in each of the expansions (2.5)
and (2.7) for the Nth order approximation the preceding
N —1 orders occur only in the form of additive terms.
We want to take advantage of this fact in order to use the
lower steps as effectively as possible for computing the
self-energy of the Nth order. To achieve this goal, the
following iterative partitioning of the Hamiltonian into
an effective free system and an effective perturbation is
adopted:

H=H' '+H'
0 1

N=1: H =H0 Hl =Hl0

(2.8)

(2.9)

H(N) H(N —) ) + V(N —) )( )0 0

H(N) —~ H(N)
( )N)1: 1 0

y(N ))(z}—y M(N —))( )
k, o

(2.10)

(2.11)

(2.12)

g(N) ( )
g[g(N —))( )]

—) M(N —))( )
7

(2.13)

where Mi, "(z) is the sum of all self-energy contribu-
tions up to the order N —1 calculated with respect to the
decomposition into H0 "and H',

Although now after every partitioning a perturbation
theory of arbitrary order larger than 1V —1 might be per-
formed, we believe a better way is to repeat the iteration
process (2.10)—(2.12) already after the ¹hstep has been
carried out. This makes for an optimal reduction of the
perturbation. At this level the "free" propagator is just
the full propagator of the preceding order:

When the modified formalism is based on the conven-
tional expansion (2.5) one quickly recognizes that it yields
improved results. On one hand this is due to the more
realistic effective undisturbed Green function which is
much closer to the exact one than the original zeroth ap-
proximation (2.3). In addition, the successive renormal-
ization of the interaction operator on the other hand
leads to an ever decreasing perturbation.

If, in comparison, the self-consistent perturbation
theory (2.7) is taken as the starting point for the modified
procedure no progress in the quality of Gk ' is attainable.
This is because the unperturbed Green function (2.13) is
cancelled by the contribution n = 1 of the expansion (2.6)
and therefore does not occur explicitly in the representa-
tion (2.7). Furthermore the iterated interaction operator
cannot create other skeletons than Hl itself. Neverthe-
less one has to keep in mind that there are only very few
cases of low order where the terms of self-consistent per-
turbation theory can actually be calculated. In those sit-
uations the effective free propagator (2.13) will turn out
to be a much more suitable starting point for an iteration
scheme to obtain the solution of (2.7) than the original
one (2.3). Due to the complicated structure of the self-

energy terms it is generally not possible to iterate the
equations until convergence has been achieved, and one
has to stop after a few steps. Then taking (2.13) as the
zeroth approximation, of course one will again obtain
better results.

Physically H0 ' describes a system of quasiparticles
with excitation energies e (k) resulting from the equation

N —
1

e, (k)=s(k) —
)u

—Re g M (k[c)(k)+, iO+]
n=1

and lifetimes ~k according to

N —
1

1 — Re g M(i,")(E+i0+)
BE

N —1

Im g MI,")[s (k)+iO+]
n=1

E =6 (k)

(2.15)

The renormalized perturbation H'1 ' mediates an interac-
tion between these quasiparticles.

In an explicit expansion of the self-energy, for instance
in the framework of the Feynman diagram technique, the
z dependence of the effective operators has to be treated
in the same way as that of the free propagator G0. The
fact that H0 ' and H', ' are no longer Hermitean opera-
tors does not cause any problems as far as the applicabili-
ty of perturbation theory is concerned.

Finally it has to be remarked that convergence of the
MPT may be achieved already after a few orders due to
the successively renormalized perturbation. Therefore it
is also reasonable to expect an extended range of validity
covering the region of moderate- or even strong-coupling
parameters (which is confirmed by the examples in Ref.
35). After all, compared with the standard procedure,
the supplementary computational and numerical effort is
relatively small. This is because the self-energy terms of
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the preceding X —1 orders have to be calculated anyway
and therefore are available for the Eth step.

III. COULOMB CORRELATIONS
IN THE HUBBARD MODEL

Before one can analyze the many-body problem of
electron-electron correlations in the s-band Hubbard
model by means of the MPT, first of all a method for an
explicit determination of the self-energy contributions
has to be chosen. In contrast to the method of Feynman
graphs used so frequently in the literature, here an alter-
native procedure based on the Mori formalism ' is em-
ployed.

