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Critical fluctuations in superconductors
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The field-theoretical gauge model for a superconductor, generalized to a n /2-component complex

order parameter, is renormalized in two-loop order. The question of a Auctuation-induced first-

order transition is discussed, and the crossover functions for the effective exponents and the ampli-

tude ratio of the specific heats above and below T, are given.

INTRODUCTION

In conventional superconductors the Ginzburg cri-
terion shows that critical fluctuations will be unobserv-
able in the experimentally accessible temperature region
near T, . Especially the nature of the phase transition,
whether it is a slightly first-order or a second-order one,
cannot be decided. However, the smallness of the back-
ground correlation length in the new high-T, supercon-
ductors leads to a much wider critical region, and critical
effects may become observable. ' We therefore reconsid-
er fluctuation effects in superconductors in two-loop or-
der, described by an Abelian Higgs model, within a
nonasymptotic renormalization-group theory.

Several aspects have already been discussed in the
literature. In one-loop order, runaway solutions for the
renormalized couplings in an expansion in @=4—d were
found for the number of order-parameter components
n &n, =365.9. These have been interpreted as the ap-
pearance of a first-order phase transition and were
confirmed for 8.94& n &365.9 by considering the equa-
tion of state. On the other hand, results obtained in a
lattice model and in an expansion of the corresponding
nonlinear cr model in 2+@ did not show a first-order
phase transition, and arguments were given by Lawrie
that low-order perturbation theory fails for n & 8.94.

Crossover functions, calculated by the matching tech-
nique of Nelson and Rudnick ' to first order in e, for the
order-parameter susceptibility and the effective exponent

ff near the fluctuation-induced first-order transition,
were discussed by Chen et al. ,

' and an expression for
the crossover function of the specific heat was given.

Here we perform a renormalization of the theory in
ttJo-loop order, and calculate the P functions for the flow
of the renormalized coupling parameter (fourth-order
coupling of the order parameter and coupling to the
gauge field) and the g functions appearing in the vertex
functions and determining the critical exponents. For the
special case n =2 the it3 functions were already calculated
by Vladimirov and Shirkov;" see also van Damme. '

The strict e expansion is discussed, and a new lower value
of n, appears below which the fixed point value of the re-
normalized charge squared (e ) is negative. In addition,
the fixed point value of the fourth-order coupling u*
remains complex below n, =365.9. On the other hand, a
large reduction of the borderline value to n, =2.4 is

found from the two-loop-flow P functions without expan-
sion of the solution in e. We further discuss the
nonuniversal crossover functions for the effective ex-
ponent of the specific heat and the amplitude ratio of the
specific heat above and below T, .

FLOW EQUATIONS

The system is described by the gauge-invariant Hamil-
tonian

&=f d'x ,'t0~%0 +,'~(—V ie0 —AD)%0~

uo 4+, qt0 + —,'(V X A0)

where the complex scalar field 4o with n/2 components
is coupled minimally to the vector field Ap. The general-
ization from the three-dimensional space to d dimensions
is as usual. All calculations have been performed in the
superconducting (transversal or Landau) gauge. For the
coupling constant eo =0 no magnetic fluctuations are in-

duced, and the model reduces to the usual field theory
describing a second-order phase transition. The parame-
ter to changes sign at some temperature, and the fourth-
order coupling uo is to be taken as temperature indepen-
dent. In order to describe the critical behavior of this
model we use the field-theoretical approach, and a
gauge-invariant procedure has to be chosen. ' We adopt
the dimensional regularization and the minimal subtrac-
tion scheme. ' For a recent explanation of the method
see Ref. 15 and references therein. We introduce renor-
malized fields and couplings,

+ =Z' 4 A =Z' A t —t =ZZ 't0 0 ~ 0 A ~ 0 oc

=ZZ& Z+ e p gd, uo=g Z up 5d

where p is a reference wave number, to, a shift, which for
the results considered in this paper can be set to zero, and
the geometrical factor Sd equals 2' dm. dr /I (d /2).
The Z factors are determined by the condition that all
poles at @=0 are removed from the renormalized vertex
functions. From a Ward identity we have Z+=Z„and
the remaining Z factors are found from the vertex func-
tions I' ', I' ', and I' ' ' (the first index is the number
of qt fields, the second index the number of A fields).
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Since the vertex field is massless, the renormalization has
been performed at finite wave vector. The considerable
number of two-loop diagrams is reduced by choosing the
transverse gauge. A reduction of the computational

effort could also be achieved by making use of the forrnu-
las given in Refs. 16 and 17. Integrals of pure powers ap-
pearing in the calculation are equal to zero in dimension-
al regularization. ' ' The result in two-loop order is

