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Three new classes of superconductors have been discovered in the past decade: the organic super-
conductors, the heavy-fermion superconductors, and the oxide superconductors. All of them show
characteristic anomalies that point to the possibility that they are anisotropic superconductors with
a directionally dependent (k-dependent) gap function that vanishes in points or lines on the Fermi
surface. The problem to identify the symmetry type of an anisotropic superconductor has not found
a satisfactory solution yet. Although a number of experiments have been proposed that allow one in
principle to distinguish between different symmetry types, most of them are ambiguous because they
do not couple to the order parameter directly. Here we propose a new experiment: Andreev
scattering, i.e., scattering of low-energy normal quasiparticles off the spatially varying order param-
eter when the quasiparticles approach a normal-metal-superconductor interface from the normal
side. The idea is investigated in detail for anisotropic even-parity superconductors. To describe the
quasiparticle dynamics, the Bogoliubov—de Gennes equations for anisotropic superconductors are
introduced and approximated by the Andreev equations. The nonideality of the interface is taken
into account by an interface potential parametrized by a reflection coefficient. This leads to a
boundary condition for the Andreev equations at the interface. The pair potential A(ﬁ,r), i.e., the
directionally and space-dependent order parameter that occurs as a scattering potential in the An-
dreev equations, is determined self-consistently for various nonideal interfaces to d-wave supercon-
ductors. This is equivalent to solving the proximity effect for interfaces with a finite reflection
coefficient, and it is done using the quasiclassical formalism. Once A(ﬁ,r) has been obtained, the
Andreev equations are integrated numerically, and the k-dependent Andreev reflection and
transmission coefficients as well as the corresponding conductivities are computed. The theory pre-
dicts a directional dependence of the conductivities from which the k dependence of the order pa-
rameter can be reconstructed. For this effect to be a useful tool, new experiments will have to be
devised. A double-point-contact experiment is proposed for an experimental realization of the idea.
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I. INTRODUCTION

In the past decade, the science of superconductivity
has been centered around the discovery of three new
classes of superconductors.

(a) The organic superconductors. In 1980, Jérome
et al.! discovered the superconducting charge-transfer
salt (TMTSF),PF, with a T, of 1.2 K at 6.5 kbar. In the
following years, a variety of other compounds was found;
the latest achievement was the synthesis of (BEDT-
TTF),Cu(NCS), with a T, of 10.4 K at ambient pressure
by Urayama et al.? The search for organic superconduc-
tors had started in 1964 with Little’s proposal that one-
dimensional conductors might be superconductors at
high temperatures, possibly even at room temperature.
Although the mechanism of superconductivity in the
charge-transfer salts is not completely clear yet, they can
not be described by conventional Bardeen-Cooper-
Schrieffer (BCS) theory: at least some of the compounds
show anomalies characteristic of anisotropic supercon-
ductivity.?

(b) The heavy-fermion superconductors CeCu,Si,
(Steglich et al.*), UBe,; (Ott et al.®), and UPt; (Stewart
et al.%). Heavy-fermion compounds are characterized by
the very high effective masses (of the order of 1000 m,) of
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the electrons that are due to hybridization of the almost
localized (Ce,U) f electrons with the conduction elec-
trons. The jump in the specific heat at the transition tem-
perature of these systems is proportional to the (very
high) normal specific heat, i.e., the heavy electrons are re-
sponsible for the superconductivity. The T, of these
compounds is around 1 K, i.e., rather low (although they
are “high-temperature superconductors” in the sense that
T./Tr~0.1 is very high), so that applications are not
very likely: their understanding is, however, a fundamen-
tal test for the many-body theory of metals. The uranium
compounds again show anomalous superconducting
properties and there are strong hints that they are aniso-
tropic superconductors.

(c) The Cu-oxide superconductors. Starting with the
discovery of superconductivity above 30 K in
La,_,(Ba,Sr),Cu0O,_, by Bednorz and Miiller in 1986,
the first system to break the “sound barrier” of T, =23 K
for Nb;Ge established 20 years before, there has been an
unprecedented flood of papers and new results on oxide
superconductors. The experimental highlights are the
new compounds YBa,Cu;0,_, with 7,=90 K and the
T1-Ca-Ba-Cu-O system with T,=125 K. The Cu-oxide
superconductors are characterized by two-dimensional
CuO planes that are only weakly coupled so that most
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theories start from two-dimensional models. They show
anomalies in the normal state (linear resistivity as a func-
tion of temperature between 6 and 600 K) as well as in
the superconducting state (e.g., nonexponential specific
heat). Again, there are some indications that these ma-
terials are anisotropic superconductors.

There are two common themes in all three of these new
classes of materials: all of these superconductors are
close to magnetic transitions, and in all of them super-
conductivity is probably caused by a purely electronic
mechanism. This is in contrast to the ordinary supercon-
ductors that can be described very successfully by the
phonon mechanism. Along with the question of the
mechanism goes the problem of the symmetry of the or-
der parameter: although the phonon mechanism per se
does not exclude anisotropic pairing, all known supercon-
ductors described by the phonon mechanism are so-called
s-wave superconductors, i.e., they have a gap in the exci-
tation spectrum all over the Fermi surface. If supercon-
ductivity is caused by an electronic mechanism, however,
the order parameter will be anisotropic in general, which
will imply for us the existence of points or lines of zeroes
of the order parameter on the Fermi surface.” The spin-
fluctuation mechanism,® for example, that is responsible
at least partially for the pairing interaction in superfluid
3He favors triplet pairing, i.e., Cooper pairs with a total
spin S =1. The orbital part of the pair wave function has
to be of odd parity and will lead to an anisotropic gap
[with the exception of the Balian-Werthamer (BW)
phase]. To develop a theory for the new materials, it
would be of great importance to know exactly which
symmetry type a given superconductor belongs to. Un-
fortunately, progress in this direction has been frustrat-
ingly slow: the order parameter cannot be probed direct-
ly, it is not a macroscopic observable as, e.g., a magneti-
zation. Hence, theory has to rely on a number of indirect
experiments as an input. One tries to infer the type of the
order parameter from its influence on various thermo-
dynamic quantities, transport coefficients and the like,
but usually these quantities are changed by other mecha-
nisms as well so that it is not easy to find out what the
share of the order parameter is. In some cases theory can
help to exclude certain possibilities, it is, for example,
known that lines of zeroes of the order parameter are not
compatible with odd-parity superconductivity (Volovik
and Gor’kov,’ Ueda and Rice,'® and Blount!!). For a dis-
cussion of various experiments performed and proposed
see Refs. 12-25.