In the Liouville space X, for any observable A and sca-
lar product ( l } there holds the identity

(AlA),
(3.1)

(AlA) z —Q+iy(z}
The correlation function (Al A), is the one-sided Fourier
transform of ( A ( t)

l
A ),

(AlA), =I dte'"(A(t)lA) (Im(z))0) . (3.2)
0

0 is the characteristic frequency of the system,

(xlY)=([x', Y] &, (3.10)

and hence have the following simple relationship with the
retarded anticommutator Green function:

((At; A »;"=—i(AlA), . (3.1 1)

y, (z)= gpL) A g()L)A, (3.12)

where we have used

gpLpgp IX)p=Lpgp IX)p (3.13}

Finally inserting the electron creation operator ck for
the observable A, one finds

Gk (z)= —i(c& lc& ), ,

X), (z) =))'tQ), e(k—)+(I itic—(z) .

In detail, using (1.2) one obtains

(3.14)

Now indicating with a lower subscript zero an evalua-
tion of thermodynamical averages with respect to the free
system for the second-order term of the memory function
(3.4) there remains only

Q=(AlLA)
(AIA) '

and y(z) denotes the memory function,

(3.3} 1 t 1
Lc)tg = [s(k) p]ckcr U g cq~cp ~cq+p k

q, p

(3.15)

.-gLgyz= LA

where the Liouville Operator L was introduced,

(3 4} and

Q), = —[e(k)+ Un —((t],
1 (3.16)

Llx) =—
l [H,x] ) rex) EX,1

(3.5) where we have introduced

g=l —lA) (Al .1
(3.6)

A decomposition of the Hamiltonian H induces a parti-
tioning of the Liouville operator

as well as a projection operator g, projecting onto the or-
thogonal complement of the linear space X„spanned out

by IA),

n =(n, & Vi (3.17)

iA
(1)))lz —e(k) —Un' ' +)M

(3.18)

which has to be solved self-consistently. Therefore, with

because of the assumed translational symmetry. Up to
the first order the Hartree-Fock approximation is repro-
duced,

L=L0+L] . (3.7) g(„l.)(z) =—Un() '. = U (3.19)

If L() keeps the subspace X„ invariant,

L()l Y)CX„VlY)GX„, (3.8)

an appropriate first decomposition of the Hamiltonian
following (2.8)-(2.12) is given by

gLIA)=gL IA) (3.9)

a perturbation expansion of (A l
A ), in terms of powers of

L, is possible. Because of the relation

H() '=H()+ g U n),
k, ~T

H',"=H, —y U .n„. .
k, cr

(3.20)

such an expansion for the memory function just starts
with a second-order term.

In the present work we want to carry out the MPT up
to and including this contribution. Therefore higher
terms of the memory function are not needed. For the
scalar product we work with the thermodynamical expec-
tation value of the anticommutator,

It should be noted that now the possibility of a magnetic
phase transition is incorporated already in the free sys-
tem. Hence it is an intrinsic property of a perturbation
formalism based on the partitioning (3.20).

Moving up to the next order the characteristic frequen-
cy Q), still obeys the exact relation (3.16). A lengthy but
simple calculation leads to



41 PERTURBATIONAL TREATMENT OF CORRELATION EE'I'ECTS. . . 417

—1
(L (2) )n[g(2)L (2)

~c~t )(2))
I U [s(k)+ U p)nyct )(2)

—U—g [e(q)+E(p) —s(q+p —k)+ U —((2)"~cq c~ cz+~ ), ~ )0 '] . (3.21)
q, p

Calculating the remaining inner products in the effective free system, which is again tedious but without serious prob-
lems, and introducing the abbreviation

( n )(2) 1

exprP[s(p}+ U —p][+1
the second-order memory function may be cast into the form

(,) i , 1 (1—fq. }(1—f),-.}f,—.+fq f),-.(1—f,—.}
y2 '(z)= —U V 5,+~

N ' ' fiz —s(q) —s(p)+ s(r) —U +)u

(3.22)

(3.23)

The first term describes the scattering of an incoming Hartree-Fock electron (k, o ) with another one (r, —o ) into the
empty electron states (q, o ) and (p, —o ). In the same way the second part refers to hole-hole scattering.

When, for the moment, we consider only the sum of the Fermi functions in (3.23) it can be seen that the memory
function scales roughly like

) 2(2)~n .(1—n .)U'. (3.24)

Consequently the region of validity of the MPT is further extended when the electron or hole concentration in the sys-
tern is small.

