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Quantum efFects in deep inelastic neutron scattering
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In the impulse approximation (IA), which is used to interpret deep inelastic neutron scattering
measurements, the predicted scattering is identical to that which would be obtained from a gas of
noninteracting atoms, with the momentum distribution of atoms in the target system. The validity
of the IA rest on the approximation that the struck particle recoils freely after the collision with the
neutron. Departures from the IA are usually attributed to final-state effects (FSE), which are caused
by the breakdown of this approximation. A second implicit assumption of the IA, which has re-
ceived little attention in the literature, is that the atoms in the target system have a distribution of
energies in the initial state, i.e., before the collision. This is not true in a quantum system at zero
temperature, where, although there is a distribution of atomic momenta, the initial state has a
unique energy. It is shown that "initial-state effects" (ISE), which are caused by the breakdown of
the latter assumption at low temperatures, largely account for observed asymmetries and peak shifts
from the IA prediction for S(g, co). It is shown that if FSE's are negligible, ISE's are negligible
when q »p„where q is the momentum transfer and p; is the root-mean-square atomic momentum.
Finally, it is shown that FSE s are negligible when q »p„ in systems other than quantum fluids and
that, since in this regime ISE s are also negligible, the IA is reached for such systems when q »p, .

I. INTRODUCTION

The technique of deep inelastic neutron scattering
(DINS) was first proposed by Hohenberg and Platzmann'
over 20 years ago, as a method of directly observing the
Bose condensate in superAuid He. They suggested that
at sufficiently high momentum transfers, the impulse ap-
proximation (IA) can be used to interpret neutron
scattering data. In the IA, the scattering cross section is
simply related to the single-particle momentum distribu-
tion of atomic nuclei in the target system, and DINS pro-
vides a unique probe of the atomic momentum distribu-
tion function. A considerable number of DINS experi-
ments on He have been performed, but the analysis of
data is complicated by the presence of departures from
the IA. There is an extensive theoretical literature on
this question, ', but no consensus of opinion on a
number of fundamental points.

It has recently also become more important to deter-
mine the validity of the IA for neutron scattering from
other condensed matter systems, due to the development
of spallation neutron sources. DINS requires the use of
relatively high-energy neutrons ( ) 1 eV). Spallation
sources have much more intensity at these energies than
reactor sources and should facilitate more precise mea-
surements of atomic momentum distribution functions,
with much improved resolution and counting statistics.
Thus measurements on samples containing light atoms
other than He will become more attractive. The advan-
tages of spallation neutron sources in DINS have already
been demonstrated in definitive measurements on He,
performed at the Intense Pulse Neutron Source (IPNS) at
Argonne National Laboratory, and in measurements on
other systems at the National Laboratory for High Ener-

gy Physics (KEK) (Refs. 24 and 25) source in Japan. The
advent of more intense sources such as Isis at Rutherford
Appleton Laboratory, United Kingdom and Los Alamos
Neutron Scattering Center (LANSCE) at Los Alamos
National Laboratory, should bring further increases in
both attainable momentum transfers and the sensitivity
of rneasurernents. DINS measurements at the present
time have similar count rates and resolutions to those
made 20 years ago in Compton scattering, a technique
which is closely related to DINS (DINS is sometimes re-
ferred to as "neutron Compton scattering"). The sensi-
tivity of Cornpton scattering measurements improved
rapidly following the early work, and the technique has
subsequently developed into a fruitful branch of research.
DINS measurements can be expected to show similar
rapid improvements.

In this paper a new approach to determining the form
and magnitude of departures from the IA, which was
suggested by the work of Gunn, Andreani, and Mayers,
is developed. Most theoretical treatments of the IA are
formulated in terms of the behavior of the single-particle
correlation function I (q, t) at short times t In this pa.per
a formulation is given in terms of r, the position coordi-
nate of the struck particle. This is in many ways a more
natural approach for a determination of momentum dis-
tributions, since r rather than t is the conjugate variable
to p. The validity of the approach for scattering from a
many-body system relies essentially on the incoherent ap-
proximation, which ensures that S(q, to) is independent
of the coordinates of other particles (see the Appendix).
Indeed it is implicit, in the assumption that DINS mea-
sures the momentum distribution of a single particle, that
this is so. The formal simplicity of the treatment, which
contrasts with rather complex many-body treatments, al-
lows for the clear physical interpretation of a number of
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features that have been observed in experimental data
and numerical calculations.

Perhaps the main advantage of the approach is that
two essentially different approximations inherent in the
IA can be separated and their individual effects exam-
ined. In the IA it is assumed both that the struck particle
recoils freely in the final state and that the initial state of
the scattering system can, in a sense, be described as a
collection of free particles. The scattering cross section is
identical to that which would be obtained for a fictitious
gas of noninteracting particles, with a momentum distri-
bution identical to that of the atoms in the target system.
The "initial state" is the state of the target system before
the scattering event, and the "final state" that after.
"State" is synonymous with "condition" in this paper, al-

though often a single quantum state is referred to. Pre-
cisely which meaning is taken should be evident from the
context.