Here, we propose a new experiment that offers the ad-
vantage of coupling as closely to the order parameter as
possible: scattering of quasiparticles that cannot enter a
region of a sample because of the existence of a supercon-
ducting order parameter. This phenomenon was
discovered in 1964 by Andreev?® and bears the name An-
dreev scattering.

II. THE ANDREEV EQUATIONS

The weak-coupling formalism of superconductivity is
easily generalized to spatially inhomogeneous situations,
e.g., sandwiches of different superconductors, normal-
metal-superconductor (NS) junctions and the like: the
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self-consistent pair potential A(r) takes the role of the or-
der parameter A, the Bogoliubov quasiparticles are de-
scribed by wave functions that are two-component spi-
nors fulfilling the Bogoliubov-de Gennes equations, a
Schrédinger equation in which A(r) acts as an off-
diagonal potential. If a quasiparticle wave packet ap-
proaches an inhomogeneity in the pair potential, there is
a probability for it to be reflected—as for a wave packet
described by the ordinary Schrodinger equation ap-
proaching, e.g., a potential step. Analysis of this
reflection process?® 2% shows that if the incoming elec-
tron has wave vector k and group velocity v,, the
reflected particle is a hole with (a) wave vector —k'=k
(missing particle in k'), (b) positive charge, (c) negative
effective mass, and (d) reversed group velocity since

L——
Vg— Vg.

Property (d) is in contrast to ordinary (specular)
reflection in which only the velocity component perpen-
dicular to a planar interface is reversed. The difference
between Andreev reflection and specular reflection is il-
lustrated in Fig. 1. Properties (a)-(d) were verified exper-
imentally.?>3

More general inhomogeneities can be considered if the
pair potential has internal structure, i.e., is k dependent.
Examples are quasiparticle scattering at (a) interfaces be-
tween the A and B phase of superfluid *He, where the k
dependence of the order parameter changes its functional
form (Yip®!), (b) order-parameter textures in He- 4, i.e.,
gradients in the orientation of the order parameter such
that a quasiparticle wave packet moving in a given direc-
tion may be subject to a rising local gap in the spectrum
(Greaves and Leggett®?), or (c) rapid phase changes of the
order parameter in a current carrying superconducting
constriction. We use the name Andreev scattering for all
of these.

Our object is to apply Andreev’s method to supercon-
ductors with an even-parity anisotropic (k-dependent) or-
der parameter. The corresponding case of Andreev
scattering in an odd-parity superconductor leads to addi-
tional nice phenomena since the reflected holes may be
spin polarized (Kieselmann and Rainer’®). The theory
gets more involved, however, since the interface will act
as a magnetic scatterer because of differences in spin-
orbit coupling between the normal metal and the super-
conductor.

Quasiparticles in inhomogeneous anisotropic even-
parity superconductors can be described by the
Bogoliubov-de Gennes (BdG) equations

E"u"(x)=hou"(x)+ fdx'A(x,x’)v"(x’) , (2.1a)

E™™(x)=—ho"(x)+ fdx'A*(x,x’)u"(x’) ,

N N

FIG. 1. Andreev reflection (right-hand side) and ordinary
specular reflection (left-hand side). The arrows give the direc-
tions of the group velocity of incoming and outgoing particles.

(2.1b)
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together with the self-consistency conditions for A in
terms of u,v:

A(x,x")=—V(x,x ) ¢1(x)P,(x))
=—V(xx)3 u"(x"™(x)—fE")]

Fot*(x)u"(x)N1—f(EM] . (2.2)
Here hy=—V?/2m —p+ U(x) is the one-particle Hamil-
tonian, V' (x,x’) is the pairing interaction, and A(x,x’) the
pair potential. Note that the dependence on x,x’ cannot
be reduced to a dependence on the difference of the two
coordinates as in the homogeneous case. The eigenstates
are labeled by an index n, and all sums over n run over
positive-energy eigenstates.

Since the model order parameters we will introduce in
(2.1) will be given in the form A(k,R), we have to relate
this to A(x,x’): all quantities that depend on x,x’ can be
written in terms of center of mass R=(x-+x')/2 and rela-
tive coordinates r=x—x' as well, A(r,R)=A(x,x’).
A(k,R) is then given by the Fourier transform of A(r,R)
w.r.t. the relative coordinate

A(k,R)= [dre *TA(r,R) .
J
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Investigation of the BdG equations shows that the
eigenfunctions (u",v") will oscillate on a length scale
kp!'. This is an unwanted and unnecessary difficulty for
the numerical integration, since the self-consistent pair
potential varies only on a scale much larger, namely &,.
This suggests that we introduce new wave functions
u

_ —ikFﬁ~x u

vl (2.3)

<

i.e., divide out the fast oscillations. Here and in the fol-
lowing we have left out the label n of the eigenfunctions:
in the interface problems we are going to study, the pair
potential A(k,r) will be homogeneous far away from the
interface so that we can label the quasiparticle states by
their wave vectors k in that region. To simplify the nota-
tion we will leave out the index k of u,v. If we retain
only terms of lowest order in (kp&,) !, the substitution of
(2.3) in (2.2) leads to the Andreev equations (Kurkijarvi

and Rainer®*)
Ei(x)=—iv k-Va(x)+ Ak, x)5(x) , (2.42)
Ev(x)=+ivk-Vi(x)+A*(k,x)@(x) (2.4b)

To show this for the integral operator, we look at

fdx'A(x’x')mX')e-ik'("_")=fdr&(r,x—r/2)ﬁ(x—r)e_“‘"

dv(x) o(x) 3

0A(k, x)

=A(k,x)v(x)+

ox

where we have assumed that v(x) is a slowly varying
function as is A(k,x) in the second argument to expand
U,A around x. It is clear that the second term of the sum
is down by a factor of (kp&;)~' w.r.t. the first one.
Hence, if we restrict ourselves to terms in lowest order of
the small parameter, we are left with (2.4), a first-order
differential equation in which k is a parameter. We will
solve (2.4) numerically together with the appropriate
boundary conditions. The pair potential A(k,r) is sup-
posed to be an external field, only later will the question
of self-consistency be addressed. Since A(k,r) is defined
only for k around kj, we will replace the dependence of k
by one on the direction k. The interpretation of A(k r)
as an external field does not contradict the principles of
quantum mechanics: it is possible because k and r may
be specified simultaneously in a quasiclassical situation.
But the condition for a quasiclassical treatment (slow spa-
tial dependence of external fields on a scale k') is
fulfilled in weak-coupling superconductors, since the
scale for spatial variation of the pair potential is given by
&o, the coherence length, and (§pkp) ™'~ T, /Tp << 1.
From now on we will assume that the interface is lying
in the x-y plane and is translationally invariant so that

the spatial dependence of #,0 and A is reduced to a
J

0 )=

1
dl’ﬁN(Z—> - 0

~ 0
exp(iEk y,z /vp, )+ {r
4

+ .- s

2 9dx dk

r
dependence on z. To be specific, the e region z <0 will be
taken to be the normal side (N) and region z >0 will be
taken to be the superconducting (S) side of the interface.
The Andreev equations (2.4) then take the form

Ea(z)=—ivF(ﬁ-i)ggﬁ(zwmi,zmz) , (2.5a)

A~

Ev(z)=ivgp(k- )%E(z)+A*(iE,z)E(z) R (2.5b)
where Z is a unit vector in the z direction.