Although strictly spoken there may be doubts concerning the reliability of the perturbational method, formally there
are no problems when the Hubbard parameter U becomes large. Then y2(

' grows linearly with coupling strength.
Hence the physical properties which can be derived from the one-particle propagator in (3.14) should approximately de-
velop proportional to U. This conclusion is borne out by theories worked out for the strong-coupling limit' '9 whose
single-particle quantities all scale linearly with U.

For further practical evaluation of (3.23) the Kronecker 5 is expanded in a Fourier series and the Brillouin-zone (BZ)
summations are replaced by energy integrations:

i 2 () &,
" (1»~)(1 f2 —~)f2 —~+f)~f2-~(1 f3 o)—

yz '(z)= —U pe 'f f fdE, dE2dE3p;(E, )p, (E2)p, (E2} . (3.25)
Az —E

&

—E2+E3 —U ~+p

The abbreviations

1

exp[P(E + U —p, )]+1
1 ip R,.

p, (x)=—g e '5(x -s(p))
p&1BZ

(3.26)

(3.27)

are used. Thus the sixfold summation of (3.23) is re-
placed by a lattice sum connected with a threefold in-
tegration for each term. Also it is necessary to evaluate
the auxiliary quantities p; which themselves depend only
on the distance of a lattice site from the origin. There-
fore (3.25) may be written as a sum over all neighboring
spheres n with radius 5„:

y2 '(z) = g y), „(z) . (3.28)

In accordance with the tight-binding approximation of
the electron hopping we shall assume that the contribu-
tions become quickly smaller with growing distance 5„
and that it is suScient to keep the local term with n =0
and among the nonlocal contributions only the term with
n =1. For the origin R;=0 (3.27) is just the free Bloch
density of states po. Using the expressions given in Ref.
37 for this function, one can calculate analytically the

Hilbert transform of po which is required for an explicit
numerical evaluation. Because any nearest-neighbor
(NN) site RNN results in the same p), we have for a
simple-cubic lattice

p, (x)=—g —g e 5(x —s(p))
N 6NN

2
xp()(x) . (3.29)

Then there remains

y2 '(z) =y~ ()(z)+q(k)y ((z)

=—[X 0()riz+ p)+ s(k }X,(Az+)M) ] . (3.30)

p (E)=—Q A), (E)1
(3.32)

are easily obtained.

From this, the spectral density

A„(E)= 1m[i(c), ~c), ) „„„,. +] (3.31)
1

and the quasiparticle density of states (QDOS)
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symmetry of the half-filled band. Using CPT, the chemi-
cal potential is shifted in rough proportion to the
paramagnetic Stoner contribution —,

' Un making for a non-

symmetric self-energy. In order to avoid this behavior,
—,'Un must not become large. This is why the ordinary
perturbation formalism yields reasonable results only for
very weak U.

The importance of choosing the correct free density of
states becomes particularly clear in the quantitative
differences of the damping maxima. In the TDS version
they lie clearly outside the range of the free band. At the
band edges the damping reaches only half the maximum
value. In contrast to this in the MPT the regions of ex-
tremal imaginary part coincide with the edges of the orig-
inal Stoner band. Thus, states lying there are maximally
damped. Moreover, our formalism clearly produces
higher maximum values. Hence, due to the Coulomb
correlations, those Stoner quasiparticles with extremal
excitation energies are strongly broadened. Therefore a
narrowing of the width of the Stoner band will result.

This impression is strengthened by the graph of the
real part which characterizes the shift of Hartree-Fock
excitations. Again our curves show more structure than
TDS ones. The MPT shift is small at the edges of the
Stoner band and becomes comparatively large in the
center of its upper and lower half, respectively. This
leads to a further reduction of the bandwidth. In con-
trast, the band narrowing in the TDS formalism is caused
merely by a displacement of states with extremal energy
into regions where they are strongly broadened. All in all

one expects pronounced additional structure in the
QDOS below and above the domain of the Hartree-Fock
excitations which contracts with increasing electron
repulsion.

%hen U exceeds the magnitude of the bandwidth the
self-energy roughly scales —as was already mentioned—
with U. So the downward displacement of states has to
be compared with the shift proportional to —,'Un of the
whole spectrum towards higher energies. There is a good
chance that these two effects almost compensate each
other leading to a nearly U-independent structure. On
the other hand there are also states which are shifted up-
wards amplifying the Stoner displacement already
present. Hence the resulting structure will move in pro-
portion to U but with a proportionality factor larger than
the 2n of the Hartree-Fock band.

