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Nelson A. Alves, Bernd A. Berg, and Ramon Villanova
Department ofPhysics and Supercomputer Computations Research Institute, The Florida State University,

Tallahassee, Florida 32306
(Received 7 June 1989)

We have performed Monte Carlo simulations for the three-dimensional Ising model. Using histo-
gram techniques, we calculate the density of states on L block lattices up to size L =14. Statistical
jackknife methods are employed to perform a thorough error analysis. We obtain high-precision es-

timates for the leading zeros of the partition function, which, using finite-size scaling, translate into
v=0. 6285+0.0019. Along a different line of approach following recent work in lattice-gauge
theories, we accurately determine the mass gap m = I/g (g correlation length) for cylindrical L'L,
lattices (with L, =256 and L up to 12). The finite-size-scaling analysis of the mass-gap data leads to
v =0.6321%0.0019.

I. INTRODUCTION

Although not solved exactly, the 3D Ising model is cer-
tainly one of the well-understood systems in modern sta-
tistical mechanics. Still being interesting on its own, it is
in addition a suitable testing ground for new numerical
techniques and ideas. In the present paper we rely on
"old fashioned" Monte Carlo (MC) methods to generate
Ising-model configurations and employ new methods to
extract physics from these configurations. Periodic
boundary conditions are consistently used. In the first
part we concentrate on computing the Lee-Yang' zeros of
the partition function. The second part is concerned with
calculating the ratio of the two largest eigenvalues of the
transfer matrix or, equivalently, the mass gap of the sys-
tem. In both cases finite-size scaling theory (FSST)
leads us to estimates of the critical exponent v that are
competitive with the best results in previous literature.

In this paper we are concerned with investigations of
finite systems. The density of states p(E) is defined by

Z(P) = g p(E)exp( —PE),
E

where Z(p) is the partition function and the summation
goes over the allowed energy values of the system. Once
the density of states is known, the zeros of the partition
function can be studied, a problem which has received a
lot of attention for quite a while. ' Various methods for
calculating the density of states have been presented in
the statistical mechanics literature and were applied to
small systems. So called "histogram" methods have
turned out to be efficient. Reference 7 summarizes early
original contributions of relevance and the interested
reader may consult Ref. 8 for a more detailed presenta-
tion of the history. To our knowledge the first corre-
sponding MC investigation of partition function zeros
was carried out by Marinari and collaborators. ' Re-
cently, renewed interest in the subject was stimulated by
Bhanot et al. "' who commend the use of the Creutz'
demon variant of the microcanonical approach. Presum-
ably prompted by this work, MC methods of the type ex-

plored in Refs. 7, 9, and 10 were rediscovered and refined
by Ferrenberg and Swendsen. '

The original papers ' certainly deserve their well-
earned credit, but we would like to mention that none of
them actually played a role for the progress of the work
presented here. Instead, our investigation has its own lit-
tle history. The actual starting point was some uneasy
feeling about the efficiency of the method of Bhanot and
collaborators. " From a numerical study of random sur-
faces' one of the present authors already had experience
with a MC histogramming method. In addition, previous
work with jackknife methods' ' turned out to be useful
for developing an efficient "patching" procedure, to cal-
culate the density of states by joining several histograms.
Now we realize that much of that was anticipated ear-
lier. Without this knowledge our work progressed rath-
er straightforwardly and naturally. By the middle of
1988, most of the data for the first part of this paper were
taken, ' and the obtained density of states had been
quantitatively compared with results from Refs. 11 and
12; the analysis of the zeros and the second part of the
paper were still missing by that time. After completion
of our work we became aware of the paper by Ferrenberg
and Swendsen' that had the positive effect of drawing a
lot of attention to the histogramming methods themselves
and to stimulate a quite "successful" search for original
literature.

Although details of the employed method are certainly
a bit tricky, we would like to concentrate first of all on
the obtained final estimate for the critical exponent v.
The tremendous improvement on the scale of Marinari's
work' seems not only to be due to patching and modern
computer resources, but possibly also due to our way of
averaging over short-range fluctuations (see Sec. IIA).
Superficially the improvement looks less dramatic in
comparison with Ref. 12. However, our method allows
us rather easily to reach L lattices with L as big as 14.
The largest lattice treated so far (with abundant comput-
er resources) was L = 10, ' and Marinari's investigation'
ran already at L = 8 into trouble. It should be remarked
that statistical jackknife methods (see for instance Refs.
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16 and 17) are efficient for calculating reliable statistical
error bars for the density of states, the partition function
zeros, and v.