The Andreev and normal-reflection coefficients can
now be determined by solving Eq. (2.5) for the two-

component wave functions

u(z)

I/Ji\((z):

v(z)

with the correct boundary and matching conditions for
z—* o0 and z=0. The interface couples states with unit
vectors ky, ky, kg, kg (see Fig. 2). Note that ky+#kg if
the metals on both sides of the interface have different
Fermi wave vectors. If we assume that k, gives the
direction of the incoming electron, we require that

exp( —iEic\sz /UFN) (incoming electron+ Andreev reflected holes) ,

(2.6a)
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ry R
ingN(z—»— w)= | |expliEky,z/vF ) (normally reflected electrons , no holes) , (2.6b)
E+[E*—|A(kg)2])'? . R
iz~ +e)=c, A*(&y) exp{i[E*—|A(ks) 1?1 ?ks,z /vF_}
(outgoing electron-like quasiparticles) ,  (2.6¢)
Alks)

¢ES(Z—>+w)=C2 E+[E2_|A(-’k:5)|2]1/2

These forms contain the following boundary conditions
at infinity: one incoming electron in direction ky, only
outgoing electrons and no holes in direction ky. Deep
inside the superconductor where A(k)=A(k,z— ) is
spatially homogeneous, the wave functions have to be-
come proportional to the bulk solutions of the Andreev
equations: this explains the form of (2.6c) and (2.6d).

For the matching condition at z =0 one has to take
into account the normal reflection and transmission prop-
erties of the interface. They result from interface poten-
tials and mismatch of Fermi velocities and are
parametrized by (k-dependent) reflection and transmis-
sion amplitudes » and ¢ The reflection coefficient
R =|r|? will be our parameter to describe the nonideality
of the interface. It is independent of temperature and has
to be distinguished from Ry =|ry|?, the probability for
normal reflection if the right side of the interface is super-
conducting. With these amplitudes the matching condi-
tions for the two-component wave functions take the
form (Shelankov?®)

U (2 = —0)= ¥y (2 =+0)F g (z=+0), (27a)

r

l/lgN(z =—0)= ;

b (z=40)+ g (z=40). (2.7b)
kg t* k¢

Once we have solved (2.5) with the boundary conditions
(2.6) and (2.7), the Andreev reflection coefficient follows

FIG. 2. Wave vectors that are coupled by the interface.

exp{i[E*— IA(gs )‘2]1/27_55,2 /st } (outgoing hole-like quasparticles) .

(2.6d)

r

from (2.6a) as R ,=|r , |2, and the probability for normal
reflection from (2.6b) as Ry =|ry|%. The corresponding
transmission coefficients T'; (ordinary transmission) and
T, (transmission with change of branch of the excitation
spectrum) can be determined from the constants ¢; and
¢, via

0 for E <|A(k)]

= le, 2 E+[EX—|AK)212)12—|A(k)]2) (2.8)

for E> |A(k)| .

The energy dependence of both R , and Ry contains in-
formation on the superconducting order parameter since
R ,+Ry=1for E <A(k).

We have to choose a model for the k dependence of r,¢:
we took the coefficients appropriate to a &-function po-
tential V'8(z) for simplicity, i.e.,

vV

r=— , (2.92)
ik2)—V

p=—tkz) (2.9b)
ikz2)—V

where we have used our usual units, i=vp=1 so that,
e.g., i#i’k,/m =i(k-2Z). The result for the reflection
coefficient is

VZ

R=|r’=———F—.
V2+(k-2)?

(2.10)

The value of R quoted as a parameter for the figures in
Secs. V and VI is (2.10) with k=%, i.e.,
2
R=—V—. @.11)
Ve+1

III. SELF-CONSISTENT DETERMINATION
OF THE PAIR POTENTIAL

Andreev?® used a step function A(x)=A6(x) as a

model for the pair potential of a normal-
metal-superconductor interface. This would be exact for
the case of an s-wave superconductor if the interface had
a reflectivity of R =1: surfaces are not pair breaking for
s-wave superconductors. For finite transmittance, Coop-
er pairs leak over to the normal side, leading to a de-
crease of the pair potential as one approaches the inter-
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face from the superconducting side and a nonvanishing
pair amplitude on the normal side of the interface (prox-
imity effect, see, e.g., Kieselmann®® and references
therein). Since the energy dependence of the Andreev
reflection coefficient depends on the shape of the pair po-
tential, we need to determine A(x).

For the case of an unconventional superconductor the
situation gets more complicated: reflecting boundaries
can be pair breaking in this case so that the pair potential
is suppressed at the interface even for ideal reflection.’’
If we use, e.g.,

AK)=Ak k, +ibdk k,

for the bulk order parameter, it turns out that A; and A,
will vary on different length scales as one approaches the
interface. Therefore, an accurate determination of the
shape of the pair potential is absolutely necessary to
study the Andreev reflection problem.

