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Phase transitions in dissipative Josephson chains
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We study the zero-temperature phase transitions of a chain of Josephson junctions, taking into
account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipa-
tion. We map the problem onto a generalized Coulomb gas model, which then is transformed into a
sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a
transition between globally superconducting and resistive behavior, we find a quadrupole unbinding
transition at a critical strength of the dissipation. This transition separates two superconducting
states characterized by different local properties.

I. INTRODUCTION

In recent years interest in the properties of mesoscopic
tunnel junctions, junction arrays, and granular supercon-
ductors has been growing (see, e.g. , the articles in Ref. 1).
With modern lithographic techniques it is possible to fa-
bricate regular arrays of Josephson junctions that show a
transition between a globally superconducting and a
resistive state. In two-dimensional classical arrays this
transition is of the Kosterlitz-Thouless-Berezinskii (KTB}
type, and occurs at a critical temperature TK~H below
the superconducting transition temperature of the indivi-
dual islands. It has been recognized that in these sys-
tems quantum effects induced by the charging energy of
the metallic islands can play an important role. When
the geometrical capacitance of the islands is of the order
of picofarad the Coulomb energy Ec=e /2C may exceed
the Josephson energy EJ. In this case the quantum fluc-
tuations lower the coherent transition temperature TKzz,
and, below a critical value of the ratio EJ/Ec, global
phase coherence is prevented even at T=0. The
coherent transition has been investigated by means of
several analytical ' and numerical methods. These ap-
proaches cannot be applied directly to the case of chains
of Josephson junctions because of the difference between
the relevant topological excitations in these low-
dimensional systems. Bradley and Doniach mapped the
quantum Josephson chain on a (1+1)-dimensional (one
space and one time dimension) classical XY model. The
inverse temperature RP and the charging energy of the
quantum chain play the role of the system size in time
direction and of the temperature gf the classical problem,
respectively. The coherent transition in this case is again
of the KTB type.

A series of experiments, both on granular superconduc-
tors and arrays of Josephson junctions showed an addi-
tional interesting feature: The low-temperature proper-
ties of the network depend strongly on the normal sheet
resistance R of the system. Only below a critical value of
R of the order of h /4e =6.5 kQ, the system reaches a

globally superconducting state (zero resistance of the
whole array}. The experiments suggest that this is a sam-

ple independent, universal value. The theoretical work
devoted to study the transition starts from the lattice ver-
sion of the Caldeira-Leggett model' for Ohmic dissipa-
tion, or from the action obtained by Ambegaokar, Eck-
ern, and Schon" which describes the effect of quasiparti-
cle tunneling. The model actions have been studied by
variationa1 calculations, ' in coarse graining ap-
proaches, ' and by other means. ' The dissipation tends
to suppress the quantum fluctuations and gives rise to the
observed transition. But there is no indication from these
studies that the value of the critical normal sheet resis-

tance should be universal, although its dependence on
sample parameters may be weak.

Also a single junction shows a transition as a function
of dissipation. ' Thus, one can expect that local quantum
fluctuations affect the coherent properties of the array as
well. Indeed an instanton analysis' in the large Es/Ec
regime indicated the possibility of a further phase for
weak dissipation governed by strong /Oea/ quantum fluc-
tuations. The question of what the properties of this
phase are, and, in particular, whether the array is in a
resistive or a globally superconducting state, has not yet
been settled. Very recently the dissipative Josephson
chain has been studied in more detail in Refs. 17 and 18.
However, we feel that the problem has not yet been
solved satisfactorily. For instance, the conclusions
reached in Refs. 17 and 18 do not agree completely.

It is the purpose of this paper to work out in more de-
tail the properties of the phase transitions in a chain of
Josephson junctions. We assume that the junctions are
shunted by Ohmic resistors R& and that the quasiparticle
contribution can be disregarded. We map the action of
the Josephson chain on the statistical mechanics problem
of a charged gas in a (1+1)-dimensional space-time dual
lattice by means of the Villain transform' in the limit of
large EJ/Ec and by means of an expansion in Ez in the
opposite limit. The dissipation induces a highly aniso-
tropic interaction between the topological excitations
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(vortices) of the system. The properties of the gas model
are analyzed further by considering the related sine-
Gordon field theory. In particular, the location of the
phase transition is determined by the lines in the phase
diagram at which the sine-Gordon field changes from
massive to massless. In the ordered phase of the dissipa-
tive quantum chain, where the vortices are bound in di-
poles, one cannot disregard the residual interaction be-
tween the dipoles (in contrast to the case of the isotropic
XYmodel or the nondissipative quantum chain}. This be-
comes important at a critical strength of the dissipation
and introduces a second phase transition characterized
by a binding of dipoles into quadrupoles. This transition
has been discussed in different terms in Ref. 16. Our for-
mulation provides an understanding of this transition and
allows us to draw conclusions about the response and
fluctuations of the chain in the different phases.