Departures from the IA caused by interactions of the
struck atom in the final state are generally referred to as
"final-state effects" (FSE's). Correspondingly, in this pa-
per departures from behavior of the scatterer as a collec-
tion of free atoms in the initial state are referred to as
"initial-state effects" (ISE's). It is shown that significant
departures from the IA occur at low temperatures be-
cause of ISE's. The physical origin of these departures is
the quantum nature of the initial state. Calculations on
exactly soluble models and comparison with experimental
data shows that ISE's largely account for observed inac-
curacies in the IA prediction.

In Sec. II an introduction to the IA is given, and the
main physical approximations inherent therein are exam-
ined. In Sec. III ISE's are treated by representing the
atom as a free particle in the final state, but using the ex-
act form of the initial state and comparing the resultant
scattering cross section with that calculated in the IA.
The treatment is illustrated in Sec. IV by a calculation on
an exactly soluble model system. In Sec. V the main con-
clusions and implications for measurements are dis-
cussed. Throughout the paper the calculation of S(q, co)
is treated as a single-particle problem. The justification
of this approach in a many-particle system is given in the
Appendix.

II. THE IMPUI.SK APPROXIMATION

A. Introduction to impulse approximation

where n (p) is the probability that the target particle has
momentum p, co is the energy transferred to the particle,
and M is the mass of the particle. The cross section is
identical to that obtained in scattering from a gas of free
particles with momentum distribution n (p). The physi-
cal rationale behind the IA is that F; can be neglected
during the collision. Thus, the potential energy of the
struck particle is also neglected in the 5 function, which
expresses energy conservation, and the particles appear
as free during the collision process. It should be stressed
that the effects of the interaction between the target par-
ticle and its environment are still significant, as together
with the temperature they determine the momentum dis-
tribution n (p). Conversely a measurement of n (p) pro-
vides information on interatomic interactions.

In neutron scattering in the IA, the scattering is also
determined by the expression (2.2). In this case S (q, co) is
the incoherent neutron scattering function, and the par-
tial differential cross section is

0 =(k i /ko) ~b ~ S(q, co),
1

(2.3)

where k& and ko are the wave numbers of the scattered
and incident neutrons, F. , is the energy of the scattered
neutron, and b is the scattering length.

The preceding argument given for the validity of the
IA is difficult to apply to neutron scattering. For exam-
ple the definition of the "interaction time" At is unclear.
Mott and Massey define the interaction time as

ht =br/v, (2.4)

where U is the velocity of the incident particle, and hr is
the range of the force between the incident and target
particles. Although this criterion gives reasonable results
for collisions between atoms, it fails for neutron scatter-
ing because of the short range of the interaction between
the neutron and the target nucleus. There is also a prob-
lem of principle in that the argument implies that the in-
cident neutron can be described by a wave packet, and
suggests that the validity of the IA is linked to the wave-
length spread of the incident beam. No such dependence
occurs in theoretical derivations of the neutron cross sec-
tion, which assume that the incident neutron can be
represented as a plane wave.

It is shown in Sec. III that a better criterion for the va-
lidity of the IA in neutron scattering is (with h = 1)

In a classical system, the IA is valid when the condi-
tion

e»p; (2.5)

q»F;ht (2.1)

is satisfied. q is the momentum transfer, At is the approx-
imate time interval during which the interaction between
the incident and struck particles is significant, and F, is
the force exerted on the struck particle by other particles
in the scattering system. When (2.1) is satisfied, the cross
section for scattering from a single particle is proportion-
al to

S(q, co)= f n(p)5(co (p+q) /—2M+p /2M)dp, (2.2)

where p; is the root-mean-square atomic momentum. Di-
mensional arguments can be used to obtain order of mag-
nitude estimates, in terms of p, and M, for other quanti-
ties characterizing the atomic motion, e.g., (1) length,
r, =1/p; (in a solid this is approximately the rms dis-
placement of the atom from its mean position), (2) the
mean kinetic energy, sc, =p; /2M, which is approximately
(in a harmonic system exactly) equal to the mean poten-
tial energy, and (3) the mean force on the atom F, =a, /r, . .

Within the accuracy of these estimates (2.5) agrees
with criteria obtained by other authors, who have used a
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variety of treatments. For example Reiter and Silver'
give

approximation is

S(q, co)=(1/N) gg; g g (i
~ exp( —iq r„)~f )

q»(F, M/hp)'", (2.6) i f n

where Ap is the width of the atomic momentum distribu-
tion. Equating hp andp; gives (2.5). Similarly conditions
given by Sears'

q»F, /2K, ,

and Platzmann and Tsoar

q»(2ME~)'",

(2.7)

(2.8)

where Ez -E, is—the binding energy, reduce to (2.5).
We note that although these criteria depend only upon

the magnitude of q and the equilibrium properties of the
initial state, it is generally assumed that they indicate
when FSE's are small. It is shown in Sec. III that (2.5) is
applicable only at low temperatures and in fact indicates
when ISE's are small. FSE's were discussed in the origi-
nal paper of Hohenberg and Platzmann, ' who argued
that the observed momentum distribution in He would
be broadened due to the finite lifetime of the final state,
introduced by collisions of the recoiling atom with other
atoms. This finite lifetime makes any measurement of the
energy transfer, and hence the momentum transfer, un-
certain. Their argument gives a broadening of the ob-
served momentum distribution by Ap, = 1/r„where r, is
the mean distance between collisions. In this case the
magnitude of the broadening does indeed depend upon
the final rather than initial state as r, = I /(poo ), where po
is the number of atoms per unit volume and o is the
atom-atom collision cross section. The cross section 0. is
a function of the relative velocities of the colliding atoms
that has only a weak dependence on the initial state at
high q.