The only tractable formalism for the determination of
the self-consistent pair potential is the ELOE
(Eilenberger-Larkin-Ovchinnikov-Eliashberg) formalism
described, e.g., in Serene and Rainer.’® It consists in el-
iminating from the outset the unnecessary quantum-
mechanical degrees of freedom, i.e., the fast oscillations
of the Gor’kov Green’s functions G (x,x,). If we trans-
form to relative and center-of-mass coordinates and take
the Fourier transform with respect to the relative coordi-
nates, we obtain G (k,R) which, as a function of |k|, is
strongly peaked around k. Since this structure is not
needed in the weak-coupling theory of superconductivity,
Eilenberger®® proposed to get rid of it by integrating over
|k| or rather £=k2/2m —pu. The question was then
whether one could obtain a set of equations in which only
these modified Green’s functions occurred, and Eilen-
berger showed that Gor’kov’s equations could be re-
placed by a first-order differential equation using
(kp&y) ! as a small parameter (quite similar to the re-
placement of the BdG equations by the Andreev equa-
tions described in Sec. II). We only outline the method
here, details can be found in Serene and Rainer,*® Kiesel-

J

Akkz)=T 3 [dQu4m) ™2+ 1DV, PkkTrlgk 26,7 —i72)] |

0<e, <w,
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mann,*® and Zhang et al.** The central quantity of the
ELOE formalism for even-parity superconductors is the
2X2 quasiclassical Green’s function g that is obtained
from the ordinary Gor’kov Green’s functions G by an in-
tegration over the energy variable £=k?/2m —pu. For a
homogeneous s-wave superconductor, we have, e.g.,

1 —ie,—§& A
T Rt EETNTY « . , 3.1)
e +£2+|Al a ie, +§
and
G=[" der’G

- 1 —ie, A

=f df———— o7 * .
—w C(E—IQNEFIQ) | —A* +ig,
—in €, +iA

T Ta ||-iat =, |” 32)

where the Matsubara frequencies €, are defined by
€,=mT(2n —1), #' are the Pauli matrices and
Q=(e2+|A[*!2. Unit vectors as well as 2 X2 matrices
are denoted by a caret. The factor 7 in the definition of
£ is conventional. Obviously in (3.2) we have § 2= —72#°
and this normalization condition is fulfilled in the general
inhomogeneous case as well. Gor’kov’s equations can be
transformed to an equation for the quasiclassical Green’s
function that takes the following form:

A

lie,?*—Ak,z),8(k,z;€,)]

A d A
+ivp(k-2)—g(k,z;¢€,)=0 . 3.3
ig( z)dzg(k z;€,)=0 (3.3)
Here, [, ] denotes a commutator and A is given by*!
Ak 0 A(k,2) .
2= | _ax%2 o 3.4

The self-consistency condition for the pair potential is
given by the gap equation

(3.5)

Here, I determines the symmetry type of the order parameter, i.e., / =0 for s-wave, | =2 for d-wave superconductivity.
P, is a Legendre polynomial, and ¥, denotes the strength of the pairing interaction that depends on the cutoff .. To
eliminate ¥, from this equation in favor of T,, we introduce T, by letting A—0 in (3.5):

1 tuc/(ZﬂTc)
7 ,2'1 n—0.5
/27 T)
T e 1
=In |— )
T, PI—y

The inhomogeneity of the interface is encoded in the spatial dependence of ¥, and T:

T, forz<O,

Tc(2)= T, forz>0,

(3.7

where Ty and T,s are the bulk transition temperatures of the materials that constitute the left-hand and right-hand
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sides of the interface. They are input parameters for the calculation of the pair potential A(k,z) (that is not a step func-

tion in the variable 2).
Putting (3.6) back into (3.5), we obtain

TS [do.@4m~'@l+DPkkTrg(k

n>0

Lzy€, (R —if?)]

Alk,z)=

In[T/T.(2)]+ 3 (n—0.5)""

n>0

In the last expression, both numerator and denominator
diverge for w,— o, but the ratio itself is convergent and
does not depend much on the value w, chosen so that it is
enough to take, e.g., o, ~ 10T, (Kleselmann36)

Equations (3.3) and (3.8) have to be supplemented by a
boundary condition at the interface since the quasiclassi-
cal equations themselves cannot describe changes at a
length scale much shorter than &, e.g., interface poten-
tials. Whereas the Gor’kov Green’s functions are con-
tinuous at the interface, the quasiclassical ones, being en-
velopes of the Gor’kov Green’s functions, can have
discontinuities'” as shown schematically in Fig. 3.

The boundary condition for g has been determined a
few years ago by Zaitsev*? and by Kleselmarm if we as-
sume that the interface has a (k- dependent) reflection
coefficient R and is specularly reflecting so that the vec-
tors ky, ky, ks, kg (see Fig. 2) are coupled, the boundary
condition takes the form!”36:40

A -~

N=as (3.9a)

P ids /(2m)1,3y 1=d5(3s)? .

1+R

Here, [, ] denotes a commutator and :?N Sy are defined
by

N=§(§N,—O;en)~§(£1v,—O;e,,) ,
€, )+§(/IEN,*O'6,,) .

[sS[ 1— (3.9b)

(3.10)

syv=8(ky,—0; (3.11)
ds and S, respectively, are defined by the same equations
with z=+0 and k ~ replaced by k s- Both d and % depend
on the direction k but we will leave out the argument k to
make the notation simpler.

To determine the pair potential one has to choose the

g(z)

INNNEREE
|
|
|
|
)l
|
|
T
|
\
\
>

Ll

FIG. 3. The envelope of a continuous function may be
discontinuous.

input parameters, i.e., 7,.(z), the k dependence of the
bulk order parameters far away from the interface, and
the reflexion coefficient R. Startmg the iteration pro-
cedure by solving (3.3) for A(k =A(k) for all k and €,
[taking the nonlinear boundary condltxon (3.9) into ac-
count], one obtains the new pair potential by (3.8). The
procedure is repeated until self-consistency is achieved.

The solution to this iteration problem has been ob-
tained for various simplified cases. Aschauer et al.'’ as-
sumed large reflection coefficients R =1 which enabled
them to linearize the boundary condition. Nagai and
Hara* studied an interface between an s-wave and a p-
wave superfluid using the boundary condition (3.9), but
they used prescribed pair potentials and did not try to
solve the self-consistency problem.

None of the mentioned approximations has been used
in this work. We solve the system of equations (3.3),
(3.8), and (3.9) self-consistently, for temperatures that are
not close to T, and for various degrees of nonideality of
the interface. It is obvious that this task cannot be per-
formed analytically: some details of the numerical reali-
zation of the iteration scheme are given in the Appendix.

IV. DISCUSSION OF VARIOUS
PROXIMITY BOUNDARIES

In this section a few examples of the behavior of the
pair potential A(k,z) at normal-metal-superconductor
interfaces will be given. The superconductors considered
are an s-wave superconductor with A(k)=A,=const in
the bulk, and two d-wave superconductors with

A(k)=Ao(k3—ky2)
and
Alk)=2Apk,(k, +ik,) .

We choose the transition temperatures of the supercon-
ducting and normal sides to be T,g=1 and T,y =105,
The pair potentials are evaluated for a temperature of
T =0.1 and reflection coefficients R =0.8, 0.2, and 0.0
are used for the interface. The spatial coordinate z is
measured in units of the coherence length of the super-
conducting side, {,=v;/2A,, and the pair potential is
measured in units of T .