Finally there are states in the neighborhood of the Fer-
mi level which are broadened and shifted only weakly.
This results in an additional peak in the QDOS in the
central region of the original Stoner band. But this is
only true for the half-filled band due to its special symme-
try. The imaginary part is nonsymmetric with reference
to the chemical potential for any n%1 (see, for example,
Fig. 4). In that case the shift of states is comparatively
large where the damping is small, so that no central
structure will occur.

Calculating the spectral density A& for the MPT self-
energies leads to a sharp peak because for k= —,'(1, 1, 1}
the corresponding excitation energy coincides with the
Fermi level, i.e., is undamped. Az is plotted in Fig. 2 as

00

FIG. 2. Spectral density Az as function of energy for different k points in the I -R direction of the simple-cubic Brillouin zone.
Dashed curves correspond to calculations which were done using the local part of the self-energy only. The solid curves belong to
the full self-energy. The influence of the k dependence is emphasized by hatched areas. Here the arrows label the positions of the un-

damped Stoner excitations. Remaining parameters are given in the plot.
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a function of energy for different k points in the I -R
direction (the wave vector k is defined by a parameter a
according to k=a(1, 1, 1), I =(0,0,0), R =(1,1, 1)). The
hatched areas, corresponding to differences in the calcu-
lations with (solid line) and without (dashed line) the non-
local part of the self-energy, clearly emphasize the neces-
sity of including wave-vector effects on the self-energy.
There is a drastic effect in the lifetime of the excitations
which are identified as narrow peaks in the spectral densi-
ties. It has to be stressed that their positions are shifted
with respect to the Stoner excitations, which are indicat-
ed by arrows. The striking wave-vector dependence and
structure of the curves, which strongly deviates from
Lorentzians, is clearly due to the behavior of the real and
imaginary part of the self-energy as a function of k and
E. The damping and the shift of states show a consider-
able k dispersion being responsible for the hatched
domains.

There is good qualitative agreement with Ref. 34,
where the memory function (3.23) has been calculated
non-self-consistently using a Monte Carlo integration
procedure for the multiple wave-vector summations. The
authors point out that the k dependence of the self-

energy and hence the spectral density is most prominent
at the I point whereas it is rather unimportant in the
"middle" of the Brillouin zone. In the light of formula
(3.30) this is easily intelligible because at the I point c(k)
is extremal and in the "middle" of the zone it is relatively
small. On the other hand one may conclude therefrom
that the parametrization chosen for the k dependence
works very reliably.

All trends derived in the discussion above are corro-
borated by the QDOS. This quantity is shown in Fig. 3,
computed by different methods. In each part (a), (b), and

(c) the Hubbard parameter varies between 0.0 and 0.9
bandwidths. As soon as the Coulomb correlation is
switched on, the QDOS is broadened overall within the
region of nonvanishing damping. When the electron-
electron interaction is small, one observes only an addi-
tional flattening of the van Hove singularities in the origi-
nal density of states.

From part (a) of Fig. 3 one may analyze the influence
of U in the framework of the TDS method. In the re-
gion of moderate coupling strength (0.5& U~1.0) the
form of the density of states is altered drastically. Be-
sides a pronounced narrowing of the central peak there
occur two shoulders at the wings of the original band.
The authors believe that the lower shoulder is due to hole
excitations and the upper one due to electron excitations
with final states which in each case are localized at a sin-

gle site. They then proceed to interpret the single lower
shoulder, which only survives when they insert a band
filling adequate for nickel, as the 6 eV satellite seen in the
photoemission spectra of Ni.

We disagree with this explanation and believe that
some modifications are necessary. In our opinion, which
is founded on part (c) and a more detailed analysis given
in Sec. IV B, the two satellites occurring in the regime of
moderate and strong U have to be identified with the two
subbands of the Hubbard model. It is generally believed
that due to the Coulomb interaction the free Bloch band
with center of gravity To splits into two quasiparticle
subbands about To and To+ U when U is large. Particu-
larly for U =0.9 in Fig. 3(c) the new bands are evident.
The lower one consists of electrons which preferentially
hop via empty lattice sites whereas in the upper subband
propagation is more likely to proceed via sites where
another electron with opposite spin is already present and

(oj (c)
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E
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uj 00 0.0