Along our second line of approach, we calculate direct-
ly the relevant correlation length g on finite systems and
estimate v by applying FSST to it. Typically, one is in-
terested in the ratio

Xo
(1.2)

where ko is the largest and I,
&

the next largest eigenvalue
of the transfer matrix. Then one has

'=m =ink, , (1.3)

where m is the mass gap of the system. (This is standard
use for m in field theory. In statistical mechanics m nor-
mally denotes the spontaneous magnetization, which is
not investigated in this paper. ) In two dimensions the
transfer-matrix approach (TMA) has successfully provid-
ed the desired finite volume results for various sytems.
However, it seems that generalizations of the TMA to
higher dimensions are rather limited because of the
prohibitively fast increase of the matrix size with volume.
One purpose of this paper is to draw attention to the fact
that MC calculations of the type pioneered in mass spec-
trum computations of lattice-gauge theories' ' allow us
to calculate the ratio X=A, , /A, o directly and sufficiently
accurate. One may call this Monte Carlo transfer matrix
method (MCTMA). The masses calculated by MCTMA
are analyzed by FSST along the lines of a recent investi-
gation of the deconfining phase transition in lattice-gauge
theories and result in our second estimate of v. The
simplicity of both lines of our approach, as compared to
MC renormalization-group ' and analytical transfer-
matrix calculations, deserves to be emphasized.

Our computer code is a modified version of Ref. 22.
The program uses multispin coding and updates 64 lat-
tices simultaneously. Statistical analysis in this paper is
always with respect to the corresponding 64 results.
However, to avoid correlations between these results we
found it necessary (as already in Ref. 23) to use different
random numbers for each of these lattices. As compared
to Ref. 22, this slows down the speed of the updating by a
factor of =4—5. As Cyber 205, ETA —E, ETA —g, and
ETA —G were used, it is most appropriate to state the up-

dating time in almost rnachine-independent clock cycles.
Rather typical is =2.1 clock cycles per spin updated on
the 6 256 lattice. Smaller systems are slower, larger sys-
tems tend to be somewhat faster. In Cyber 205
equivalents our complete computer time spent was about
100 h for the partition function study, half of this time
for the L=14 lattice, and about 380 h for the mass-gap
investigation.

Let us conclude the introduction with a short outline
of the paper. Section II is concerned with our numerical
evaluation of the partition function. Section IIA de-
scribes in detail how our MC calculation of the density of
states is performed. In Sec. IIB our partition function
zeros are then calculated and, together with results from
previous literature, ' they are used to give our first esti-
mate of v. In Sec. III the MCTMA results are presented.
Besides the 3D Ising model, the 2D Ising model is also
treated for illustrative purposes. Section IIIA summa-
rizes the crucial aspects of our numerical mass calcula-
tions and gives a table of our most accurate mass esti-
mates. Section III B collects the relevant finite-size-
scaling formulas and carries out the analysis that leads to
P, and v. A brief outlook and conclusion are given in
Sec. IV.

II. MONTE CARLO CALCULATION
OF THE PARTITION FUNCTION

In this section we consider the 3D Ising model in the
block geometry. The energy is given by

E = —
—,
' g s, s~, s, =+1 .

(ij )
(2.1)

For the density of states (1.1) the normalization

g p(E) =2
E

(2.2)

holds.
In the following we report MC calculations for the

density of states. Typically they rely on 2.75 10 or 4 10
sweeps per data point and in addition 6000 to 20000
sweeps are discarded for reaching equilibrium. A data
point is defined by lattice size and p value, i.e., (L,p). Be-
cause of multispin coding we have each data point in a
multiplicity of 64 lattices. The list of data points is

Here the normalization is chosen such that E changes in
increments of 1, and for L even,

3L /4(E— +3L /4 .