The results for the s-wave superconductor are shown in
Fig. 4. In Fig. 4(a), the interface is strongly reflecting
(R =0.8), so the superconductor and the normal conduc-
tor are almost decoupled and the pair potential is not
depressed. In Fig. 4(b), where R =0.2, and in Fig. 4(c),
where R =0.0, we see an increasing depression of the
pair potential in the superconductor. Only in the last
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FIG. 4. Pair potential of an s-wave superconductor at an in-
terface. Temperature T=0.17,5. (a) R =0.8, (b) R =0.2, (c)
R =0.0.

case we see a small pair potential in the normal side as
well: this is because we have not plotted the pair ampli-
tude (Y1) but the pair potential A~V ) that in-
volves the pairing interaction V. Since we have assumed
a Ty of 107 which corresponds to a small pairing in-
teraction, the pair potential is negligible on the normal
side. It is the pair potential that acts as a scattering po-
tential in the BdG and Andreev equations.
Figure 5 shows the case of the d-wave superconductor

Ak,2)=A(2)(k2—k2) .

The spatial dependence of A(z) on z is similar to that of
an s-wave pair potential (apart from the ratio A,/T,
that is now given by 2.56 instead of 1.75), since
A(k,z)=A(k,z), i.e., quasiparticles are not subject to a
phase change of the pair potential if they are reflected at
the interface. Again, for R =0.8~1 the pair potential
stays constant in the superconductor since a reflecting
surface in the x-y plane is not pair breaking for this type
of d-wave superconductor. The depression of A(z) for
R =0.2 and 0.0 is similar but not identical to the s-wave
case since the directional dependence of the reflection
coefficient has different effects in the two cases.

In Fig. 6 we plot a d-wave superconductor with pair
potential

A(k,2)=24(2)k,k, +2i Ay(2)k, k,
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FIG. 5. Same as Fig. 4 for a d-wave superconductor
Alk,z)=A(z)(k}—k}).

Here, the term proportional to A, of the pair potential
changes on reflection, i.e., a reflecting interface is pair
breaking since the reflected quasiparticles are subject to a
phase change of the pair potential. The self-consistency
condition makes the system adjust itself to this adverse
condition by depressing the pair potential strongly. Ac-
cordingly, A, and A, show a very different behavior as a
function of R: for R =0, both are partially suppressed
near the interface due to the proximity effect. For R >0,
A, is suppressed further, because of the pair-breaking na-
ture of the interface for this component; A, rises instead
because less Cooper pairs leak over into the normal met-
al. Finally, for R =1, A, is even enhanced as compared
to the bulk value.

The comparison of the two d-wave superconductors
clearly proves that the pair potential in unconventional
superconductors behaves nontrivially near boundaries
and has to be calculated self consistently.

V. REFLECTION COEFFICIENTS
AND DIFFERENTIAL CONDUCTIVITIES

Once the self-consistent pair potential of the interface
has been calculated, the determination of the Andreev
and normal reflection coefficients and the two transmis-
sion coefficients (transmission with or without change of
branch of the dispersion relation) is reduced to a numeri-
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A(i,z)=2A;(z)kykZ+2iA2(z)kxky. Solid line: A,. Dashed line:
A,.

cal integration of Andreev’s equation (2.5) with the
boundary and matching conditions (2.6) and (2.7).

These reflection and transmission coefficients have also
been calculated for s-wave superconductors by Blonder
et al.** who treated a nonideal interface by introducing a
normal potential ¥ (x)=vd(x) but approximated the pair
potential A(x) by a step function. Similarly, van Son
et al.* looked at smoothly varying but arbitrarily chosen
pair potentials and used both the intrinsic reflection
coefficient R and the shape of the pair potential as pa-
rameters which is not consistent. In our self-consistent
treatment, however, R determines the shape of A(x) so
that the two cannot be chosen independently.

As a first example, we plot the Andreev reflection
coefficient for an s-wave superconductor as a reference.
In Fig. 7, we show the Andreev and normal reflection
coefficients R ;, and Ry and the transmission coefficients
without and with branch change, T'; and T, for different
values of the intrinsic reflection coefficient R.*® For
R =0 in Fig. 7(a), we obtain Andreev’s well-known result
that R ;=1 for E <A,. The pair potential for this situa-
tion that we have plotted in Fig. 4(c) does not quite show
the shape of a step function so that the site at which the
incoming particle is reflected will vary with energy. This
does not affect R ;, however. The behavior of R, for
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FIG. 7. Reflection and transmission coefficients for an inter-
face of a normal conductor and an s-wave superconductor.
Different parameter values for the nonideality of the interface
are chosen: (a) R=0, (b) R=0.2, (c) R=0.8. Note the
different energy scale in (c).
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E > A, will be changed slightly as compared to Andreev’s
result

R, ={E/Ay—[(E/Ag)?—1]%}?

because the pair potential varies smoother around the
threshold than a step function.

For R =0.2 in Fig. 7(b), R , is less than 1 for E <A,
because of a sizable contribution of the normal reflection
(remember that R ,+Ry=1 for E <Ay). Ry is more
than double the value of R for E =0 but vanishes for
E — A, Anomalous transmission is only present very
near the threshold and its size is negligible for E > 1.5A,,
In Fig. 7(c) we consider R =0.8 at which R , is reduced
to a narrow spike around E = A and a corresponding dip
in Ry. The feature that R , =1 at the bulk gap energy
A(k,z— o) even for high interface reflection parameters
R for which R 4 <1 at E <Ay is important and will occur
again and again; it was found by earlier workers as well**
and can be attributed to the behavior of A(z) at large z:
A(z)— A, for z— o in our model. That means that for

(a)

E/NA,

T T E/AO
0 0.5 1.0 1.5

FIG. 8. Reflection and transmission coefficients for an inter-
face of a normal conductor and a d-wave superconductor

Ak)= (kz—-k ). R =0.2. Different k vectors for the incom-
mg electron are chosen: (a) k=(0,0.9,0.45), (b)
k=(0.45,0.7,0.6).
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an electron with wave vector k there is a peak in R ,(E)
and a corresponding dip in Ry(E) at E = Alk,z — o )

Now we want to look at anisotropic superconductors.
Since the direction of the incoming electron k is a param-
eter in the Andreev equations, thg reflection coefficients
depend on energy E and direction k.

