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Elastic scattering from cubic lattice systems with paracrystalline distortion. II.
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Our previous paper [Phys. Rev. B 36, 1754 (1987)], in which Hosemann's paracrystal theory was

extended to three-dimensional cubic systems, contained some errors. In this paper, we have correct-
ed these errors and further refined the theory. The scattering profiles by our new theory are not so
different from the previous ones; satisfactory, even better agreements with experimental data are
also obtained with slightly larger distortion factor g.

In one of our preceding papers, ' a paracrystal theory,
which was first proposed by Hosemann, was extended to
face-centered-cubic (fcc), body-centered-cubic (bcc), and
simple-cubic (sc) cases, and the scattering profiles were
calculated numerically. However, the paper contained
some errors. In the present paper we have corrected the
errors, further refined the theory, and recalculated the
paracrystalline lattice factors.

The range of integration for the operation of taking an
orientation average, namely Eq. (16) in the original paper,
is correct for sc lattices, but incorrect for fcc and bcc
cases. For these cases, the following equation must be
used instead of Eq. (16) in the original paper:

Z(q)= f deaf dOZ, (q, 8, $)Zz(q, 9,$)

XZ3(q, 8, $)sin&,

The correction is based on the nonorthogonality of the
three fundamental vectors shown in Fig. 1 in the original
paper. For sc lattices, no modification is necessary be-
cause its three fundamental vectors are orthogonal to
each other.

This nonorthogonality of fundamental vectors of fcc
and bcc symmetries also affects the distortion factor,
~Fk(q)~. Equation (6) for Fk(q) is not strictly correct for
fcc and bcc lattices. In these cases, Eq. (6) in the original
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FIG. 1. Paracrystalline lattice factors for a fcc lattice. Curve
1, g=0.05; 2, 0.07; 3, 0.09; 4, O. ll; 5, 0.13; 6, 0.15.

FIG. 2. Paracrystalline lattice factors for a bcc lattice. Curve
1, g=0.05; 2, 0.07; 3, 0.09; 4, 0.11; 5, 0.13; 6, 0.15.
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FIG. 3. Comparison of the experimental scattering curve of a styrene-isoprene block copolymer and the theoretical curves for cu-
bic paracrystals: (a) sc, (b) fcc, and (c) bcc. Theoretical profiles were calculated for a given set of parameters R =13.1 nm, o, =1.0
nm, and o., =0.5 nm. The parameters g and a„were 0.075 and 40.1 nm, respectively, for sc, 0.130 and 69.6 for fcc, and 0.100 and 56.7
for bcc.
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FIG. 4. Theoretical scattering curves of cubic paracrystals.
(a) g=0.05, (b) g=0.07, and (c) g=0.08. Other parameters are
the same as in Fig. 3.

FIG. 5. Comparison of the experimental interference func-
tion S(q) with the theoretical paracrystalline lattice factor
Z (q) ~ The circles denote S(q) for a latex suspension by Ottewill

0
with a volume fraction of 10 and a particle radius of 256 A.
The line denotes Z(q) for a fcc lattice, a„=5597A and g=0.22.
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FIG. 6. Comparison of the experimerimental interference func-

qS( ) bt ined by neutron scattering fofor latex solutions by
Cebula et a. wi el 'th theoretical lattice factors Z(q . 0,

of R=157 A atre resent q o sS( ) b erved for a latex particle oP
04 0.08 and 0.13, respectively. Curves 1 2volume fractions 0.04, , an

(a =830 A,nt Z(q) for fcc structures with ~a„=and 3 represen q
=539 A, =0.18), re-g=0.24), (a„=679 A, g=0.21), and (a„=,g —

~
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and value, andThe relation between the peak height an g
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