FIG. 3. Paramagnetic quasiparticle density of states in terms of energy for several U values in the case of the half-611ed band: (a)
non-self-consistent TDS-method; (b) thermodynamically self-consistent CPT (with k dependent self-energy); (c) thermodynamically
self-consistent MPT (with k dependent self-energy). In (a) and (b) a rectangular density of states is used whereas in (c) the correct
Bloch density of states was employed. The position of the Fermi level is indicated by an arrow.
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therefore an additional energy U is needed.
As already mentioned in discussing the self-energy

there remains in the symmetric situation n =1 a third
band in the region of the original Stoner density of states.
This somewhat unphysical structure, which is a residue
of the mean-field theory taken as the first approximation,
should disappear as soon as the number of electrons devi-
ates from half filling. Furthermore, going up to higher
values of the Hubbard parameter, for which we did not
plot the curves here, the weight of the central peak de-
creases drastically compared with that of the upper and
lower subband. These two become more and more dom-
inant, always having equal weight and being roughly situ-
ated at energies zero and U, respectively.

The QDOS in Fig. 3(b) was calculated using a rec-
tangular density of states and wave-vector-dependent
self-energies in the frame of CPT. Because of the thermo-
dynamic self-consistency the particle-hole symmetry is al-
ready broken in the region of small U as can be seen from
the nonsymmetric shape of the QDOS. The curves fall
off faster on the right-hand side than on the left-hand side
because the former is situated in a region of small damp-
ing (compare with Fig. 1). No additional QDOS struc-
ture is found in the peripheral regions.

maximum which is produced by the complex behavior of
the self-energy but does not in any way define an excita-
tion. Going up to a slightly larger n the value of the sub-
sidiary maximum is nearly doubled indicating the ex-
istence of a second quasiparticle state. Further raising a
quickly drives the upper excitation peak into regions with
small imaginary part of the self-energy where its lifetime
increases remarkably. On the other hand, the lower
quasiparticle is broadened due to an enlarged damping at
the R point.

Logically there arises the question whether the upper
peak corresponds to a well-defined quasiparticle or
whether it is only a special damping effect. Therefore we
have looked for the solutions of the equation (2.14) which
define the excitation energies. The resulting paramagnet-
ic quasiparticle band structure is exhibited in Fig. 6 along
different directions of high symmetry of the simple-cubic
Brillouin zone for several coupling parameters. There is
one dispersion branch which is spread over the whole
Brillouin zone. It lies close to the center of gravity of the
free Bloch band. Compared with the displacement of
—,'Un of a Hartree-Fock band, the residual shift of this
branch is drastically reduced with increasing Coulomb

B. Quasiparticle splitting in the paramagnetic region
(a)

I

0nt
E--Un1

2

In Sec. IV A we have demonstrated unambiguously the
importance of an appropriate inclusion of the model as-
sumptions (lattice parameter, wave-vector dependences,
self-consistency) even for a qualitative analysis. Hence in
the following investigation of the noncollectively ordered
parameter area on the basis of the MPT these basic re-
quirements are fully taken into account.

First of all there occurs an implicit U dependence of
the self-energy caused by the self-consistency procedure.
This constitutes the residual inhuence of the Hubbard pa-
rameter after the real and imaginary parts have been di-
vided by U and displaced in the spectrum to lower ener-
gies by the amount of the Stoner shift —,

' Un. For n =0.25
and various values of U this is illustrated in Fig. 4. The
local contribution of the damping drawn there shows the
typical (E —p) behavior in the vicinity of the Fermi level
for all values of the Coulomb repulsion. But there is a
weak U dependence of the chemical potential giving rise
to similar trends in the positions and values of the damp-
ing maxima. Their shifts are rather small but their
strengths clearly differ. Correspondingly there are simi-
lar differences for the real parts. Consequently, in addi-
tion to the well-known explicit U behavior of the self-
energy, there are always pronounced implicit corrections
that have to be taken into account, too.

Above a certain strength of the coupling parameter (its
concrete value depends on the degree of band filling) in
the paramagnetic spectral density we have observed a
trend towards splitting into two excitations. As an exam-
ple A k is depicted in Fig. 5 in the vicinity of the R point
for U=1.0 and n =0.75. Taking a=0.6 one clearly
defined quasiparticle state just above the chemical poten-
tial is accompanied by a substantially smaller subsidiary