Final-state broadening of the observed momentum dis-
tribution (or to be more precise the Compton profile) is
one manifestation of FSE's. The other is the introduction
of distortions into the measured n (p). Roughly speak-
ing, the physical origin of the former is the confinement
of the struck atom in the final state by the "cage" of
neighboring atoms, while that of the latter is departures
from free atom behavior in the interior of the cage.
These departures are caused by the longer-range com-
ponent of the interatomic potential, which introduces a
nonuniform potential within the cage. The combination
of these two processes introduces an asymmetric "resolu-
tion function, " which is independent of any instrumental
resolution but is determined by q and co, and the proper-
ties of the target system. It will be shown that the asym-
metries introduced by the latter process become small at
high q. In Sec. V a brief argument is given that shows
that final-state broadening is small at high q in systems
other than quantum fluids. A more detailed discussion of
Anal-state broadening is planned for a subsequent paper.

B. Formulation of the impulse approximation
in neutron scattering

X5(co+E; E—I ), (2.9)

S(q, co) = I/(2m )II(q, t) exp( icot)dt—,

where

(2.11)

I(q, t}=(exp[ —iq r(0)]exp[iq r(t)]) . (2.12)

r(t) is the Heisenberg operator for the position of the nu-
cleus at time t, and ( ) denotes a thermal average over
possible initial states of the scattering system. The IA
consists of approximating r(t) by

r( t) =r(0)+ (t /M)p, (2.13)

where p is the momentum operator conjugate to r. With
the approximation (2.13), it is straightforward to show
that S(q, co) reduces to the expression given in (2.2). As
in the classical case, for a gas of free particles (2.13), and
consequently (2.2), are exact. This equation will also be
accurate if I (q, t ) is small unless t is small, since the
right-hand side (RHS) of (2.13) consists of the two
highest-order terms in a Taylor expansion of r(t) in t.
Equation (2.13}has no explicit behavior on the potential
energy of interaction, and clearly describes the motion of
a free particle with momentum p.

Equation (2.2) can also be derived in a more elementary
fashion by directly treating the scattering system as a col-
lection of free particles. For scattering from a single par-
ticle in a given quantum state ~i ), (2.9) gives

2

S(q, co)= g J P,'(r) exp( —iq. r)QI(r)dr
f

X 5( co+ E; —E/ ), (2.14)

where g; and PI are the initial and final state wave func-
tions of the particle. For a free particle, with momentum

p and normalized in a box of volume V,

where ~i ) and ~f ) are the initial and final quantum
states, E, and Ef are the corresponding energies, r„ is the
position coordinate of atom n, and N is the number of
atoms. g, is the Boltzmann factor for occupation of
quantum state ~i ), and g;, which denotes a sum over ini-
tial states, performs a thermal average. It is assumed in
the IA that the scattering is incoherent so that terms con-
taining products of the form

exp(iq r~ }exp( iq—rk)

with kAj give negligible contribution. Then each atom
gives an identical contribution to S(q, co) and

S (q, co ) = g g; g ~ ( i
~
exp( i q r ) ~f—) ( 5( co+E, EI ) . —

i f
(2.10)

Following the standard treatments S(q, co) can be writ-
ten as

The standard expression for S(q, co) for neutron
scattering from a system of identical atoms in the Born g;(r) = V ' exp(ip. r) (2.15)
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and E,. =p /2M. Similarly the final state is described by
a plane wave with wave vector kf and energy

Ef =kf/2M. The integral in (2.14) is then zero unless

kf =p+q, and unity otherwise. Thus

$(q, co)=5(co—(p+q) /2M+p /2M} .

The extension to (2.2) is obvious.

(2.16)

C. Assumptions of the impulse approximation

The main physical assumptions that are used to derive
the IA are as follows.

{1)The scattering is incoherent, i.e., the scattering is
insensitive to the effects of correlations between atomic
positions (except insofar as these infiuence the momen-
tum distribution).

(2) The final-state wave function of the particle can be
treated as a plane wave, with wave number kf and energy

kf /2M.
(3) The initial state of the scattering system is treated

as a collection of free particles with momentum distribu-
tion n (p).

Assumption (1) is valid for scattering from a hypotheti-
cal perfect rigid crystal when

q»1/a, (2.17)

where a is the nearest-neighbor interatomic separation.
In this case Bragg peaks become closely spaced and
merge into an incoherent background. As previously
mentioned, for other approximations in the IA to be valid

q)&p; must be satisfied, and, since in most systems at
low temperatures p; » I/a, (2.17) should be well satisfied
in the impulse regime. It is assumed throughout this pa-
per, as in previously published work, that the incoherent
approximation is satisfied in any DINS measurement.