II. THE MODEL

The model from which we will start our analysis is
defined by the following action (putting A'= 1):

'2
p 1 dd;

A [8]=g f dr EjcosV—„B,(r)
0 16Ec d v

+ —,
' $ f

deaf

dr'a(r r')—
0 0

V„8;(r) =8; (+~) 8,(r)— (2)

&& [V„B,(r) —V„8,(~')) . (1)

The three terms in the action defined are the charging en-
ergy, the Josephson coupling, and the Ohmic dissipative
term, respectively. ' The label i denotes the position of
the island in the chain. We have defined

The associated partition function

Z= f gD8;(r)exp( —3[8]) (4)

is specified once we fix the boundary condition for the al-
lowed paths 8; (r). Here the proper choice is

8;(0)=8;(P) because, in the presence of Ohmic dissipa-
tion, which changes the charge in a continuous fashion,
the states at 0 and 2ir are distinguishable. As is clear
from Eq. (2), we consider here the case in which only the
diagonal elements of the capacitance matrix are nonzero
(the so-called self-charging model). The other extreme
case, in which only the nearest-neighbor capacitances are
considered, is trivial, since the system decouples into in-
dependent junctions. ' As in the standard theory of the
KTB transition, we will map the problem defined above
into an equivalent statistical mechanical problem of in-
teracting charges.

III. THE VILLAIN TRANSFORMATION

We first consider the limit EJ &8Ec. In this case, a
straightforward way to perform this transformation to
the interacting gas of charges is to use the Villain trans-
formation. ' ' It amounts to replacing the Josephson
nonlinear cosine term by a "periodic Gaussian" potential.
This requires that we consider a lattice in time direction
with lattice spacing hr and introduce a set of integers
n(r) at each of the N discrete space-time lattice points
r=(i, r) The resu. lting partition function is

as the lattice derivative in the spatial direction, and 8 is
the phase of the superconducting order parameter. The
time Fourier transform of the dissipative kernel is

CX ( CO ) —
~

CO ~, CE-
CA h

4~ 4e2~s

+—ia)[(1 —cosk) i8(k, co)i
8Ec

Z= g fDB(k, a))exp ~ ,'N——
(n(r)) k~cd

+EJ~[1 exp(ik }]8—(k, co) 2mn(k, co) ~— (5)

In this form we used the strong-coupling expansion for the effective Villain coupling constant. Its use requires that the
lattice spacing in the time direction hv should not be taken too small. On the other hand, for the lattice version of the
path integral br has to be small. Both conditions can be satisfied simultaneously only if Ez/8E& ) l. One can extend
the method by using the weak-coupling form of the Villain transformation. We do not make much use of this exten-
sion since we will use a different approximation in the limit of small EJ /Ec.

It is easy to perforin in (5) the integration over the spin-wave part of the partition function. This yields

CO

' —1/2

Z,„=g '" " +—
I l(1 — k)+2E(1—osk)

8Ec

Completing the square in (5) we arrive at

Z =Zsw g exp —
—,'N ' g 2np(k, co)GD(k, co)2np( —k, co)—

(p(r) J k, co

(7)
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where the second factor is the partition function of a lat-
tice gas of vortices p(r). The interaction (in the long-
wavelength limit} is given by

J+(iz/2~)k'/I~I
co +k +(a/2n)J 'k Ical

Here we defined the coupling constant

J=(E~/8E )'

and we scaled the frequency co in units of (8EcE~)'
The new field

(8)

(9)

p(r) =V~(r)=n(i, r+hr) n(i—, ~) (10)

is also an integer field since the derivative is defined on
the lattice. The singularity at k =co=0 implies that the
gas of vortices is neutral. In order to illustrate the prop-
erties of the gas let us consider the strong-coupling limit
J))1. In this case the interaction (8) between the topo-
logical charges can be approximated by

Ga(k, co) = +
k 2+~2 2m'~ co

This means it consists of an isotropic part, as in the ab-
sence of dissipation, plus a strongly anisotropic attraction
in time direction between vortices located on the same
space lattice point. As it will become clear later the an-
isotropic part of the interaction introduces new qualita-
tive features in the phase diagram.