Z~ =1+—[3e —u (n +2)/144+e [(n +18)/4e —(1 ln +18)l48]j,1
(2)

Zz =1+—
[ ne—/6 ne—/2j,1 2 4 (3)

Z, =1+—
t (n +2)u/6+ u [(n +2)(n +5)/36e (n—+2)/24]1

+ue [ (n +—2)(1/2e —
—,
' )+e [(3n + 6)/2e+ ( Sn + 1)/4] j,

Z„=1+—t(n +8)u/6+18e /u +u [(n+8) /36e —(Sn +22)/36]+ue [ —(n+8)/2e+(n +5)/3]1

+e [(3n +24)/e+(Sn +13)/2]+e lu [3(n +18)/e —7n/2 —45] j . (5)

The one-loop-order result is in agreement with Refs. 20 and 4. Following the standard procedure we obtain the P func-
tions and the flow equations for the renormalized couplings (f =e ),

ef + n /—6f + nf =PI,

+(71n +174)/12uf —(7n +90)f =P„.

I
dl

I = —eu+(n +8)/6u (3n—+14)/12u 6uf+18f +—(2n +10)/3u fdl

(6)

(7)

For n =2 the P functions coincide with the results of Refs. 11 and 12. The fixed points of the one-loop part were al-
ready discussed extensively in Refs. 3, 10, and 4; we note, however, some new and unusual properties of the second-
order e expansion in this model.

In one-loop order, the stable fixed point value for u'= u, e [f ' = (6/n)e] in a strict e expansion was found to be com-
plex for n (n, =365.9, namely (Ref. 3),

u, = (1+36/n +&cr )n+8
with

a =(1+36/n) —432(n +8)/n

being zero at n =n, The stab.ility exponent It,„given by A, „=BPIBu
~ + (valid up to two-loop order) turns out to be

(8)

This leads to an oscillatory flow in u in one-loop order below n„with the solution' (s = ~o ~

'~ }

f (I)=f1 '/[1+nf (I '—1)/6e],

(9)

(10)

u (I)=f (I)
n

s tan —ln[f ( I )f I']+arctan
5 —1 e 2(n +8} u n +36+

2(n +8) 2 sn f ns

n +36

with f and u the initial parameters at 1=1. The separatrix connecting the unstable fixed point (f'=0, u'%0) and
(f'%0, ~u'~ = ~ ) is given by

r

(f)
n f s 6e nf en+ 36. —

2(n +8) 2 6e 2 n
(12)

Only for f ( I = 1 } and u ( I = 1 ) below the first branch of
u (f ) does the flow reach the limit of small f and u values
for I~ ao; for all other initial conditions u goes to plus or

minus infinity for finite l. Later on we shall only consider
flows with the property f~0 and u ~0 for I~~, since
otherwise the Gaussian regime is not reached. The fixed
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Results for the Borel summed P functions are available
for the uncharged model, and we shall use those for
n =2 in order to give a reliable flow at least for small f
values. This correction then leads to the flow shown in
Fig. 2(b). As a consequence of this "improvement" a real
stable fixed point for f & 0 and u & 0 appears even in this
case. However, a tiny region exists, for f & 18/(7n +90)
and very small u, where the flow can escape into the re-
gion f &0 and u &0. New features inay arise when the
fiow equation for u couples to the equation for f, which
we expect in three-loop order.

EFFECTIVE EXPONENTS AND AMPI. ITUDK RATIOS

0.5

FIG. 1. Borderline in n, e space (a=4—d) between the region
where a stable real fixed point exists (above the line) and the re-

gion where no stable real fixed point exists (below the line). The
dot marks the position of a superconductor.

The critical exponents at a second-order phase transi-
tion are determined by the fixed point values of the g
functions calculated from the renormalization factors Z;
by g, =pB lnZ, /Bp, where the derivative is taken at fixed
unrenormalized couplings. Then we get from Eqs. (2)—(4)

point in two-loop order is obtained by inserting
u ' =u, e+ u 2e and the two-loop fixed point value for f,

0. 6

f"=(e') =(6/n)eI 1 —(36/n)ej,

into P„. Then one finds for n An,

u2 = 3 (n)/v'cr+8(n),

(13)

(14)

0. 4

0. 2

where A(n) and B(n) are real. For n &n„u' remains

complex; however, a new type of borderline is defined by
the condition that the fixed point value, Eq. (13), of
f =e has to be positive. This is the case at e= 1 for
n & 36, whereas the value of f ' without expansion
remains positive for all n. One may therefore consider
this as an artifact of the expansion procedure.

