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Enhanced backscattering of electrons in a magnetic field
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We calculate the exact shape of the enhanced coherent backscattering peak for electrons in the
presence of an external magnetic field. The interference phenomena that cause the backscattered
enhancement are reduced due to the breaking of time-reversal symmetry. It is shown that the form
of the peak in the presence of a magnetics field I(q, H) can be obtained (to a good approximation)
from I(q, H=0) by replacing q with if=[q +(3LH) ']'~, where LH=(2Ac/eH)'~ We. have also
calculated I(q, H) at finite temperatures and proposed it as the most sensitive tool for extracting in-

elastic processes.

Recently, a renewed interest in the backscattering of
optical waves from random systems led to the
discovery' of a narrow coherent backscattering peak of
width -A, /2n. l, where A, is the wavelength and l the
transport elastic mean free path. This phenomenon is
caused by interference between each optical trajectory
with its time-reversal trajectory. The narrow shape of
the peak is broadened when the long trajectories are cut
off either by the finiteness of the sample or by inject-
ing an absorbing dye ' that reduces the existing proba-
bility of long trajectories. The remaining shorter trajec-
tories still obey time-reversal symmetry, and the ratio be-
tween the enhanced backscattered peak and the back-
ground remains 2. In order to reduce this ratio one needs
to break time-reversal symmetry. It was recently pro-
posed" that a magnetic field may cause such a mecha-
nism in certain magneto-optical systems due to the Fara-
day effect. In general, a magnetic field couples very
weakly with the electromagnetic waves and the Faraday
effect is quite small.

In this paper, we study the effect of a magnetic field on
backscattering of electrons from random media. It was
recently proposed that the enhanced coherent backscat-
tered peak is a general phenomenon and may be observed
for backscattering of neutrons' or electrons' at low tem-
peratures, where inelastic scattering is frozen out. Elec-
trons, of course, couple strongly to an applied magnetic
field, which breaks the time-reversal symmetry. This
breaking symmetry reduces all the interference phenome-
na, and in particular the enhancement ratio of the back-

scattering peak will be reduced below 2. The effect of a
magnetic field on the coherent backscattered peak resem-
bles to some extent the effect of a magnetic field on the
electrical conductivity, which results' ' in a negative
magnetoresistence. It should, however, be noted that the
coherent backscattering peak is a first order eff-ect in the
sense that its width is proportional to A, /I, whereas the
negative magnetoresistance effect is much smaller being
proportional to (&./1 ) .

The magneto resistance measurements were widely
used' ' to study interference phenomena in general and
to extract inelastic scattering times in particular. '

(For a review of precise measurements of inelastic lengths
see Arnov and Sharvin. ) We calculate here the exact
shape of the coherent backscattering of electrons I(q, H)
in the presence of an external magnetic field and the pres-
ence of inelastic scattering processes. We suggest that
measuring I(q, H) at different temperatures may serve as
an important tool in extracting inelastic scattering times.
We use two independent methods. The first is an approx-
imate real-space approach that reveals the physical in-
sight of the problem. The second approach is a rigorous
diagrammatic calculation. We show that the real-space
approach is in excellent agreement with the rigorous ap-
proach.

We first use the real-space approach to calculate the
angular dependence of the electron backscattered intensi-
ty by using the formulation of Kaveh et al. for the back-
seat tered intensity.

exp[i[k;. (r; —ri)+kI. (r —r )]Iexp[i(p, pt )], —
i,j, l, m

where k; and kI are the initial and final electron wave
vectors correspondingly, A;. is the amplitude of the elec-
tron wave, which performs a trajectory that started at po-
sition r; and is emitted from the material at the final posi-
tion r., and similarly for AI . 0, - is the phase acquired

by a trajectory that started at r, and ended at r; and
similarly for 8&~.

We now include the effect of a magnetic field. For
weak magnetic fields we may assume that the electron
motion still remains diffusive. This means that A;. and
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A& in Eq. (1) remain independent of the magnetic field.

The magnetic field, however, changes the phases 0, and

0I

4„=(t';,+0,', (H» (2)

where 0, is the phase acquired in the absence of a mag-
netic field and 8,' (H) is the phase caused by the magnetic
field

where A is the vector potential. The magnetic field
breaks the time-reversal symmetry and for a given trajec-
tory

P,'&(H) = P~—, (H} . (4)

We now calculate the ensemble averaged intensity from
Eq. (1) and get,

I (q, H) =2+ ~ 3,, ~
(1+exp I

—2( [P,', (H)] ) ) cos[q (r; —r, )]), (5)

where q=k;+k&. Only diagonal terms survive the en-
semble average. Note that 8; cancels out in (5) because
of the time-reversal property Oj Oj The phase 8,',
which does not preserve time-reversal symmetry due to
(4), does not cancel out. This introduces a new factor in
(5) that depends explicitly on the magnetic field. Using
Eq. (4) we get for the reduction factor in (5)

(exp[i(8,' —8';)])=exp[ —2((8,'~) )] .