~ ReX~
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FIG. 4. Implicit U dependence of the imaginary part (a) and
real part (b) of the self-energy after they have been divided by
U and shifted downwards in the spectrum by an amount of
—,
' Un. The vertical bars of the corresponding linetype determine

the position of the chemical potential. It is always the local
contribution of the self-energy belonging to k= —'(1, 1, 1) that

has been plotted.
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FIG. 5. Spectral density Az as a function of energy for several wave vectors in the neighborhood of the R point. The second
quasiparticle is emphasized by the hatched areas. The other parameters are given in the plot.
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FIG. 6. Paramagnetic quasiparticle band structure along different directions of the simple-cubic Brillouin zone. Solid curve:
U =1.5; dashed curve: U =2.0; dashed-dotted curve: U =2.5. The dotted dispersion branches are mathematical solutions of (2.14)
without any physical significance. The band occupation is n =0.25; arrows at the margins indicate the location of the Fermi energy.
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matrix element. The width of this subband is always
smaller than that of the free Bloch band and it decreases
slightly when U grows. Relative to the original E(k) the
wave-vector dependence of the lower branch is distorted.

In addition to this low-lying subband further solutions
of (2.14) were obtained for some wave vectors. At first
they appear only in part of the Brillouin zone and not un-
til a second critical value of U—being the larger the
smaller n —is exceeded, which is not plotted here, do
they extend over the whole zone. For this to happen,
coupling strengths have to be chosen from the domain
U&1.0. Of course, for the CPT this will be beyond its
range of validity but we believe that the modified pertur-
bation theory yields reliable results even when the elec-
tron repulsion is larger than the bandwidth. This may,
e.g., be checked by comparison with findings of theories
formulated for the strong-correlation regime.

The extra solutions always appear in pairs. This can
formally be understood from the behavior of the real part
of the self-energy. A detailed inspection shows that there
always have to be one or three solutions of (2.14). But if
there are three, one of it is situated in an energy region
with large damping. Therefore the broadening of this ex-
citation is so strong that it completely vanishes in the
background of the spectral density, which is in accor-
dance with the results of Fig. 5. This is to say that it is
only a mathematical fixpoint of (2.14) without any physi-
cal relevance.

As the most important consequence we find the two
quasiparticle subbands of the Hubbard model which are
well-known from its strong-coupling limit. It is worth
noting that a perturbation approach starting from the

free band is able to reproduce qualitatively these two
dispersion branches about To and To+U, respectively.
Because we have performed a second-order perturbation
theory only, it is of course not surprising that the exact
position of the bands cannot be reproduced. In particu-
lar a n dependence remains in the splitting of the two
subbands.

It has to be mentioned that the additional physical
band first appears for wave vectors which correspond to
maximal Boch energies. Here a propagating test electron
has a very small group velocity and therefore is quite
strongly localized. Hence it sees an atomic Hubbard
crystal" which consists only of two energy levels separat-
ed by the energy amount U. Moreover if the energy of
the test electron is large, already moderate interaction pa-
rameters are suScient to produce a second subband lying
energetically above the first one. At the I point-
ano eother wave vector with vanishing group velocity of the
test electron —an intermediate U is not strong enoug o
push the second subband above the first one. Hence the
upper subband does not occur before U has become quite
large. In other k regions the test electron moves fast,
therefore "averages" over the two atomic situations an
is similar to a Stoner-type excitation. In addition, a split-
ting of a band is accompanied in general by a repulsion of
the subbands favoring a flattening of the lower dispersion
branch.

These properties are reflected in the QDOS which we
have plotted in Fig. 7 for n =0.25 and various values of
the Hubbard parameter. The small extensions at the
sides of the QDOS are attributed to the broadening of the
quasiparticles (compare Figs. 2 and 5). There is a sub-

2.5

0.5

0

U values. A ain the arrow indicates the position of the chemical potential.FIG. 7. Paramagnetic QDOS for n =0.25 and various va ues. gain e
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band for all U in the vicinity of the zero of energy, the
center of gravity of which changes only insignificantly
when U is increased. Especially it is not shifted as much
as one would expect for a Stoner-type band. This sub-
band contains electrons which while propagating in the
crystal meet predominantly empty lattice sites. Apart
from that there occurs a second subband which for small
U is only visible as a shoulder. It shifts proportional to
the interaction parameter with a proportionality factor of
roughly 0.5. This subband corresponds to quasiparticles
which hop mainly via lattice sites already occupied by
another one with the opposite spin which is why an addi-
tional energy of U is necessary. Because it is unlikely to
find two quasiparticles at the same site for an electron
number of n =0.25, the weight of the upper subband is
far smaller than that of the lower one. The distribution
of 1 —n for the lower and n for the upper subband,
which holds exactly in the limit of infinite U, is recovered
approximately. The separation of the second subband be-
comes more pronounced if a greater band filling is
chosen. This may already be inferred from Fig. 3, but
Fig. 8 provides another example for this assertion, too.