The mass x is related to the self-energy by the self-
consistency relation

s.= —X(q=O, ~) . (16)

Xi(q, v)= —8m yaexp[ —2n. GQ(r=O, x')] . (17)

The phase boundary in the parameter space is found from
(16) and (17) in the limit x~0. The technical steps are
presented in the Appendix. We obtain the following re-
sult:

The ansatz (15) for the propagator is sufficient only in the
disordered phase, where ~ describing the screening of free
vortices, is nonzero. The evaluation of the self-energy
can be performed in a perturbative expansion in the ac-
tivity ya. In Eqs. (14)—(16) we did not introduce the lon-
gitudinal dielectric constant. The reason is that we will
work out the results in first order in the activity only and
at this level the dielectric constant is equal to one. In
second order, in the perturbation expansion, we would
find corrections to the transition point, but these are only
of a quantitative nature. In the perturbation theory of
the sine-Gordon model it is possible to perform a resum-
mation of a class of diagrams (tadpoles), and this leads to
a renormalization of the activity. Thus, all these dia-
grams can be disregarded provided one considers an ex-
pansion around the renormalized activity (vertex).

In first order in y0 the self-energy does not depend on
the wave vector. Hence,

IV. THE SINE-GORDON MODEL
AND THE PHASE DIAGRAM

G(r=O, s)=— 1 1J+
z a ln(z) for z~O .

4m
(18)

Z(y, ) =Z,„fDp(r }exp( H,o }, —

H,o= ,' f d r d r—'y(r)G '(0r —r')qr(r')

+2y0 f1 r cos[2np(r }],

(12}

(13)

where GQ is given by Eq. (8).
The KTB transition is characterized by the unbinding

of vortex-antivortex pairs and, according to
Minnhagen, is located at the points in the phase dia-
gram where the mass of the sine-Gordon field vanishes.
The calculation of the field mass has to be performed
self-consistently. We consider the propagator

G(r —r') = ( y(r)y(r') ),
and make the following ansatz with q= (k, co):

(14)

G '(q)=60 '(q)+~ . (15)

When deriving quantitative results for the phase dia-
gram it is convenient to map the gas model defined in (7)
onto an equivalent sine-Gordon field theory. This map-
ping is discussed in the literature, ' so we omit the
derivation here. As in Ref. 25, we introduce a new pa-
rameter, the activity y0, which controls the strength of
the fiuctuations of the topological charges. The grand
partition function of this generalized model can be ex-
pressed in terms of the field theory in a new variable p(r)
defined in the continuous space

Substituting this expression into Eq. (16) we obtain the
self-consistency equation for z

8+ya&~J/2+a (19)

7T
1 ——J—a=0 .

2
(20)

Above the transition line (20) the system is in an ordered
state; the charges are bound in dipoles. In the disordered
phase below the line (20) the charges are free. In the ab-
sence of Ohmic dissipation, the result (20} reproduces
that of Bradley and Doniach. In the small-a limit it
coincides with a perturbative result of Guinea. For
stronger dissipation the transition line moves towards
small J. In this regime, but for not too small J, we should
use the weak-couphng form of the Villain transforma-
tion. ' 3 The first correction is J,s =J(1—1/J ); this im-

plies that the transition line is not straight but bends up-
ward, favoring the disordered state. Finally, for very
small J, the Villain transformation ceases to be sufficient.
However, in this limit we can pursue a different approach

The relation (19) has nontrivial solutions for ~ in the
regime of small J and a, which we identify as the disor-
dered phase. The quantity ~ in this phase has the mean-
ing of a screening length. As the coupling constants in-
crease, the solution for ~ approaches zero. This locus of
point defines a phase transition line in the J-a diagram
(for y0~0)



4012 P. A. BOBBERT, R. FAZIO, GERD SCHON, AND G. T. ZIMANYI 41

which we will discuss in Sec. VI. Anticipating the result,
that in the limit J~O there is a fixed point at a=1, we
see that the transition line eventually has to become
steeper again to connect to this fixed point. Before we
consider the small-J limit we will discuss a remarkable
property of the ordered phase in the presence of the an-
isotropic interaction (8).