It is implicit in the formulation of assumption (2) that
the notion of a single-particle wave function for the
struck particle in the final state has meaning in a many-
particle system. This seems plausible, since, at energy
transfers much greater than those of typical collective
modes within the scattering system, one would expect ex-
citations to have a single-particle nature. Even if this is
allowed, then it may still appear that assumption (2) is
never valid in a real system, since the final-state wave
function will be confined to a region of space of the order
of atomic dimensions by collisions with other atoms.
However, from the form of (2.14), it is clear that all that
is necessary for an accurate calculation of S(q, co) is that
gf(r) is plane wave like over the region of space, where

g;(r }has significant amplitude. When co » V, , deviations
from plane-wave behavior in this region should be small,
and since $ (q, co) is insensitive to departures from free
particle behavior of Pf, which occur outside this region,
assumption (2) is again plausible.

Assumption (3) will be valid at high temperatures,
where the effects of interatomic interactions are less im-
portant and the behavior of the scattering system ap-
proaches that of a gas of free atoms. However this region
is correspondingly of less experimental interest, since
$(q, co) is insensitive to the interatomic interactions that

are the object of investigation. At low temperatures as-
sumption (3) is more questionable. It is shown in Sec. III
that at high q the IA is reached in the absence of FSE's,
and that therefore ISE's are negligible under these condi-
tions, but that at lower q assumption {3)can be a serious
source of error at low temperature, even when FSE's are
negligible.

III. INITIAL-STATE EFFECTS

A. The plane-~ave impulse approximation

X5(cu Ef+E—;) .

From assumption (2),

gf(r)= exp(ikf r)

and

(3.1)

(3.2)

Ef =kf/2M . (3.3)

Normalization constants are neglected throughout, as
they are not relevant to the discussion. The magnitude of
S (q, co ) can always be derived from the condition

fS(q, co)de = 1, which is rigorously true in the in-

coherent approximation. ' Substituting (3.2) and (3.3) in
(3.1) gives

$(q, co) = g lli, (kf —q) I'5(~+E, —kf /2M)
f

= g n(kf q)5(co+E; —kf /2M) . —
f

(3.4)

(3.5)

p; is the Fourier transform of 1(t, , and n (p) = ~p;(p) ~
is

the momentum probability distribution of an atom in
state i. Converting the sum over final states to an integral
over kf, and remembering that when the final state is a
plane wave the density of points in kf space is indepen-
dent of kf, we obtain

S(q, co)= f n (kf q)5(co+E, kf—/2M)dk—f . (3.6)

Making the substitution p =kf —
q gives

$(q, co)= f n(p)5(su[(p+q) 2/M+E]) pd. (3.7)

The difference between (3.7), which has been derived
by explicitly neglecting FSE s, and (2.2) is entirely caused
by ISE's. In the derivation of (2.2), it is assumed that the
momentum and energy of the struck atom are related via
E; =p /2M, so that a distribution of momenta implies a
distribution of initial-state energies. The presence of E;
rather than p /2M in the 5 function of (3.7) is due to the
quantum nature of the initial state. As zero temperature
the system is quantum dominated and there is a precise
ground-state energy, but a distribution of momentum
values. Following the terminology of quasielastic
electron-nucleon scattering, where similar arguments

From (2.10) the neutron scattering function for scatter-
ing from a single particle at zero temperature is

2

$(q, co)= g f 1(;(r)exp( —iq r)gf(r)dr
f
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~1/(kf)(dkf/dx}~ &&1 . (3.8)

In this case a description of the form (3.2) is permissible,
with

kf (x)= [2M [co+E; —V(x)]] '~ (3 9)

As mentioned previously, it is only necessary for (3.2) and
(3.3) to be a good approximation in the region of space
where g;(r} has significant amplitude (i.e., r=r, ) for a
good approximation to S(q, co) to be obtained. At large
energy transfers (3.9) clearly satisfies (3.8), in this region.

A simple approximation to (3.9) is

Icf [2M(co+E; —Vf )]'~~ (3.10)

where the x dependence of kf is neglected and Vz is a
constant parameter that represents some average of V(x}
over the trajectory of the particle in the final state. In
this case E, in (3.7) is replaced by a where

a=E —Vi f ' (3.11)

If it is assumed that Vf is equal to V;, the mean potential
energy in the initial state, then a=K;, where K, is the
mean kinetic energy of a particle in the initial state and

S(q, co)= f n(p)5(co(p+q)'/2M+K;)dp . (3.12)

have been used, we henceforward refer to (3.7) and
its variations discussed later as the plane-wave impulse
approximation (PWIA).

In the work of Gunn, Andreani, and Mayers, a WKB
approach was used to investigate departures from plane-
wave behavior in the final state. The necessary condition
of validity for the description of gf(r) in the WKB ap-
proximation is

tion than the IA, since only FSE's are neglected in the
derivation of the former, whereas both FSE's and ISE's
are neglected in that of the latter. It is also worth noting
that, as will be shown, at high q (3.12) reduces to the IA,
which does satisfy both sum rules.