In Fig. 8 we look at a d-wave superconductor with
A(k)ZA(kf—kyz) and take R =0.2 for the intrinsic in-
terface reflection. The spatial dependence of the pair po-
tential for this case was shown in Fig. 5(b). The results
resemble the s-wave case but now depend on the wave
vector of the incoming electron: for k=(0,0.9,0.45)
shown in Fig. 8(a), we get the usual resonance at
the bulk gap value E= Aok ~0.8A, whereas for
k=(0.45,0.7,0.6) shown in Fig. 8(b) the resonance peak
is shifted down to lower energies.

It is this directional dependence of the Andreev
reflection coefficient that we have been looking for: the
anisotropy in the interface reflection and transmission
coefficients. R

Reflection and transmission coefficients for various k
directions for

AK)=24,k,k, +2i Ak K, (5.1)

the third case we want to investigate, are shown in Fig. 9.
Again we have chosen R =0.2. The shape of A,(z) and
A,(z) has been shown in Fig. 6(b), and an incoming elec-
tron with wave vector k is subject to a linear combination
of these two pair potential with weight factors given in
(5.1). Forz— o0, A(2),A5(z)— A,.

For k=(0,0.9,0. 45) shown in Fig. 9(a), there is no

contribution of A,, the resulting pair potential rises
smoothly, leading to a rather different shape of R ,(E)
than shown in Figs. 8 and 9. Rotating k to
k=(0.1,0.9,0.4) in Fig. 9(b), the steplike A, component
that is present now shows up in a second resonance peak
at E=0.24,, i.e., at 2A¢k k,. The other resonance peak
at the total bulk gap value E=0.84A, is a very narrow
structure that is barely visible in this plot. For
k=(0.3,0.8,0.5) shown in Fig. 9(c), the second resonance
peak is shifted to higher energies with the rising A, com-
ponent.
__If we lower |k,| instead, that is to choose, e.g.,
k=1(0.8,0.1,0.6) as in Fig. 9(d), all these structures are
scaled down to lower energies, and for ky =0, no Andreev
reflection is observed.

The reflection coefficients cannot be measured directly
in an experiment, rather one measures the differential
conductivity of a point-contact or a double-point-
constant device. We use the simplest possible theory to
relate reflection coefficients and currents, i.e., we assume
that the electron distribution functions in the normal
metal and the superconductor are given by shifted Fermi
functions if we apply a voltage at the interface. Thus,

I~ [" dE[f(E —eV)~f(E)]T(E
E +eV

tanh

=4[ dE



4026

CHR. BRUDER 41

—R, —Ry
........ T2
T T T E/AO
0 1.5
—R, —Ry
........ T2
T 11 E/AO
.0 1.5

FIG. 9. Reflection and transmission coefficients for an interface of a normal conductor and a d-wave superconductor

A(k)-2A k.k, +2i8k k..

k=(0.1,0.9,0. 4) (c)k——(O 3,0.8,0.5), (d k k=(0.8,0.1,0.6).

Here, f is the Fermi function and V the voltage across
the interface region, 7(E) is an expression that depends
on the experimental situation we are looking at:

T(E)=1+R ,(E)—Ry(E) (5.3a)

if we are interested in the total current through the inter-
face. Note that Andreev reflection increases the current
since the reflected holes carry positive charge. If we col-
lect the reflected holes with a second point contact and
ask for their current,

T(E)=R J(E), (5.3b)
and if we collect the normally reflected electrons,
T(E)=Ry(E) . (5.3¢)

The peak observed in R 4(E) at E =A(k,z— ) leads
to a peak in the differential conductivity dI /dV as well.
In Fig. 10 the currents and differential conductivities as a

R =0.2. leferent k vectors for the incoming electron are chosen:

@ k=(0,0.9,0.45), (b)

function of voltage (measured in units of A,/e) are shown
for the pair potential plotted in Fig. 5(b), and the
reflection and transmission coefficients plotted in Fig. 8,
i.e.,, a d-wave order parameter A(k)~k2 k2 and
R =0.2. In Fig. 10(a), the direction is k=(0,0. 9 0.45)
and in Fig. 10(b), k=(0.45,0.7,0.6). The temperature is
T =0.01T,. We assume that only the reflected holes are
picked up by a second point contact, i.e., we take (5.3b)
as a definition of T(E).

The basic result is that the peak in R ,(E) gets translat-
ed into a peak in the differential conductivity dI /dV that
appears at the same energy. The anisotropy of the An-
dreev reflection coefficient leads to a corresponding an-
isotropy of the differential conductivity, hence, we have
obtained a possibility to map out the anisotropy of the
spectrum.

In Fig. 10(c) we have used the same parameters as in
Fig. 10(a) but the temperature has now been fixed to
T =0.1T,. The structures in the differential conductivity
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FIG. 10. Current (solid line) and differential conductivity
(dashed line) as a function of voltage for an interface to a d-
wave superconductor with A~k2—k2. The reflection and
transmission coefficients for this case have been shown in Fig. 8.

T=0.01T,. (a) k=(0,0.9,0.45). (b) k=(0.45,0.7,0.6). (c)
Same as (a) but T=0.1T,.

eV./ A,

are very much smeared out so that 0.17, would not be
low enough a temperature in an experiment.

In Fig. 11 we present the currents and differential con-
ductivities for the pair potential depicted in Fig. 6(b) and
the reflection and transmission coefficients plotted in
Fig. 9, ie., for a d-wave superconductor with
A(k)~k,(k,+ik,). This time the definition (5.3a) has
been chosen for T(E) which is correct for a (hypotheti-
cal) one-point-contact device with directional sensitivity
(as might be obtained by etching out structures from the
superconducting part of the interface so that only elec-
trons emitted in a particular direction would be Andreev
reflected). Here the normalization of the differential con-
ductivity has been chosen such that dI /dV tends to 1 for
eV /Ay,>1. The interpretation of the peaks below the
threshold remains the same as before, i.e., they corre-
spond to the peaks in the Andreev reflection coefficient
R ,(E) and are shifted to lower energies if the gap in the
direction looked at is lower.

VI. FEASIBILITY OF AN ANDREEV EXPERIMENT

All experiments supposed to study Andreev scattering
have to fulfill a number of general conditions (Benistant*’
and Hoevers*®).

(a) The normal part of the interface has to be a good
single crystal and temperatures have to be low enough
such that the mean free path of the electron/holes is of
the order of the thickness of the crystal. Any additional
scattering would weaken the signal at the collecting point
contact and make an interpretation more difficult.

(b) Point contacts have to be used for the injection of
electrons into the normal part of the sample: any voltage
drop has to occur at the point contact such that the elec-
trons are moving field free and ballistically in the normal
metal.