V. THE QUADRUPOLE UNBINDING TRANSITION

Fig. 1(a). They form a one-dimensional (dipole) gas with
a logarithmic interaction. In order to describe the prop-
erties of this gas we proceed along the same lines as out-
lined above for the two-dimensional vortex problem. We
do not repeat the derivation but we notice that the cou-
pling strength of the logarithmic dipole-dipole interaction
is twice that of the corresponding vortex-antivortex in-
teraction. Finally we arrive at the self-consistency rela-
tion

+
2 lnrdd [5(xdd )+—'5( ~xdd ~

—I )] . (21)

Here rdd =(xdd, rdd) refers to the dipole-dipole distance
and f(d„d2, rdd) is a function of the relative dipole-
dipole orientation. Apart from the first term, which de-
scribes a screened interaction as in the case of the isotro-
pic XY model, the dipoles interact via a logarithmic in-
teraction in time direction. This interaction is not
screened and leads to additional features. For the
configuration shown in Fig. 1(c), the interaction is fully
screened.

The important configurations of dipoles are depicted in

A key hypothesis in the standard treatment of the
KTB transition is that once vortices are bound in dipoles
the residual interaction between dipoles can be disregard-
ed because it does not induce further critical behavior in
the system. In our case, however, due to the strong an-
isotropy of the interaction, this hypothesis is not valid
anymore. Further analysis is carried out most easily in
the limit J»1. In this case the vortices form a dilute
gas of tightly bound pairs and it is safe to assume that
their size is of the order of one lattice spacing. For the
configurations shown in Figs. 1(a) and 1(b) for large dis-
tances the interaction (12) between dipoles reduces to

1
Edd =Jf(d), d2, rdd )

rdd

K =constK (22)

This means, we find an additional phase transition at a
critical line

a= —,
' for J»1 . (23)

For a & —,
' the dipoles are free to move in the time direc-

tion, for a & —,
' the dipoles are bound in a gas of quadru-

poles.
Turning to the configurations of the type drawn in Fig.

1(b) we notice that they can be disregarded. The reason
is that these configurations are not stable, since the first
part of the interaction (21) produces a nonzero torque
and tends to rotate them into the orientation depicted in
Fig. 1(c). In this orientation the interaction is fully
screened. Furthermore, these configurations become
unimportant in the limit of vanishing activity due to the
charge neutrality in the v direction. Extending the
present approach one can consider more complex clus-
ters. However, it is easy to see that the interaction be-
tween larger clusters is always screened so that one can
stop the analysis at the quadrupole unbinding transition
(23).

VI. THE REGION E, «E~

~ ,'~
I

~ ~

I

I

(~)
I

I
I

~ ' ~

' (b)

~ i ~

As already stressed, the approach developed in the pre-
vious sections is reliable only in the region J& 1. But also
in the opposite limit we can use a (different) duality trans-
formation to express the problem in terms of a gas of in-
teracting "charges. " In order to do this we extend
Schmid's approach' to a chain of Josephson junctions
and represent the Josephson term of the action (1) by

exp EJ g cosV„B(r)

FIG. 1. We display in the space-time lattice the binding of
vortices into dipoles and the interaction between dipoles.
Configuration (a) shows two dipoles at the same space lattice
points. Their binding into a quadrupole is responsible for the
transition at a= —'. The configuration (b) is not stable and will

rotate towards the configuration (c) which is fully screened.
The ratio between the dipole length and the dipole-dipole sepa-
ration has to be considered much greater than one.

(EJ /2)"
g exp i ps(r)V, P(r) . (24)

n =0 Is(r) I

Again we introduced a set of integer charges s(r) at the
space-time lattice sites r, but they differ from the charges
n(r) used in the Villain transformation. Using Eq. (24)
we rewrite the partition function as
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(Eg /2)"
Z= 8r, exp i sr' r —A&8 —AD 8

n =0 ' Is(r) I r
(25)

where Ac and AD are the charging and dissipative part of the action (1). The Gaussian integrations can be perforined
which yields a spin wave [differing from (6) by the absence of the Ez term] and a "charge" part

(Eq /2)"
Z=Zsw«J=o) g n! g exp ,'N——' g s(k, co)DO(k, co)s'(k, a))

I s(r) I k, co

(26)

with the new propagator (in the long-wavelength limit}

2

~=2EJexp[ ,'D—(x—=O,r=0, ~)] . (33)

Do(k, co)=
+ f~/k'

8Ec 2m.

(27) The evaluation of D(x =0,r=O, a) gives (in the limit of
small a.)

The singularity of the propagator at co=0 implies that, at
each space point, the gas is neutral along the time direc-
tion. The interaction depends again logarithmically on T

2
Do(x, r) = ——5„0ln-

TQ

-2D (x =0,r=0,K) = ——ln~+ const .
a

The transition point is then readily obtained

a=1 for EJ~O .