B. High q behavior

It can be seen from (2.2) that in the IA the 5 function
in S ( q, co ) is only nonzero for points p in atomic momen-
tum space which satisfy

p q=(M/q)(co —
q /2M), (3.15)

contribute to S(q, co). Assuming that n (p) is small when

p »p;, only points for p =p; need be considered. In this
case, when q »p;, the second term on the RHS of (3.16)
can be neglected, and p /2M and K, in the 5 functions of
(2.2) and (3.12) can be interchanged with negligible error.
The insensitivity of S(q, co) to an interchange of p /2M,
K;, or a in the 5 function at high q is used at a number of
points in this paper. The essential argument is that the 5
function determines which points in atomic momentum
space contribute to S (q, co). At high q the change in the
position of these points and in the corresponding value of
n(p) introduced by the interchange can be neglected.
The PWIA thus reduces to the IA when q »p;. This is

the justification for the criterion (2.5).

C. Scaling

where q is the unit vector along q, whereas from (3.12)
only points

p q=(Mlq)(co q
—/2M)+(M/q)(K, —p . /2M) (3.16)

This equation was first given, without derivation, by
Stringari. He justified the choice of K, in the 5 function
by the observation that this gave the correct first moment
of S(q, co). It is rigorously true that '

f coS(q, co)dco=q /2M =cori, (3.13)

In an isotropic system (3.12) reduces to
Ip+ I

S(q, co)=(M/q) f pn (p)dp,

where

p+ =qua[2M (co+K;)]'

(3.17)

(3.18)

where this equation defines the "recoil energy, " co+.
However, the second moment of S (q, co) must also satisfy
the "co sum rule, "which is satisfied in the incoherent ap-
proximation, '

f co S(q, co)dco=
&

con K; +cog (3.14)

S(q,co)=(M/q)J(yi ),
where

(3.19}

When q »p;, p+ ——2q, so n (p+ }=0 and p+ can be taken
as infinite. Then

and (3.12) overestimates the second moment by

f n(p)(p /2M K, } dp . —
y, =p =q —[2M(co+K, )]'~ (3.20)

The choice a(~„which is equivalent to Vf & V, , must be
made to satisfy (3.14). It is physically more reasonable
that Vf & V;, since the struck particle will tend to move
away from a potential minimum, to regions of higher po-
tential energy than those occupied in the initial state. In
the intermediate q range, where approximations that are
only expected to be valid at high q are used, it is not
surprising that the form of S(q, co) derived in (3.7) cannot
simultaneously satisfy both sum rules. Despite this, one
would still expect that (3.7}should be a better approxima-

J(y, )= f pn (p)dp . (3.21)

S(q, co)=(M/q)J(y),

where

(3.22)

The dependence of qS(q, co) on the single variable y„
rather than q and co separately, is known as "y, scal-
ing.

In the IA it can similarly be shown from (2.2) (Refs. 17
and 37) that in an isotropic system S(q, co) obeys y scaling
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y =(M/q)(co —
q /2M) . (3.23)

The function J(y) is analagous to the Compton profile in
Compton scattering. It can be interpreteted physically as
the probability that an atom has the momentum com-
ponent y along the direction of q. The dependence of J
on the variable y, rather than y has two important conse-
quences. (i) J(y) and J(y& ) are peaked at y or y& =0, i.e.,
at constant q the position of the peak in S (q, co) is at the
"recoil energy" co& =q /2M in the IA, and

=qi/2M —a, in the PWIA. (ii) Since J (y) =J ( —y),
S(q, co) at constant q in the IA is symmetric in co about
its peak. The PWIA is not symmetric about its peak.
S(q, co) rises sharply at co (co+, and falls off more slowly
at co ) co+. (see Figs. 2 and 3).

. As expected from the discussion following (3.16), for
q &&p;, y& and y become identical since,

versely at fixed q, S(q, co) will move to higher values of co.
A peak shift to higher ~ has been predicted in previous
calculations of FSE's," which have taken account of
the energy of interaction between particles. In contrast
the calculation of Silver and Reiter' on FSE's in a sys-
tem of quasiclassical hard spheres, where there is no in-
teraction energy, predicts no shift of the peak to larger
values of co, in agreement with the aformentioned inter-
pretation.

F. High-temperature behavior

At high temperatures one expects the ISE's should be
small, since interactions between particles become less
significant, and the initial state approximates more close-
ly to a gas of free particles. Proof of this can be seen
from the following argument. At finite temperatures the
momentum distribution in an isotropic system is

y, =(2m/p+ )(q /2M —co —~;) . (3.24)
n (p)=gg;n;(p), (3.25)

When q &&p;, p+ ——2q, and ~,. /p+ ——0, so that y, =y.