Instead of a strict e expansion, we now look at the
two-loop fiow itself given by Eqs. (6) and (7). Thereby we
consider the P functions as asymptotic series in the cou-
plings u and f. In fact, one has to use nonperturbative
methods like Borel summation ' for the P functions. This
is seen from the usual model with f—=0, which has no
real stable fixed point for u in two-loop order. However,
such a Borel summed form is not available for general n.
Therefore, we have to base our discussion on the result of
Eqs. (6) and (7). The n espace is -divided into two parts.
In one part a real stable fixed point with u*)0 and
f'&0 exists; in the other part the stable fixed point is
complex. The borderline n (e) between these two regions
is shown in Fig. 1. One observes a drastic reduction of
n(e) at e= 1 compared to the one-loop fiow and the result
of the e expansion. We now turn to the special case
n =2. We see that in two-loop order [see Fig. 2(a)] the
flow is changed considerably from the one-loop-order re-
sult. ' It is only in the small region of f &0.05 and
small u that both flows approximately coincide. This in-
dicates a much worse representation by the low-order re-
sult for the p functions than expected from the ip theory.

0
-2

0. 6

0. 2

FIG. 2. (a) Flow for the case n =2 given by Eqs. (6) and (7)
with a=1. No stable real fixed point exists and also the fixed

point on the u axis is absent. This should be compared with the
one-loop flow given in Ref. 10. (b) Flow for the case n =2 given

by Eq. (6) and a modified Eq. (7). The f-independent terms in

P„have been replaced by the Borel summed ones given in Ref.
22. This procedure recovers the fixed point on the u axis and
also leads to a new stable real fixed point for fWO.
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g~= —3f+(n +2)/72u +( 1 1n +18)/24f

(—n +2)/6u +(n +2)/12u
—2(n +2)/3uf —(5n +1)/2f

g„=n/6f+nf

(15)

(16)

(17}

If there exists a stable fixed point, the critical exponent v
of the correlation length and the penetration length (the
renormalized Ginzburg parameter reaches a finite fixed

point value and has no asymptotic critical temperature
dependence}, the critical exponent y of the order parame-
ter susceptibility, and the critical exponent a of the
specific heat are given by (g„=(+—

g, ),

v=(2 —g„')

y =(2-g„') '(2 —g ),
a =(e—2g' }(2—g')

These exponents are diff'erent from the values known
from the uncharged model, i.e., they are not given by the
He values as is sometimes stated (see, e.g., Ref. 1). One

may consider these asymptotic exponents for the case of

the two-loop fixed points; however, because of the large
fixed point values and the bad expansion property of the
low-order perturbation theory, one exceeds the value of 2
for g„, which leads to an unphysical negative value of v at
a second-order transition.

Since (i) the asymptotic region cannot be treated
theoretically for the reasons already mentioned and (ii)
the experimentally accessible regime lies in the precritical
region further away from T„we discuss several
nonasymptotic measurable quantities, such as effective
exponents and amplitude ratios. They are calculated
from the solution of the renormalization-group equations
for the corresponding correlation or vertex function.

One most interesting measurable quantity is the
specific heat. The renormalized specific heat C* above
(+ ) and below (

—) T, obeys the following equation:

p +P„+P& +$„2+t —C (t, u f—p)
8 8 i}

=p 'B(u f), (18)

where 8 comes from the additive renormalization. The
formal solution reads

C+( t, u, f,p, ) =p ' exp —f [e —2(„(x)]
coax

1 X
~ F+(I)—f B(y) exp —f e—2(,(x)

i y I, . X

where I is an arbitrary fiow parameter to be chosen suitably. Usually one chooses t (I)II =c, where the constant c may
be difFerent above and below T, . This choice leads to a connection between the temperatures t+=~T+ T, ~/T, a—n—d
the fiow parameter I =1(t*)via the solution of the fiow equation for t (I) with t (1)-t

I
d,t (I)

g (I) .
I

The scaling functions F* and B have to be calculated by perturbation theory. Since the singular part of the specific
heat is defined only up to a constant, we choose this constant such that in the background the specific heat goes to zero.
We then define the effective exponent a*,s(to) by

Cos„„(t)=Co (t)—Co (t = 00 ), a—
s = —d inCos„„/d lnt .