When H~O, Eq. (5) coincides with, the expression for
I(q, H =0) for the coherent backscattering peak in the
absence of a magnetic field. The new procedure here is to
calculate the reduction factor exp[ —2((8,'J ) ) ]. We now
calculate ((8,'~) ) by using the difFusive nature of the
electron motion in which the averaged square of the dis-
tance between r; and r is Dt, where D =

—,'Ul is the elec-
tron diffusion constant (U is its velocity) and t is the aver-
age time needed to travel between the two points. By us-

I

ing Eq. (3}it can be shown that

((pI, )2) =2(Dr)(e /«)'( & ')
For an applied magnetic field in the x direction A =Hyz
and ( A ) =H (y ). We have to calculate the expecta-
tion value of y by using the electron wave functions in
the presence of a magnetics field. We approximate (y
by taking the ground-state wave functions for the elec-
tron that decays exponentially with the Landau magnetic
length LH=(2fic/eH)'~ . Thus, we use (y ) =(—,')LH.
Inserting this result in Eq. (6) we get

( ( $'" ) ) = 3Dt/L—
Defining a magnetics cutoff' time ~&=3LH/D, we get
(exp(i8;J)) =exp( r/rH). Ins—erting this result in (5)
and using the random walk probability with the ap-
propriate boundary conditions ' for

~ A; ~
we get

I =I,f f f e "' e
" [1+e "cos(q R)]p(r, r', t)dt d R dz dz',

where p, = cosE9, and pI =cosOI and

p(r, r', t) = 1
exp( —8 /4Dt) [exp[ —(z —z') /4Dt]exp[ —(z +z'+2zo) /4Dt]]

(4irDr )'"

(10)

with Zo =0.7104l.
We thus see that trajectories longer than LH contribute only to the background intensity but not to the second in-

terference term. This reduces the enhancement factor below 2. As the magnetic field increases, LH decreases and the
enhanced peak is reduced. From the reduction factor exp( —t /rH) we find that the peak becomes rounded and reduced
for qLH (1. For qL& ) 1 the form of the peak is hardly affected. Thus, LH acts as a cutoff length only for the interfer-
ence between time-reversal trajectories.

Inserting (9) in (8) and taking p, =pI =1, we get,

2z, 1 —exp —2 q +(DrH) ' '~
zo

I(q, H) =Io(1+2zo/I) ' 1+ + [1+[ +(DrH ) ']'
I 2+(D )

—i]i/2

This coincides with the result obtained by Akkermans
et al. if we set H =0. For a nonzero magnetic field we21

may define a generalized q wave vector

q=[q'+(DrH) ']'".

I

Thus, I(q, H) can be obtained from I(q, H =0) by replac-
ing q with q in the last expression. From Eq. (10) we get

I(q, H)=I(q, H=O) .



41 ENHANCED BACKSCATTERING OF ELECTRONS IN A. . .

We have also calculated I(q, H) for a sharp injection
boundary condition in which the exponentials in (8)
exp( —I /zp; ) and exp( —I /z'p&) are replaced by
5(z —I/p, ;) and 5(z' —i /p/), respectively. This leads to

I (q, H) =Io 1+
1 —expI 2—a[q +(DrH) ']'

2a [q'+(D~H )-']'"
(12)

R (s, r, , r2) =F(s, r, + r2/2)e (13b}

where a =I+zp which again coincides with the result
first obtained by Akkermans et al. ' for H =0. For
HAO, I(q, H) can be extracted from I(q, H =0) by using
Eq. (11)which is independent of the boundary conditions.

We now give a rigorous derivation of I(q, H) by using a
diagrammatic approach. In the limit of small magnetic
fields where LH &&I, we may neglect the influence of the
magnetic field on the Ladder diagrams L (r, r'). Only the
maximally crossed diagrams C (r, r'} are of course affected
by the magnetic field, which suppress their contribution
to the intensity. The contribution of the crossed dia-
grams to the coherent backscattered peak is given by

I, = A J d r, d r2R (s, r„r2)C(r„r2)P(r~)$'(r, ), (13a)

iK., r —r/21
where 8(r)ae ' and K; is the incidence direction:

and for s- —z (around the backscattering direction)

F(s, r)=me ' '5(x)5(y) . (13c)

The main task is to calculate C(r„r2) in the presence of a
magnetic field. Following Altshuler et al. , C(r„r2) is a
solution of the following equation:

'2
I

D iV— —A C(r r')= (14)
C 7

The solution of Eq. (14) for H =Hz is given by Kawaba-
ta 16

1 (r)it'„;x, , sc, (r')
C(r, r') =-

w„x x DK, +(4DeH/C)(n+ —,') (15)

x =P„(x—chK&/2eH)exp[i(KYy+K, z)], (16)

where O„are the eigenfunctions of the harmonic oscilla-
tor. Inserting (16) in (15) and performing the sum on K
and E, we get,

where g„x x are solutions of the homogeneous part of
Eq. (14},which is equivalent to the Schrodinger equation
for a charged particle with charge 2e and mass —,'D, which
moves in a magnetic field with a vector potential A. This
was solved by Landau and is given by

6 (r, r') = g exp[i (x —x')(y +y')/2LH ]exp[ —(x —x') —(y y') /4LH ]—1 1

i ~DLH „(2n+1)'"
XL„[(x—x') +(y —y') ]/2LHexp(~z —z'~/LH )(2n +1)'~ (17)

where L„(x) are the Legendre polynomials, L„( x)=(1 /n!)(d "x"e "ldx"). We need the solution C(r, r') for a half
space with an absorbing boundary at z =0 and therefore use the image method to get our final result,

C (r, r') = g exp[i (x +x')(y —y') l2LH ]exp[ —(x —x') —(y —y') l4LH ]
1 1

4~DLH „(2n+I

XL„exp[—
~z

—z'((2n+1)' LH] —exp[~z+z'+2zo~(2n+1)' /LB],(x —x')'+(y —y')'

H

(18}

where zo =0.7104. Inserting (18) in (13a) we get our final answer for I, (q}, which is correct for sharp boundary condi-
tions and weak magnetic fields, LH » I,

n

, &2
exp( LJq )I 1 —exp[——2a(2n+1)'~ /LH]IL„(2LHq ) .

I, q=~, H=O a

In Fig. 1, we plot I(q, H) as a function of q =(2n. /P)6)
for diFerent values of the magnetic field. The solid
curves represent our diagrammatic calculation and the
dashed curves represent out approximate real-space cal-
culation. We see that the real-space approach accounts
quite accurately for the shape of the coherent backscat-
tered peak. We therefore conclude that our statement
that I(q, H) can be obtained from I(q, H =0), by replac-
ing q with

q =[q +(D~H } ']'

is an excellent approximation. Moreover, the onset of the
reduction in the peak should hold for q ((DrH ) ', since
then q depends weakly on H. This leads to q &LH ' or
0 & A, /2VrL, H.

From Fig. 1, we see that only for q &q, =LH ', I(q, H}
is reduced below I (q, H =0). For q & q„we get a cross-
over effect and I(q, H)=I(q, H =0). This means that
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1.7—

larger. In the diagrammatic approach, the magnetic field
brings in all the Landau levels (not just the ground state
as in the real-space approach) yielding a somewhat more
quenched coherent peak.

We now calculate the reduction in the peak due to the
applied magnetic field. For H =0, I(q, O)/I(q = oo )=2.
In the presence of a magnetic field I(q =O, H)/I(q= oo, H) will be reduced below 2. We define the height by

s(H)=I(q =O, H)/I(q = oo, H) . (20)

1.1
—1.2

i t

—0.8
l

0.4 0.8 1.2

Using Eq. (20} we plot in Fig. 2, s(H) as a function of
1/LH. We see that s(H) depends linearly on LH ', and
follows

s(H)=2 —0.53a/LH . (21)
FIG. 1. Backscattering intensity for different values of the

magnetic length LH. We plot I(q)/I(q = 00) for the following
values of LH/I: 2 (the lowest curve), 4, 6, 10, ao. The solid
curves correspond to the diagrammatic calculation and the
dashed curves to the real-space approach. The insert shows the
value of q, as a function of LH.

short trajectories are not affected by the magnetics field
and continue to contribute constructively to the back-
scattered peak. In the insert of Fig. 1, we plot q, as a
function of 1/LH; we see that q, =LB '. For small mag-
netic fields where LH /1 & 6 the two approaches yield the
same curves for I(q, H). For larger magnetic fields for
which LH /1 (4, I (q ~O, H} in the real space approach is
somewhat higher than the diagrammatic approach. The
two approaches however, should in principle give the
same I(q, H). The small deviations for large magnetic
fields in Fig. 1, between the two curves result mainly
from our approximation for (y ), which we used to get
Eq. (7). This approximation underestimates the effect of
the magnetic field causing I(q~O, H} to be somewhat

