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Theory of nonlinear transport in narrow ballistic constrictions
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We present quantum-mechanical model calculations of nonlinear transport in narrow ballistic
constrictions. We calculate the current and differential conductance g as functions of the applied
voltage Vo and the electron Fermi energy EF. Nonlinear effects in g smooth out transmission res-
onances and shift and degrade the quantized ballistic conductance plateaus. Contrary to previous
claims, we find that g does not develop additional plateaus between those quantized at 2ne2/h. At
high Vo the current saturates at values strongly dependent on EF.

The experimental study of electronic transport through
narrow ballistic constrictions in two-dimensional electron
gases (2D EG), made possible by the remarkable recent
advances in microfabrication, ' has opened up a novel and
active field where many fascinating phenomena are being
observed. At low temperatures, the electronic motion in
these nanostructures is ballistic since the electron mean
free path is comparable with their spatial dimensions, and
boundary scattering is the main collision process. Because
of the small size of the constrictions, the quantization of
the electron energy levels dominates the transport proper-
ties and, in linear response (LR), the conductance is
sharply quantized in units of 2e /h. z

Recently, some interesting work has begun to appear on
ballistic constrictions in the high-field (HF) regime,
where nonlinear effects are expected. The first experimen-
tal study was reported by Kouwenhoven et al. ' who ob-
tained highly nonlinear I-V characteristics, and a break-
down of conductance quantization ascribed to an unequal
population of transverse subbands in the two velocity
directions. Glazman and Khaetskii' proposed a theoreti-
cal model predicting the possible existence of half-
plateaus (HP's), i.e., quantized conductance plateaus at
values intermediate between those observed in LR; howev-
er, experiments have not supported the existence of the
HP's. The theoretical work of Lent, Sivaprakasam, and
Kirkner' has focused on the related problem of wide-
narrow-wide configurations of 1D conductors at high
temperatures and HF's showing, among other things, that
the behavior of a narrow constriction is qualitatively
different from that of a potential barrier (in contrast with
the situation occurring in LR), and that the current satu-
rates for high voltages.

In this paper we also study the transport properties of
narrow ballistic constrictions in the HF regime. However,
we consider constrictions between two infinite 2D EG's, a
model more appropriate for the experimental systems in
Refs. 2, 3, 10, and 12. Our model is shown schematically
in Fig. 1(a). A narrow constriction C of width W and
length D connects two semi-infinite 2D EG's, L and R.
The shaded areas are inaccessible to the electrons and are
modeled by a hard-wall potential. The levels are occupied
up to EF in L and up to EF —

l eVe l in R, where Vo is the
total potential drop along C as shown in Fig. 1(b). The
electronic current through the constriction is due to elec-

K —0 (B /Bx +B /By )/2m*+U(x, y),

where m is the electron effective mass and U(x,y) is the
potential describing the system shown in Fig. 1; U(x,y) is
zero for y(0, —leVol for y) D, —yleVol/D for

l x l
~ W/2, 0 ~ y ~ D, and vo elsewhere.

Consider an electron with a wave vector k (K,k) and
energy el, incident on C from L. In each region (L, C, or
R) the wave function is written as a linear superposition of
a complete set of appropriate eigenfunctions. For L
(y (0) we have
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(a) Schematic representation of the system, and (b)
of the potential drop across the constriction and the energy lev-
els in I. and R.

trons incident on C from L with energies in a window be-
tween EF —

l eVs l and EF. We assume a linear potential
drop in C but our method can be readily generalized to
other situations. At present there is no precise knowledge
of the potential variation in these systems; our choice is
the simplest one and allows the prediction of the main
features expected in the HF regime.

We perform quantum-mechanical model calculations of
the wave function, the current I(EF,eVo), and the
differential conductance g(EF,eVO) in the effective-mass
approximation. The model Hamiltonian is
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and for R ( )D)y & the wave function is
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is the width of the constriction and the unit of energy is

the lowest transverse level inside the constriction when
there is no applied voltage, E~ —=5 /2m(n/W) . The unit

of conductance is 2e /h and the unit of current is
i o—=2e 2/It (E)/e).