This exponent is equal to its renormalized counterpart and performing the derivatives one gets [I =1(t —)]

tF (I)[e—2( (I)]+B(1) IdF /dl I I[2——
g (I)]

a*,s(t+) =
F+(I)+f B(y—)exp f [2(,(x}—e] .—G(l)

I I X

(20)

with

G(l) =I'exp f 2(„(x) hm [F*(y)y '] .
I X yahoo

The scaling function F—(I) depends on I via the couplings u (I) and f (I). Formally the expression is equally valid above
and below T„the difference is denoted by an index. In the asymptotic limit l ~0, both a,& take the asymptotic value a
if there is a fixed point; in the background limit l ~ ao we obtain the Gaussian value a*,z= —,

' for d =3. The expression
for a,z given in paper by Chen et al. ' does not reach this limit because these authors did not subtract the background
specific heat. An inspection of the eff'ective exponents with the two-loop flow shows an enhancement for f%0 with
respect to the case f =0. Because of the factor [2—g„(1)] ' the exponents tend to diverge when the g function reaches
2. Similar remarks are vabd for the appropriately defined y,z. We wish to note at this point that one has to be careful
in the application of asymptotic scaling laws to effective exponents, since these scaling laws are not fulfilled outside the
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asymptotic region. The nonuniversal deviations may be small, but this has to be verified by experiment.
We may also define an effective amplitude ratio by the ratio of the l-dependent specific heat above and below T, at

the same l value. Because of the different dependence of I on the temperature above and below T„ t is then a func-
tion of t + and the measured specific heats have to be taken at different temperatures above and below T, :

Co suet(t )

Co s ., [t (t+)]

I'
exp f 2(„(1'), F+(l)l ' D —lim F+(y)y '—f dyy ' '8(y)exp f 2g (x)

1 X

exp f 2(,(l'), F (I)l ' D li—m F (y)y ' —f dyy ' B(y) exp f 2(„(x)I' Jl~ oo I 1 X

(21)

and

D= exp 2 x
1 X

(pl ) =(m. /4) below T, . This leads to the simple connec-
tion of the temperature distances in the specific heat
t = t */2. Our result for the amplitude ratio is
different from the result found in the Gaussian model

In the asymptotic region this expression reduces to
universal value (for e= 1), with appropriate expressions
for F', 8', and g*„,

F+' 8'/(2g„' ——1)

F *—8 */(2(,*—1)
(22)

if there exists a fixed point. The background limit is less
easy to obtain. One has to use the one-loop expression
for g„and the one-loop solution of the (renormalization-
group) equations [Eqs. (10) and (11)]. Then one has to
expand the solution u '(I)

u '(I) = Ui I'+ U2+0(l ') .

Inserting this into Eq. (21) we find (for e = 1)

F+ ( oo ) +8 ( oo )

F, ( oo ) +8 ( oo ) +2 —n /2+ g (f, u )

(23)

( I )
6f (I)
u (I)

u (I)
3f (I)

where the scaling functions have been calculated in di-
mensional regularization in d =3 without e expansion,
and where the arbitrary parameter l has been chosen by
the relations t (I)/(pl) =(m /4) above and 2~ t(l)

~
/

We then have to take the one-loop expressions for the
scaling function of the specific heat F, (I), which is
defined by F (l)=3/u(l)+F, (I). Contrary to the case
where f =0 and A(oo)=n/4, one finds for f&0 a
dependence on the renormalized background values of
the couplings both in F, ( oo ) and in g(f, u). The contri-
bution g (f, u ) comes from the flow as well as from the g„
function, which reads

g(f, u)=3[Uz —(n +8)/3+6U& f /(1 —nf/6)] . (25)

The one-loop expressions are (i) 8 (I)=n /2, (ii) F+(I)=0,
and

2

A ( oo ) = n /[4+ ( 12fo /u o ) ], (26)

since in that case the unrenormalized coupling constants
are used, whereas we have calculated the amplitude ratio
within the renormalized theory. This was necessary be-
cause we considered the entire crossover region between
the asymptotic critical behavior and the precritical
Gaussian region. From Eq. (21) one can also calculate by
expansion the deviations from the value given in Eq. (24)
in the precritical region. For small values of fo/uo in
Eq. (26) or f/u in Eq. (24) (we assume f/u to be small
also for large values of the Ginzburg parameter) both
corrections to the usual value n /4 are very small.

CONCLUSION
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We have renormalized the field-theoretic model for a
"superconductor" with n/2 component complex order
parameter. A qualitatively different flow in two-loop or-
der (with respect to one-loop order) for small n is found.
No real fixed point exists in two-loop order at d =3 and
n =2; however, for n &2.36 a real stable fixed point ex-
ists. High-order perturbation theory and Borel summa-
tion' or other nonperturbative methods are necessary to
decide the question of a first-order phase transition and
for quantitative calculations of effective exponents or am-
plitude ratios from the expressions given in our paper.

For an application of this model to real systems further
important features should be considered. One may in-
clude anisotropies ' or study effects of a dimensional
crossover from two to three dimensions. From the exper-
imental side it would be interesting to see if one could
find deviations in the critical exponents and amplitude ra-
tios from the Gaussian-model values.
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