For an experiment trying to exploit the considerations in
Sec. V, one would have to be able to measure the
reflectivity of the interface for electrons of a given direc-
tion only. Previous Andreev scattering experiments do
not fulfill this condition: they were done either with one-
point contact as is Fig. 12 or with two-point contacts and
a magnetic field parallel to the interface as in Fig. 13.

In the one-point-contact experiment shown in Fig. 12
(Benistant et al.** and Hoevers et al.”%), the reflected
holes follow the paths of the injected electrons in the op-
posite directions. They show up in the differential con-
ductivity of the contact because they increase the current
for T <T,. This type of experiment does not need any
additional focusing of the reflected holes, but we do not
gain information about the k dependence of the reflection
coefficient either because it is averaged out. The only
possibility we can think of is to remove parts of the su-
perconducting side of the interface. In this way, only the
electrons emitted in certain directions would be Andreev
reflected, but to change the direction looked at, one
would have to take a different sample. Sample differences
would make it difficult to compare the results and to ex-
tract an angular dependence.

The two-point-contact experiments (Bozhko et al.?
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FIG. 11. Current (solid line) and differential conductivity (dashed line) as a function of voltage for an interface to a d-wave super-
conductor with A~k, (k, +ik,). The reflection and transmission coefficients for this case have been shown in Fig. 9. T=0.01T.. (a)

k=(0,0.9,0.45). (b)k=(0.1,0.9,0.4). (c) k=(0.3,0.8,0.5). (d)

and Benistant et al.>*) use a homogeneous magnetic field
parallel to the interface to deflect the reflected holes from
the path of the incoming electrons. The configuration
used by Benistant et al. is shown in Fig. 13. The magnet-

ment.

FIG. 12. Andreev reflection in the one-point-contact experi-

A

k=(0.8,0.1,0.6).

ic field has a very important second purpose: it focuses
the reflected holes onto a second point contact. Without
this focusing the signal at the second point contact would
be much too small to be detected. This focusing arises

FIG. 13. Two-point-contact configuration used by Benistant
et al. (Ref. 30).
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because all the reflected holes arrive again at the upper
surface of the sample at a distance d > d, from the inject-
ing point contact.

Hence, we obtain focusing of holes a¢z the minimum
distance d, so that this is the distance one should choose
between the two point contacts.

Moving the second point contact around the first one
(or rather using several point contacts in different lattice
directions) and looking at the differential conductivity as
a function of the applied voltage, it would indeed be pos-
sible to study the k dependence of the Andreev reflection
coefficient and hence to deduce A(k). The beautiful two-
point-contact experiments described above show that this
technique works in the case of conventional superconduc-
tors like lead, so that one should not expect unsurmount-
able difficulties in applying it to an interface with an an-
isotropic superconductor.

There is one difficulty, however: on analysis of the
focusing by a homogeneous magnetic field parallel to the
interface, it turns out that all the holes that are focused at
the minimal distance d, emerge from the interface in the
normal direction, hence, they cannot be used to probe the
k dependence of the order parameter. Another collmina-
tion technique for the reflected electrons/holes is needed:
there are some indications that an inhomogeneous field
could do the job, but one needs high-field gradients and
correspondingly high fields that would destroy supercon-
ductivity at least in part of the sample.

An alternative experiment would be to concentrate not
on the reflected but on the transmitted quasiparticles.
Suppose we put some detector for quasiparticles on the
side of the superconductor opposite to the normal con-
ductor (let us call it the right-hand side). The quasiparti-
cles with wave vector k injected by the point contact will
then traverse the normal conductor, enter the supercon-
ductor, and reach the detector on the right-hand side of
the superconductor if their kinetic energy E is larger than
Ak). If, on the other hand, E <A(k) the quasiparticle
will be Andreev reflected at the interface so that no quasi-
particles can be detected on the right-hand side of the su-
perconductor. This does not means that nothing enters
the superconductor. A Cooper pair will be transmitted,
so that the net result in a stationary situation would be
supercurrents in certain k directions and quasiparticle
currents in other directions. A tunnel junction is a possi-
ble detector that might be used to distinguish between the
two kinds of currents since its current-voltage charac-
teristic would resemble that of a NIN tunnel junction (N:
normal metal, I: insulator) for incident quasiparticle
currents. For an incident supercurrent, however, one ex-
pects the current-voltage characteristic of a NIS tunnel
junction (S: superconductor). Accordingly, an array of
tunnel junctions on the right-hand side of the supercon-
ductor could be used to map out the k dependence of the
order parameter by looking at the current-voltage
characteristics of the tunnel junctions in different loca-
tions.

A point that has been raised by Anderson®! in connec-
tion with the Andreev scattering experiments done on
silver/Y-Ba-Cu-O junctions is the question of what really
causes the Andreev scattering of the incoming normal
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quasiparticle: is it the order parameter of Y-Ba-Cu-O or
rather some proximity-induced order parameter in the
silver? If the induced order parameter is of the same type
as the order parameter of the superconductor, there is no
problem since it is not important to know exactly where
the incoming quasiparticle has been reflected. If, on the
other hand, the induced order parameter is of a diﬂ'e;\ent
type, we argue as follows: it is the pair potential A(k,z)
that enters the Bogoliubov—de Gennes equations and
causes a scattering of incoming particle into outgoing
hole states. Since the pair potential contains the pairing
interaction, A~ V(¢ ), it is small if the pairing interac-
tion V is small although the induced pair amplitude
(1) may not be small. Now, if one takes silver for the
normal side of the interface, the pairing interaction is
very small since it is estimated that the T, of bulk silver
is less than 107° K (Mota®?)—hence, the induced pair
potential can only influence incoming electrons at a very
low energy but not modify the Andreev scattering at en-
ergies of the order of the pair potential of the supercon-
ductor.