(34)

(35)

r»
m x i/2~r v'2~rc'Y (28)

f(u ) = [—' —C(u )cos —u + [—' —S(u )]sin —u
2 2 2 2

(29}

and the constant y is y = (2n /a8EC )'~ . When studying
(28) it is useful to define a "diffusion cone" with the
boundary x d,

=y '( 8n r}' . Then (28) reduces to

where the auxiliary function f(u) is expressed in terms of
Fresnel integrals

This result agrees fully with the renormalization-group
approach of Chakravarty et a/. ' Although the transi-
tion (35) occurs at the same value as the single junction
transition' two differences must be stressed. First, in the
present case, the phase of an island and not the phase
difference across a junction is localized for a 1. Second,
although the interaction (28) reduces to an independent
island description as far as the critical properties are con-
cerned, it does not reduce to that in general. The
response and other physical properties of the system can
depend on the spatial structure.

VII. RESULTS AND DISCUSSION

Do(x, r) = ——5„Din—+ Ecy—2 T 16 21
CX Tp K X

if x and T are inside the diffusion cone x xd„and

2
Do(x, r ) = ——5„Din—+const

Tp X

(30)

(31)

We summarize our analysis of a chain of Josephson
junctions shunted by normal resistors in the phase dia-
gram shown in Fig. 2. The solid lines show our results
obtained from the different approaches described in Secs.

D '(k, co, ~)=DO '(k, co}+~, (32)

the self-consistency equation (to first order in EJ) reads

otherwise. Although the interaction is not critical in the
spatial direction it involves many islands so that it re-
quires some care to investigate the properties of the phase
transition.

As in the last sections, we map the model (26) into a
sine-Gordon field theory in order to locate the phase
transition. We do not repeat the derivation, but point
out the differences: (i) the factor 2n contained in the
cosine term of Eq. (14) is missing now, (ii) the Josephson
energy EJ plays the role of the activity of the gas ob-
tained from the Villain transformation. With the
definition

2
S)

S2

r

rr rrr r

N

1/2

FIG. 2. We show the T=O phase diagram of the dissipative
Josephson chain in the J-a plane. The N phase refers to the
normal state; S, and S, are both superconducting, in S, the di-
poles are bound in quadrupoles.
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Q Q Q

Q Q

Q Q

Q Q Q

FIG. 3. We illustrate the time evolution of the phases of the
islands in the presence of the topological excitations in the sys-
tem corresponding to the configuration of Fig. 1(a).

IV —VI, i.e., Eqs. (20), (23), and (35). They are connected
by dotted lines which represent our present understand-
ing but which need further justification. We distinguish
three regions N, S„and S2.

The phase boundary defined by Eq. (20) (with correc-
tions from the weak-coupling form of the Villain trans-
formation) separates the resistive (X) and the globally su-
perconducting states (S, and Sz ).

The phase transition defined by (23) between S, and S2
resembles the one described in Ref. 16. It emerges natu-
rally from the properties of the topological excitations of
the system, and our approach provides a transparent in-
terpretation of this transition. In both regions S& and S2
the vortices form dipoles. A dipole oriented in the space
direction describes a phase slip by 2~ of a single island of
the chain (see Fig. 3). This iinplies that the phase slips of
two neighboring junctions have opposite sign, so that
there is no voltage drop across the sample. In contrast
the isolated charges, present in N, lead to a voltage drop
across the chain. The phase changes corresponding to
the quadrupole configuration shown in Fig. 1(a) are
shown in Fig. 3. It describes forward and backward
phase slips of one island at different times. This means
that in S2, even with a local probe at a single junction, a
vanishing average voltage is seen. In contrast, in S&, a lo-
cal probe observes a finite voltage. At the quadrupole
unbinding transition S,-S2 the time correlations of
phase-slip processes change and the properties of the
voltage fluctuations will change accordingly. Thus, the
transition can be observed by studying the correlation
functions of the system.

In the limit of small J, after expansion in the Josephson
coupling, we also arrived at the picture of a charged gas.
It has a transition at a = 1 [see Eq. (35)], consistent with
renormalization-group treatments. ' Although this tran-
sition point coincides with the transition of a single junc-
tion, we expect that the properties of the ordered and
disordered phases depend on properties of the array.