D. The validity of the PWIA

Comparison with experimental data and calculations
on exactly soluble models shows that S(q, co) scales with

y, rather than y at low temperatures. For example
Stringari showed that (3.12) gave remarkably good
agreement with the He data of Martel et al. The re-
sults given in Sec. V for a particle confined in a box with
rigid walls and previously published calculations on a De-
bye solid, ' show that the PWIA is a much better ap-
proximation at low temperatures than the IA in these
model systems. The assymetry in graphite data is also
well described by a harmonic Debye model, and hence
this system must also give better agreement with the
PWIA. That the PWIA gives much better agreement
than the IA, with data and calculations on systems with
such difFerent potentials, together with the demonstration
above that, the PWIA relies on a less restrictive set of ap-
proximations, provides strong evidence that the PWIA is
a better approximation than the IA.

E. Final-state eff'ects

Equation (3.7) predicts that ISE's cause the peak of
S(q, co) to move to co„E,, compared w—ith co~ in the IA.
Shifts in the recoil peak to lower energies are usually at-
tributed to FSE's. In fact it appears from the treatment
above that interactions in the final state move the peak to
higher energies. The potential energy in the final state
was treated by replacing E; with a=E; —Vf. a decreases
in magnitude as the final-state interaction potential Vf in-
creases and this causes the peak (at cuz —a) to move to
higher co values. The tendency for FSE's to move the
peak to higher a can also be seen in a very direct manner
from the form of (3.1). The dominant effect of the intera-
tomic potential will be to slow the recoiling atom as it ap-
proaches other atoms. This will introduce longer wave-
length Fourier components into ff(r), and hence lower q
components into S(q, n). Thus, at a given energy
transfer S(q, co) will shift to lower values of q, while con-

where n;(p) is the momentum distribution of an atom in
the state i, and g; is the Boltzmann factor as before. If
n (p) is approximated by

n (p) =gg;5(p —2M@; )' ), (3.26)

IV. PARTICLE IN A BOX AT ZERO TEMPERATURE

The calculation of S(q, co) for neutron scattering from
a single particle confined in a cubic box with rigid walls,
provides clear illustrations of the formalism and con-
clusions of Sec. III. Taking the x,y, and z axes perpen-
dicular to the cube faces, the scattering cross section at
zero temperature, from a particle in a cubic box of side
2a, is given by Eq. (3.1) with

and

1(,(r) =g, (x)g, (y)g, (z) (4.1)

gf(r)=Q„(x)P (y)P, (z), (4 2)

then Eqs. (2.2) and (3.12) give identical results, i.e., the
PWIA is identical to the IA. Equation (3.26) will be a
good approximation at high temperatures, where it is
equivalent to replacing the exact, continuous n (p), by a
series of closely spaced discrete values. The fact that
peak shifts and asymmetries in S(q, co) become small at
high temperature does not appear to be widely known,
possibly due to the generally held assumption that these
features are caused by FSE's, which depend only weakly
on temperature.

It is clear from the preceding argument that (3.12) is
valid only at low temperatures. The use of (3.12) at high
temperatures replaces a thermal distribution of possible
energies by a single averaged value, and is a poor approx-
imation. Calculations on a Debye solid show that the
temperature at which the IA starts to give a better
description than the PWIA approximately corresponds to
the energy of zero-point motion. Rinat ' has also shown
that (3.12) gives poor agreement with liquid neon data at
temperatures close to the classical limit.



41

where

QUANTUM Py'&hCTS IN DIN DEEP INELASTIC NEUTRRON SCA i IERING

A. Exact calculation

47

y„(x)=(1/a' ')11 (, x) cos(k„x) n odd

=(1/a' )II (x
' „n even, x) sin(k„x) n even 7

(4.3)
From (4.3) and (4.8)

S(q, ro)=1/(a) [ (P, q
—k )+(—1)"+' +, q+kn)]

II, (x) is defined as

11.(x)= I 7

=0 ix[&a .
(4.4)

X5(co+E, E—„) .

Since k is o''positive by definition, the
d" f'll

(4.12)

g' of the initial and final sThe ener ies oo
' '

na states are, respective- 5(cg+E, E„)—=5(co+E —kco+E, —k„/2M) =(M/P)5(k„—„—p),
(4.13)

and

E, =3k /2M

Ef =(k„+k~+k )/2M

(4.5)

(4.6)

where

P=[2M(E)+co)]'

Thus

(4.14)

where

k„=no/(2a), n =1 2 3 (4.7)
S(q, co) =M/(aaP) g [f,(q —P)+( —1)"+'4&(q +p)]'

When x is takaken parallel to q the inildhd55
&

and we obtain

X5(k„—P) .