In conclusion, for nearly any band occupation n there
are two quasiparticle subbands in the spectrum which are
both displaced compared to the single Hartree-Fock
band. The distribution of their spectral weights corre-
sponds roughly to that obtained in the atomic limit. For
instance, the QDOS obtained by the moment method of

Nolting et al. ' ' exhibit qualitatively exactly the same
features as discussed above. If it hence is possible to ex-
plain the satellite structure in the Ni spectrum in detail
within the frame of a second-order perturbation formal-
ism, this satellite is not made of propagating bound hole-
hole pairs but it is rather due to single (quasi-) holes mov-
ing via lattice sites occupied by another (quasi-) hole with
reversed spin. This picture is in accord with Ref. 38
where detailed calculations show an excellent agreement
with experiment.

In the present approach the results for more than half-
filled bands may be constructed by the particle-hole sym-
metry of the Hubbard model. We therefore in general
deal only with the case O~n ~1. Analyzing in this
domain the n dependence of the QDOS for a given
Coulomb repulsion shows that in empty (or completely
filled) bands no electron correlations are present and the
self-energies vanish identically. Then one finds the Ston-
er results, which are exact in this situation. Hence, when
the electron or hole number is small, the efFects described
above are weak and almost invisible. Increasing the band
occupation towards n = 1 strengthens more and more the
tendency of building up two subbands in the QDOS even
when the U values are only moderate.

C. The ferromagnetic phase transition

For certain parameter constellations there is an addi-
tional fixpoint of the equations (3.33), belonging to a fer-

3.D—

1.5-

3 Q5

FIG. 8. Ferromagnetic QDOS for n =0.75 and various Coulomb matrix elements U. Dashed curve: pt, solid curve: pt. The Fer-
mi level is marked by an arrow.
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romagnetic state of the system. We calculated the inter-
nal energy at T=0 K, which is suf5cient for answering
the question of stability, for some parameter sets. In
every case it turned out that the collectively ordered crys-
tal is physically realized.

We first display the ferromagnetic QDOS in Fig. 8 for
fixed band filling (n =0.75) but varied Coulomb repul-
sion. Although the choice of U =2.5 seems to be large
for a perturbation theory the results are physically very
plausible. The paramagnetic densities of states as repeat-
edly mentioned show a trend towards formation of two
bands. In passing over to ferromagnetism the polariza-
tion of the conduction electrons, defined as the quotient
of magnetization and mean electron number, increases
abruptly to a high value close to saturation. The less
electrons there are in the band the sharper this transition
is. Within the scope of the obtainable numerical accura-
cy it was not possible to decide whether the transition is
accompanied by a finite jump or a very steep but continu-
ous ascent. In any case, taking into account the effect of
finite temperatures should lead to a broadening of the
transition and more accurate conclusions may be possible
then.

The dashed majority-spin QDOS p& is identical with
the Stoner density of states corresponding to a shift of
Un &. Because the magnetization is saturated the occupa-
tion number n& is zero and p& coincides with the free
Bloch density of states. From a physical point of view

this reflects the fact that in a system of electrons with
majority-spin direction only there is no possibility what-
soever for two electrons to experience the Coulomb in-
teraction. In compliance therewith the system behaves
like a noninteracting Fermi gas in a simple-cubic lattice.
In going to finite temperatures this picture will no longer
be correct because then minority-spin electrons can be
excited and the Coulomb repulsion will have effects.

Even at zero temperature the situation for a spin-$ test
electron is much more complicated because the Pauli
principle is also obeyed at lattice sites which are already
occupied with a majority-spin electron. Consequently the
spectrum consists of two subbands. Energetically they
are separated approximately by an amount of U and they
are connected by a weak damping induced background
contribution.