In Fig. 2 we have plotted g(EF,eVo) vs (EF)' for
several values of (eVo(, and constriction lengths D 4
and 2. At Vo 0 the differential conductance shows
modulation due to transmission resonances. " At low

( eVo[ the resonant structure is still present, albeit in a
weaker form, with plateaus quantized roughly at 2ne /h,
n 1,2, . . ., preceded by a few undeveloped resonances.
However, we find that g does not develop the HP's pre-
dicted by 61azman and Khaetskii. '3 These authors work
in the adiabatic limit and consequently no resonances are
predicted by their method. However, this is not the essen-

I

tial difference between their treatment and ours: In their

approach, T(E,eVo) is approximated by its zero-voltage
value, a simplification valid only in linear response. Also,
the limits of integration for the energy window in their Eq.
(1) (Ref. 13) are at variance with the physically correct
values given in Eq. (4) of this work this appears to be
the source of the HP's predicted in Ref. 13. Note that the
feature at (EF)'i =1 in the (eVo( 0.2, D 2 curve of
Fig. 2 is not a rudimentary HP. It is a remnant of the res-

onance clearly visible for
~
eVo ) 0 and 0.05.

In (4) we have that the current is proportional to an
energy-averaged total transmission probability, meaning
that the quantization of energy levels becomes less impor-
tant as the voltage is increased and that resonant features
tend to be averaged out. The differential conductance can
be written as

tEr
g(EF,eVo) 2e /h T(EF—

~
eVo (,eVo)+ J „&& ~,z ~)

&T(E eVo)/&(eVo)~E,

where the first term on the right-hand side is the total
transmission probability T(E,eVo) evaluated at E Ep
—(eVo). Note that T(E,eVo)—=0 for E «0. At low

voltages this is the dominating term and the main effect of
Vo is to shift g towards higher energies, thus increasing
the threshold of each quantized plateau by ( eVo

~
while

preserving the main features observed in LR. For a finite
voltage the transverse levels at the C-R boundary have
been pulled down with respect to the levels at the C-L
boundary, making resonant transmission more difficult.
For higher voltages the second term on the right-hand side
of (5) becomes important, producing a smeared contribu-
tion from (several) consecutive zero-voltage plateaus,
averaging out the conductance quantization and the reso-
nant transmission. This also affects the rigid shift towards
higher energies produced by the first term in (5).

In Figs. 3 and 4 we plot E(EF,eVo) vs ) eVo ( for several
different EF's. For 0 ~ EF ~ E~ (Fig. 3) we observe that
I(EF,eVo) increases rapidly with

~ eVo (, and more quick-

ly as EF approaches the lower edge of the first plateau E~
or the length of the constriction is reduced. At zero volt-

age, the electrons with energies lower than E ~ must tunnel
all the way through C and the current is very low. For
nonzero voltages the electrons tunnel only over lengths
shorter than the length of C, from y 0 up to the point

y, & D where the effective potential equals the energy of
the electron. Multiple reflections between y, and the end
of the channel (in our model there is an impedance
mismatch between C and R) produce resonances even for
EF below E~ as shown in Figs. 2 and 3. This effect is

I

stronger for longer C's.
For EF ~ E~ (Fig. 4) we see that the current increases

with increasing voltage until it saturates when (eVo(
~ EF. For these voltages the energy window in (4) has
reached its widest and every incoming level in L is a con-
tributing current in C, so that the maximum possible
current is drawn through the system. The current in-
creases almost linearly in certain energy ranges, changing
to smaller slopes whenever a transverse level saturates at

~
eVo (

=EF —5 /2m(rid/W) The change of slope
around these values is gradual, reflecting the energy
averaging in (4). Note also that the initial slope changes
markedly as EF moves from one zero-voltage plateau to
the next one.

In conclusion, we have studied nonlinear transport
through uniform narrow ballistic constrictions. We find

that the conductance plateaus are displaced and the
quantization is degraded by the application of a suitably
large voltage, and that there are large nonlinearities in the
current. The current saturates at high voltages. The ear-
lier prediction of HP's is found to be incorrect. Finally,
experimental HF studies of constrictions such as those of
Hirayama et al. 'o would be of interest since these systems
are simpler than the double-wedge geometry of
Kouwenhoven et al. ' and more closely approximate the
situation considered in this paper.
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