From (4.10) this reduces to

(4.15)

S(q, co) =~
n

g, (x) exp(iqx)g (x)d„x x 5(cu+E E)—
1 n

(4.8)

ca1
i.e., the problem reduces to d' eo one dime

ering from a
square-we11 potential.

a particle in an infinite

From (4.3) the Foe ourier transform of ho t e function g„(x)
is

S q ~)=[pd(P)/a]I(M/P}[, q-
+ —1 "+'f)(q+P)] I . (4.16

B. Im ulp se approximation

Assuming that th e initial state can p
es wit momentum distribution ~P, (p}~,

„p)=a '~'I sine[(p +k„)a]

+ —1 "+'sine[(p —k„)a]), (4.9)
0.3

where sine(p) = sin( )/
it

p» pop p. ~P)( )~ w
'

m in t e state
a i-

In the PWIA and the IA the
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na states
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ates in a square w ll
'

rete. The density of
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QI(x) == ( 1/b '
) exp( ik/x )

and usin (4.11) gives,g

S(q, ~)= [p, (y)/b] [(M/q) l 0i(y) ',

that the final states are a palso lane waves,
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x10
5

(4.17)

41

b 3.23). The expression w'within
s in (4.17) can also be derive v

1i f(22)theone- ih -dimensional analogue o

3

C. Plane-wave impulse app roximation

III A,

S q, co)=[p,(P)/b][(M/P)[lg, q+

lane wave as in Sec.Assuming t at eh the final state is a plan
then from (4.8),

+le, (q -p)l']I, (4.18)

d b 4.14). The expression within
braces j ) can also ebe directly ca cu a e

p

of (3.12) (note t ahat in this modeldimensional form o
E; =a;).

10

~ (gnits k1 /2H)pnergy transfer os
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and PODIA with exact calculationD. Comparison of IA and
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articles appears particu ar

f io
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Substituting (4.19) in (4.8} and using Il, (x)=[II,(x)]
gives exactly the same envelope function as the PWIA.
This explains why the PWIA gives such accurate agree-
ment with the exact calculation in Fig. 3. The differences
between the PWIA and the exact calculation in Fig. 2

are entirely caused by the overlap of the two contribu-
tions to $(q, co) at lower q, which are the only conse-
quence of FSE's in this model.

The model illustrates very clearly that the importance
of FSE's is determined by the probability that an atom in
the initial state occupies regions of space where
significant departures from plane-wave behavior occur.
At high q, where (4.19) is a good approximation, depar-
tures from plane-wave behavior occur only for ix i

& a,
where P;(x}=0and thus FSE's are negligible.

V. SUMMARY AND IMPLICATIONS
FOR REAL SYSTEMS

It has been shown that when final-state effects (FSE's)
are neglected, significant departures from the impulse ap-
proximation occur at low temperatures because of the
quantum nature of the initial state of the target system.
These "initial-state effects" (ISE's) cause the peak of
$(q, co) to move to lower values of co compared with the
impulse approximation (IA} prediction and introduce
asymmetries into $(q, co). Such features are observed in
experimental data and numerical calculations but have
generally been attributed to FSE's. In contrast it has
been shown that FSE's in fact move the peak to higher
values of co.

The PWIA, in which FSE's are neglected, has been
used to derive an expression for $(q, ~), which was first
given by Stringari. This expression predicts that $(q, co)
scales with y &, compared with the y scaling predicted by
the IA. It has been shown that at either high q or high
temperature, the PWIA and the IA are identical, and
that therefore y scaling is obeyed in these regimes when
FSE's are absent. Thus, if experimental data y scales, this
can be taken as evidence that ISE's are negligible.

The discussion of Sec. IVD illustrates that FSE's are
significant only when departures of the final-state wave
function from plane-wave behavior occur in the region of
space which has significant probability of occupation by a
particle in the initial state. Typical interatomic potentials
consist of a relatively weak long-range interaction com-
bined with a short-range repulsive interaction, e.g., the
Lennard-Jones potential. At high momentum transfers q,
any departures from plane-wave behavior wi11 be small,
except in regions of space where the hard-core com-
ponent of the potential is dominant.

The model of Sec. IV crudely describes the high q re-
gime, where an individual atom is confined within a box,

the volume of which is defined by the hard-core com-
ponent of the interatomic potential. Within the box the
longer-range component of the potential can be neglect-
ed, and one expects that the final-state wave function at
high q is given approximately by the form (4.19), with a
the interatomic separation. The region of space with
significant probability of occupation in the initial state is
r = 1/p;, where p,. is the mean atomic momentum. In for
example a Debye solid at zero temperature, the mean
square atomic displacement is (r ) =108(MSD), where

8D is the Debye temperature in K, and M is the atomic
mass in amu. Even for a light element such as Li, the
probability that an atom will occupy regions of space
with r & a is =exp( —100). Thus FSE's should be small
at high q and low temperatures. This conclusion is not
limited to solids, since on the time scale of DINS mea-
surements (= I/co), atoms in a liquid are effectively static.
Reiter and Silver' have arrived at a similar conclusion
using a very different argument. Although in anharmon-
ic systems such as solid He a =1/p;, the model of Sec.
IV, which is an extreme case of an anharmonic potential
[V(x)= lim„„~x /a

~

"], suggests that in anharmonic
systems FSE's are also small. We note that this argument
cannot be applied to He in the presence of a Bose con-
densate since, as shown in the Appendix, off-diagonal
long-range order implies that the initial-state wave func-
tion has significant amplitude at r )&a. However, DINS
should be a reliable method of determining momentum
distributions in systems other than quantum fluids. Such
systems are likely to become the object of more intensive
experimental investigation with the development of spal-
lation neutron sources and improved instrumentation.
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APPENDIX: VALIDITY OF SINGLE-PARTICLE
TREATMENT IN A MANY-BODY SYSTEM

It is shown that if the scattering is incoherent and the
struck particle does not interact with other particles in
the final state, [assumptions (1) and (2) of Sec. II C], then
$(q, co) can be calculated as if the scattering system were
composed of a single particle. A "wave function" and a
corresponding energy can be defined, which when substi-
tuted in the full many-body expression for $ (q, co) give an
apparently single-particle problem.