This is very close to the result we get from our real-space
approach where

s(H}=2—3 ' a/LH . (22)

I(q, L; ) =I(q,&,L, = oo ), (23)

where q, tr
= (q +L, )

' . In the presence of a magnetic
field, by using the real-space method, we get

I (q, H, L; ) =I(q, H =O, L; = oo ),
where

q
—[q2+(3L~ ) ~+L 2]1/2

(24)

We have also calculated I(q, H, L;) diagrammatically by
adding a term i/r, —to the left-hand side of Eq. (14).
This leads to

We now include inelastic scattering which introduces an
additional length scale, the Thouless length L; =+Dr;
(where r; is the inelastic scattering time}. Without a
magnetic field it was already shown' that

I(q, L, , H)

I( oo, L;,H =0)
L; (

—1)"
1 —exp( —2a/L; ) „o[(2n +1)/LH+(1/L; )]

&(exp( —LH~q2)(1 —expI —2a[(2n +1)/LH+(1/L; )]' I )L„(2q LH) . (25)

From (25), we find that I(q, H, L, )=I(q, H =O, L;). in two
limits for LH )L; and for q )LH ', even for LH &L;.
Thus, the approximate equation (24) is justified. This is
demonstrated in Fig. 3, where we plot I(q, H, L;) as given
by Eq. (25) for (a) I (q, LH = oo, L, =51), (b) I (q, LH = 10I,
L; =51), (c) I(q LH= oo L; =201), and (d)
I(q, LH=101,L, =201). We see that curves (a) and (b)
nearly coincide. This is because when L, is the smallest
length the magnetic field hardly affects the shape of the
backscattering peak. Curves (c) and (d) coincide only for
q )LH '. Here LH is the smallest length, and the round-
ing of the peak for q & LH is not affected by the inelastic
scattering.

We now discuss the observable possibilities of the

effects discussed in this paper. There is a great advantage
in measuring the interference effects in disordered sys-
tems directly by measuring intensities. The reason is be-
cause the incident and emerged directions are well
defined. This indeed led to the successful observations of
weak localization' for electromagnetic waves. The
challenging question is how to measure the intensity of
backscattered electrons. The main difficulty is to avoid
strong inelastic scattering. We propose here two possibil-
ities and hope that they will be followed up experimental-
ly. The first is to inject high energetic electrons of order
-KeV into a disordered semiconductor like germanium.

0
Here the estimated elastic mean free path is l =500 A.
Thus, multiple elastic scattering is possible. For such en-
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FIG. 2. The reduction of the peak due to the magnetic field

[as was defined in Eq. (20)] as a function of 1/LH The p. oints
correspond to the reduction as obtained from Eq. (19), while the
solid line corresponds to the linear dependence that was sug-

gested in Eq. (21).

FIG. 3. Backscattering intensity dependence on the magnetic
length LH and the inelastic length L, . Curves (a) —(d) corre-
spond to (a) LH= ~, L, =51; (b) LH=101, L, , =51; (c) LH=(x),
L, =201; (d) L„=101, L, =201.

ergies, A,~/I =10 and the coherent backscattered peak
may be possible to observe experimentally under these
conditions. Of course, one should measure the dynamic
structure factor I(q, ar) and look for lim oI(q, co) by us-

ing an energy spectrometer.
Another interesting possibility is to use the mesoscopic

transport regime in which the sample size is smaller than
the inelastic length. Recently, it was demonstrated that a
superlattice can be easily fabricated from a two-
dimensional electron gas (GaAs) and electron states are
ballistic (namely I is larger than the sample size). It is
quite easy to disrupt the order of this superlattice and
form elastic scattering. The electron wavelength is quite
small A,F =500 A and A,F/I can be made quite large. The
backscattered intensity when a magnetic field is applied
should show the effects discussed in this paper.

In summary, we have calculated the form of the
coherent backscattering peak of electrons in the presence
of an external magnetic field. The effect of the magnetic
field on the backscattering peak is as interesting as the
negative magnetoresistence effect for transport properties

of electrons. It is proposed that this effect at low temper-
atures is the strongest interference effect for electrons.
The role of breaking time-reversal symmetry is revealed
in reducing the enhanced peak. We find to an excellent
approximation that the shape of the peak I(q, H) can be
obtained from the shape of the peak in the absence of a
magnetic field I(q, H =0) but with a renormalized q wave
number q=[q +(3LH) ']'i . In the presence of inelas-
tic scattering I(q, H, L;) can be obtained from I(q, H
=O, L, = ee) with

[q2+(3L 2
)

!+L —2]1/2

Thus, I ( q, H, L; ) should serve as a sensitive tool of ex-
tracting the inelastic scattering time of disordered sys-
tems.
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