The charges s ( r ), which we introduced in the small- J
limit, are related to real electric charges [more precisely,
at the space-time site r where s(r) = 1, a Cooper pair is
tunneling across a junction]. They are different from the
topological charges p(r) (the vortices) of the large-J
description. Nevertheless, we notice that a naive extra-
polation of the result (20), which is based on the vortex
picture, predicts the same transition point as (35), which
is based on the charges s(r). Furthermore, in the limit
J=O at a=1 the two descriptions in terms of vortices
and in terms of the charges s(r) are self-dual, suggesting
again that there exists a phase transition at this point.
However, since the Villain transformation and the vortex
picture obtained from it are not valid in this limit we can-
not draw definite conclusions from this coincidence.

Zwerger' used the vortex gas picture, obtained from
the Villain transformation, down to J=0 and derives
from it a transition at a=1. He further speculates about
the properties of the phase at J=0, a & 1, suggesting that
it has local phase coherence but, e.g., no Meissner effect.
And he suggests that there exists a further phase transi-
tion at a & 1 and small nonzero J between this phase and
the phase with global order (for large I). But, as dis-
cussed above, the Villain transformation fails at small J,
which casts doubt on conclusions derived from it. We
agree that the transition at J=O, a=1 is of a different
nature than the vortex-binding transition in the large-J
limit. However, it is also possible that there is a continu-
ous crossover in the nature of the transition between the
resistive and the superconducting states with increasing
J, without a further phase transition. Such a picture
emerged from the variational calculations. ' In any case,
we point out that both our approach and the
renormalization-group work' yield only one transition
for J=0. More conclusive results could be obtained from
a study of the response functions, e.g., by extending the
approach of Eckern and Pelzer to include the spatial
dependence contained in (26).

Our phase diagram Fig. 2 is similar to, but less struc-
tured than the one obtained by Korshunov. ' ' He con-
siders a model that is different from ours —apart from
the self-capacitance, he includes a nearest-neighbor (NN)
capacitance. This has an important consequence, it al-
lows him to extend —for large-NN capacitance —the Vil-
lain transformation down to small J. It appears that the
NN capacitance does not change the structure if his
description. Therefore, some of his conclusions may also
have implications for our model. We find the same tran-
sition point at ca=0. At nonzero small cx, we predict a
tilted transition line, whereas Korshunov s line is in-
dependent of a. He obtains his result in second order in
the activity of the charges, and then takes the limit of
vanishing activity. We can mention that independent cal-
culations of Guinea and the general trend observed in
all approaches support a tilted line. We find the same
S&-S2 transition at large J, but we provide a physical in-
terpretation. We agree that the nature of the normal-to-
superconducting transition changes with decreasing J.
This is a direct consequence of the S&-S2 transition,
which also implies that the N-S transition changes its
character. The dielectric functions of the dipole-ordered
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and the quadrupole-ordered phases will be different.
Therefore we can understand a kink at the triple point.
Korshunov observes a change in the effective dimen-

sionality at this point. Finally, Korshunov finds a phase
with "local phase coherence" for small J and a & 1, simi-

lar to Zwerger. However, we repeat that in the model
with large-NN capacitance, the Villain transformation is
valid in this regime, while it does not apply in the model
with self-capacitance only. We, therefore, cannot judge
the implications of this result for our model.
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APPENDIX

In this appendix we present, in more detail, the steps involved in the evaluation of the Green s function with mass K

After the Fourier transformation we have

(Al)
2~ 2~ (k )/(I+Ak /~co~)+co +a

where A, =(a/2')J and the integrations extend over the first Brillouin zone —
m ~ k, co~ nWe s.

p. lit the integral into
a sum of two integrals

Go(r =0, ic) = 2
1+A

'
2~ 2~ k +n) +A, ~co~k +a(1+Ak /~c0~)

= A(ic)+AB(~) . , (A2)

Both integrals in Eq. (A2) diverge in the limit a~0. It can be easily proven that the divergent part of A(a) is un-

changed if the terms proportional to k in the denominator of the integrand are dropped. The integration is then

straightforward, which yields

A(a)= — J ln(a) .1

4m

In the second integral in Eq. (A2) the integration over k can be performed leading to

dco 1 1 dc' (a lail+ nil')'"Ba= arctan—~ 2& ni+A&+Ani ~ —& 2~ (A&+ ll+Ani ) ~

(A3)

(A4}

The second integral in the expression is convergent in the limit a ~0, and in the same limit we can drop the term A,co in

the first integral. The final result is

B(a}=——J 1n(a}
1 (A5)

from which we obtain Eq. (19).
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