The exact expression for the incoherent $ (q, co) in an N
particle system at zero temperature is,

(Al)
2

$(q, co)=g f4;(r„r2, . . . , r~)exp( —iq r, )+f(r„r2, . . . , r~)dr„dr2, . . . , dr~ 5(co+E, Ef)—
f

where r„r2, etc., denote particle positions and + is the
many-particle wave function. If there are no interactions
between the struck particle and other particles in the final
state, the final-state wave function can be written as the +f( 1 2 ' ' ' ~N) P( kf 1) ( 2 ' ' N) (A2)

I

product of a plane wave with the N —1 particle wave
function 8 describing the other particles.
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Correspondingly, the final-state energy is a sum,

Ef =kf /2M +E, (A3)

where kf /2M is the energy of the recoiling particle, and
E the energy of all other particles. The initial-state
"wave function" is formally defined as

g;(r, )=f qi;(r, ,r„.. . , r„)8(r,, . . . , r„)dr„. . . , dr~ . n(p)= fp(r) exp(ip r)dr . (A 10)

p(r, rb)= f+, (r, r2, . . . , r~)

Xqi, (rb, r2, . . . , r~)dr2, . . . , dr„. (A9)

In a system with translational invariance p(r, —rb)
=p(r), with r =r, —rb and

From Eqs. (Al) to (A4),
2

S(q, co)=g fg;(r, ) exp[i(q+kf). r, ]dr,
f

(A4) However, the function li, (r) satisfies,
2

n(p)= f f;(r)exp(ip r)dr

From Eqs. (A10) and (Al 1) it follows that

p(r) =f;(r)'g;(r),

(Al 1)

(A12)
X5(co—kf/2M+a), (A5)

where a =E;—E.
Assuming that the parameter a is a constant as in Sec.

III, is equivalent to the assumption that all the energy
transfer is to the struck particle, i.e., that

kf/2M —co= const . (A6)

n(p)= fp(r„r&)exp[ip (r, —rb)]d(r, —ri, ),
where the single-particle density matrix is defined by,

(A8)

This is clearly implied by the assumption that the struck
particle does not interact with other particles in the final

state. Alternatively this can be regarded as an additional
approximation that has a similar accuracy to the replace-
ment of (3.9}by (3.10).

It can be shown [cf. (3.4) and (3.7)] that (A5) reduces to

~(q ) = f IW;(p)l'5(~ —(p+q)'/2M+a}dp,

and furthermore it is shown in Sec. III that when q is
sufficiently large, compared with the width of li, (p), a
can be relaced by p /2M with negligible error. Thus at
high q (A7) reduces to a form identical to the IA except
that n(p) is replaced by Ig;(p)l . The evidence for as-

suming that n (p) is identical to Ig, (p)l at high q in any

system seems overwhelming. It is true by definition, in a

quantum system composed of a single particle in a poten-
tial. It is also true in a many-body system, providing that
in the absence of FSE's, the IA is reached at sufficiently

large q.
The further interpretation of f, (r) is of some physical

interest, although unnecessary for the validity of the dis-
cussion in the text. The single-particle momentum distri-
bution is

where, denotes convolution, thus the presence of off-
diagonal long-range order in the single-particle density
matrix is associated with P;(r) having significant ampli-
tude for a large range of r.

The physics suggests that the function 8(rz, . . . , r~) in
(A2) is the ground-state wave function of the N —1 parti-
cle system, composed of the original system in the ab-
sence of the struck particle. In the absence of final-state
interactions no energy is transferred to other particles,
and if the N particle system is in its ground state, then
the N —1 particle system must also be in its ground state.
(f;(r) defined in this way has similarities to the ground-
state average of the field creation operator. ) However,
I know of rigorous proof that p(r) is obtained from (A2)
and (A12), if this interpretation is assumed.

P, (r) and ff(r) can be physically interpreted as fol-

lows. At the high-energy transfers required for the IA to
be valid, the static approximation of neutron scattering
can be used, since the time scale of atomic motions
is short compared to 1/co. One imagines that with
other particles instantaneously fixed at the positions

r2, . . . , rN, single-particle initial- and final-state wave

functions for the struck particle exist, which are solutions
to the Schrodinger equation in the potential of these fixed
atoms. These wave functions will tend to be localized at
the position of the struck atom, which sits in the poten-
tial minimum created by the "cage" of surrounding
atoms. g, (r} and gf(r) are then averages over all possi-
ble configurations of the other atoms. The probability of
these configurations is determined by correlations be-
tween particles in the initial state, i.e., by the pair correla-
tion function g(r). Of course this picture cannot explain
the extension in space of g;(r) when a Bose condensate is

present.
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