Figure 9 attests to the fact that indeed both subbands
are formed by well-defined quasiparticles. It shows the
ferromagnetic spin-$ band structure for U = l. 5 and 2.5.
For comparison, the dispersion of Bloch electrons is also
drawn as a dashed-dotted curve, made to coincide at the
R point. Again there occurs a third mathematical but
physically nonrelevant solution of (2.14), which is indicat-
ed by the dotted curves. Taking U =1.5 the upper sub-
band is not yet spread over the whole zone. The physical
branches follow that of the Bloch electrons quite well in
curvature but with a smaller bandwidth. Branches be-
longing together are separated approximately by an

e (k)

---~U =2.5

FIG. 9. Spin-$ ferromagnetic quasiparticle band structure in the simple-cubic Brillouin zone for n =0.75. Solid curve: U =1.5;
dashed curve: U =2.5. Dotted lines are the unphysical solutions of (2.14). The dashed-dotted line describes the dispersion of Bloch
electrons, fitted at the R point.
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amount of U.
The QDOS's show already that the minority-spin spec-

trum is shifted to higher energies in rough proportion to
U. This is seen more clearly in Fig. 10 where we have
plotted the difference between the lower band edge of the
minority-spin spectrum and the Fermi level as a function
of the Hubbard parameter U. In the Stoner model this
quantity behaves like Um = Un in the case of saturation
magnetization. But in the present approach the slope is
less than half this value. In contrast to mean-field theory
where ferromagnetism is caused by a rigid shift of Um of
spin-T versus spin-l single-band spectra, a somewhat
diff'erent mechanism works in the MPT. It consists in a
narrowing of the lower spin-$ subband due to a lowering
of the weight factor 1 —n &, where the occupation number

n& increases from —,n to n in the transition region. This
effect is superimposed by a displacement of the total
QDOS which is proportional to U but strikingly weaker
than in the Hartree-Fock case. In the paramagnetic case,
that is, in a situation where the self-energies themselves
are shifted as —,

' Un, the position of the lower subband was

nearly independent of the interaction parameter. Hence
the obvious conjecture arises that the remaining displace-
ment of the complete spectrum of the ferromagnetic solu-
tion is about —,'Um when the self-energy is shifted by
Um = Un. Following this argumentation one expects Cu-
rie temperatures which are lowered drastically in com-
parison with the unphysically high values of mean-field
theory.

In Fig. 11 we show the phase diagram for paramagne-
tism and ferromagnetism at T=O K as a function of
Coulomb repulsion U and band filling n. In addition the
phase boundary of the Stoner model is plotted as a
dashed line. Above all we recognize that the parameter
region with a collectively ordered electron system is
shrunk drastically in comparison with the Hartree-Fock
calculations. This is not at all surprising because it is
well known that the possibility of spontaneous magneti-
zation is considerably overestimated in the mean-field
theory of the Hubbard model. But the most remarkable
fact is that there seems to be a lower critical band occu-
pation n, =0.6 below which we have not found any fer-
romagnetic solutions although we went to very high U
values. Of course, strictly speaking such an assertion will
not be free of doubts considering that a perturbation for-
malism valid for weak electron-electron correlations has
been used. We nevertheless believe that it is reliable in
the coupling strength region plotted. In contrast the
Stoner theory yields a finite Us, = Us, (n) above which the
ferromagnetic solution is the stable one for any band
filling n.

Close to the half-filled band case the MPT gives a criti-
cal U value for ferromagnetism which is of order l. This
reflects the physical situation that in order to obtain a
macroscopic magnetic moment the gain in potential ener-
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FIG. 10. Energy difference between the lower band edge of
the minority-spin spectrum and the Fermi level as a function of
the Hubbard parameter U at a band filling of n =0.75.

FIG. 11. T =0 K phase diagram para- vs ferromagnetism in
terms of band occupation n and Coulomb interaction U. The
hatched region corresponds to ferromagnetically ordered solu-
tions. The dashed curve is the Stoner phase boundary, which
separates Stoner paramagnetism (SPM) from Stoner fer-
romagnetism (SFM).
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gy due to a parallel alignment of the spins which is ap-
proximately Un has to compensate at least for the loss in
kinetic energy which is at most the full bandwidth 8'=1.
Hence below a coupling strength U, =0.8 no ferromag-
netic solution occurs no matter how large or small the
band filling is.

This again is in remarkable qualitative agreement with
the strong-coupling phase diagram of Nolting and Bor-
giel. ' The only difference is that our critical n, is some-
what larger and our critical U, is a little smaller than
theirs. One may draw two important conclusions from
this: First, the method of spectral moments, which

works particularly well in the domain of large U, is suit-

able even for the regime U=8' and second, it corro-
borates that second-order MPT is not restricted in its
range of applicability to parameter constellations with
U ~ F. Because of particle-hole symmetry the phase dia-

gram for mean electron numbers 1 & n ~ 2 is simply ob-
tained by a reflection of Fig. 11 at the n =1 axis.
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