Up to now, we have not talked about odd-parity super-
conductors since there are additional theoretical and ex-
perimental difficulties in this case: as was mentioned in
Sec. 11, a triplet superconductor will lead to new phenom-
ena involving the spin of the Andreev reflected hole
(Kieselmann and Rainer’). If we take the equivalent of
the A, phase of superfluid *He as a superconductor, the
Cooper pairs will be characterized by spin projections
S,==1, and one spin projection will dominate, e.g.,
S,=+1. Hence, if an unpolarized beam of electrons is
injected towards the interface, most of the reflected holes
will have a spin projection S,= —1 (missing electrons
with §,=+1). To detect the spin polarization of the
reflected holes may be possible by using a point contact
made from a half-metallic ferromagnet. These materials
like NiMnSb, CrO,, or Fe;0, have a partially filled band
and a Fermi surface for spin-up electrons, whereas the
spin-down population fills a band and has a gap at the
Fermi energy (de Groot et al.>’). Hence, a point contact
made of such a material would accept the holes only if
they were polarized correctly. Point contacts made of
half-metallic ferromagnetics were proposed by Hoevers*®
who was interested in spin-polarized Andreev reflection
involving two reflection events at an ordinary s-wave su-
perconductor, but to use these materials to distinguish
between even- and odd-parity superconductors is suggest-
ed here for the first time. Unfortunately, there seem to be
material problems which make it very difficult to produce
point contacts out of the half-metallic ferromagnetics
known at present.*8

Another problem concerns the interpretation of such
an experiment. If one wants to look at spin-polarized
Andreev scattering, one has to worry about magnetic
scattering at the interface caused by differences in spin-
orbit coupling of the two sides of the interface. The
boundary condition (3.9) used to calculate the self-
consistent pair potential would have to be replaced by a
more complicated condition recently found by Millis
et al.,'® and more free parameters would have to be in-
troduced to characterize the nonideality of the interface.
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VII. CONCLUSION

In conclusion, we have computed the Andreev and
normal reflection coefficients of a nonideal NS interface
for the case of an anisotropic superconductor by solving
the Andreev equations. The pair potential A(k,z) that
occurs in the Andreev equations had to be determined
self-consistently because of its nontrivial behavior near
interfaces: interfaces are pair breaking for non-s-wave su-
perconductors. The result is that the reflection
coefficients strongly depend on the direction of the in-
coming electron: it was shown, that, as a consequence,
the differential conductivity is directionally dependent
such as to yield enough information to allow the deter-
mination of the type of the superconducting order param-
eter.

Although the experimental question how to obtain the
scattering data has not been answered satisfactorily yet, a
generalized two-point-contact experiment can be used in
principle to look at the k dependence of the Andreev and
normal reflection coefficients. The problem of electron
collimation (by other means than a homogeneous mag-
netic field parallel to the interface) remains to be solved.
Experiments using one point contact, on the other hand,
need no extra focusing, but up to now there are only
inelegant ways of making them sensitive to electrons that
are emitted and collected in particular directions, e.g.,
etching out part of the superconductor.
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APPENDIX: NUMERICAL SOLUTION
OF THE SELF-CONSISTENCY PROBLEM

For practical calculations it is convenient to expand
the quasiclassical Green’s function and all the 2X2 ma-
trices that occur in the boundary condition (3.9) in Pauli
matrices, i.e., § =g-7, etc. There is no #° component in §
because it has to fulfill the normalization condition
g 2=—m?% Doing this, the quasiclassical equation (3.3)
takes the form

0 ie, iAg(2)
n O '—IAI(Z) )

—ilAg(z) iA(2) 0

4 (z)= 2
dZ kva

—ie (A1)

where Ap and A, are the real and imaginary parts of the
pair potential, the self-consistency condition reads

A

n

In[T/T.(2)]+ 3 (n—0.5)""

n>0

and the boundary condition becomes®*

dg=dy , (A3)

a[2msy Xsg—dg(sy-sg)]+dg(sg)?=0, (A4)

where a=(1—R)/(1+R). Since the pair potential will
be constant and equal to its bulk value far away from the
interface, we have to know the solutions of (A1) for con-
stant A. There is one constant solution,

—A,
—Ag |,

€

—iT

E

gconst(2)= (A5)

n
n

where E, =(e2+|A|*)!2, and two exponentially increas-
ing and decreasing solutions

—AgE,+ilAje,

2E,z
gi(z)=| AJE, +iAge, |exp |- ,
kaz
i(A% +A2)
ARE,+iA (A0
iAje
R*n I%n 2En2
gqs(z)= |—AE,+ilAge, |exp | —
Usz

i(AZ+A})

Now to solve (A1) with (A3) and (A4), we have to take
appropriate linear combinations of (A5) and (A6) as an
ansatz for the solutions far away from the interface where
the system is homogeneous and then determine the
coefficients in this ansatz by an integration of the quasi-
classical equation. R

As an example, consider the solution in direction kg
(see Fig. 2) and choose a point z, >0 far away from the
interface, i.e., zy/§;>>1. Here the system is homogene-
ous so that we can use the following initial value for the
integration of the quasiclassical equation:

8(20)=8const20) T asgalzo) ,
(A7)
8(—20)=8constl ~20) tanga(—2zo) .
Here we have left out the arguments is,iN. The ex-
ponentially rising solution g;(z) cannot contribute to (A7)
since the quasiclassical Green’s function has to be bound-

ed for z— oo. Integration of the quasiclassical equation
leads to

8(0+)=U(0,z¢)8const(20) tasU(0,29)g4(20) ,
(A8)

g(0—)=U(0, —z()8const{ —20p) tanyU(0, —z4)g (—2zp) ,
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since we are dealing with a linear differential equation.
The symbol Ul(z,z,) is used to denote the evolution
operator for the differential equation (Al). Repeating
Lhis _ procedure for the other directions involved,
ks, ky, ky (see Fig. 2), we can now calculate dy, dg, sy,
sg and put them in the first part of the boundary condi-
tion (A3) to obtain a linear relation between the
coefficients ag and ay that we have introduced in the ini-
tial value.

The second part of the boundary condition then takes
the form of a polynomial of third degree with coefficients
¢, and variable ag:

3
> c,ag=0. (A9)
n=0

The zeroes of this polynomial can be found easily. At
this point the nonuniqueness problem® of the quasiclassi-
cal theory rears its head: the correct zero has to be
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chosen by a physical argument, i.e., adiabatic continua-
tion from some known case, e.g., R =0 or 1.

Numerical integration of the differential equation (A1)
was performed with a Runge-Kutta algorithm using the
multiplication trick of Thuneberg et al.:** it is used to
obtain the equivalent of the constant solution (AS) in the
inhomogeneous case. Simple numerical integration start-
ing at (A5) will not do because of the presence of the ex-
ponentially rising solutions (A6) that will dominate any
numerical integration scheme. The multiplication trick
uses the fact that the product of the exponentially in-
creasing and decreasing solutions (written in matrix nota-
tion) just yields the constant solution.

The numerical integration over the unit sphere needed
in the self-consistency condition (A2) was done with the
Romberg algorithm using a small number of interpola-
tion points since the evaluation of the integrand (the solu-
tion of a boundary value problem) is expensive in compu-
tation time.
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Laboratory, University of Pennsylvania, Philadelphia, PA
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