(L =6: P=0. 19, 0.22165, 0.255),

(L =8: P=0. 193, 0.22165, 0.24),

(L = 10: P=0.05, 0. 10, 0. 15, 0. 195, 0.221 65, 0.235, 0.25, 0.275, 0.30, 0.34, 0.38),

and

(L =14: P=0. 165, 0. 19, 0.20, 0.215, 0.22165, 0.225, 0.228, 0.235) .
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A. Density of states
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as well as large E our cutoff criterium was to stop when-
ever a single entry of one of the two patches had for the
first time an error of more than 10%%uo. We obtained the
same results with the choice 50%. Some kind of cuto8'is
necessary. Admitting, too, unreliable boundary regions
would spoil the whole procedure. In the extreme limit of
energies with no entries into the histogram also the error
bar bpMc(E) becomes zero. This is a rather typical case
of a bias problem. (iii) Data and, consequently, error bars
within one histogram are strongly correlated. This
deprives the g of the fits of their statistical meaning in
the sense of confidence levels, but g is still supposed to
determine reliably the maximum likelihood estimate of
c"+'. (iv) Multiple overlaps are taken into account by
our procedure, because after merging two histograms the
result reflects the combined statistics of both. This is
nice, as the precise overlap is only known after actually
doing simulations.

Let us now turn to the problem of error propagation.
The obvious idea is to repeat the earlier construction for
each of the 64 lattices, i.e., starting off with hgc(E) (j
fixed). We have to assign error bars to the PMcj(E), other-
wise we cannot carry out the patching. The only choice
is bpMcj(E)=8bPMc(E), independent of j, and the factor
8 might make the bias problem of remark (ii) severe. A
nonrecommendable approach would be to carry out par-
tial sums over some of the lattices and to reduce the num-
ber of samples to, say, four. This would still mean a fac-
tor of 2 for the error bar and, in addition, with only four
samples the student distribution (see for instance Refs. 24
and 17) deviates significantly from a Gaussian distribu-
tion. With the limited statistics of a realistic simulation
the jackknife method provides the better solution. Then,
there is never a reason to work with an artificially small
number of samples and, as a rule of thumb, 20 is a good
number; see Ref. 17 for a more detailed discussion. For
our present investigation 64 is, of course, the obvious
choice and jackknife samples are defined by

hJ "(E}=—,', g hgc(E), k =1, . . . , 64. (2.10}
jWk

Corresponding pJ "(E) follow by the analog of Eq. (2.4).
The error bar bpJ'"(E) can either be calculated directly,
or independent of k be defined as &64/63bpMc(E). We
have checked that both ways give fully compatible re-

In the limit of no bias this definition is identical with the
usual error bar, but for biased situations the jackknife er-
ror bar is by far more reliable. Proceeding further one
may compute arbitrary functions

fk —f( Ic(E ) k(E ) ) (2.12)

for each jackknife sample as well as for the complete
statistics. The latter result is denoted fMc and the analog
of Eq. (2.11) holds for the error bfMc. This is how we
calculate the statistical errors of our partition function
zeros. In a last step, the bias 8 itself may be estimated as

&(fMc) 63 fMC 6'4 gfj" (2.13)

In a reliable MC simulation the bias should be negligible
as compared with the statistical error. Otherwise one
may correct for the bias, but faces increasing difficulties
when one tries to estimate the errors of such corrections.
In the present investigation we did not encounter any
serious bias problems.

To complete this section let us mention that we set out
to replace the simple MC measurements by sampling the
2 independent configurations of each checkerboard.
Using standard convolution formulas (see for instance
Ref. 24), this is straightforward but tedious. We hoped to
gain by the enormous number of 2 configurations sam-
pled each time this way. This hope turned out to be
unjustified. ' The thus sampled configurations were
noisy and strongly correlated. The needed large, addi-
tional amount of computer time for measurements never
paid off.

B. Partition function zeros

Defining

u =exp( —4P), (2.14)

suits. Now, we carry out the patching procedure 64
times, once for each of the jackknife samples, resulting in
64 estimators pJ(E) (k =1, . . . , 64) for the density of
states. Of course, PMc(E) is still the best estimate. Its er-
ror bar is now given by the jackknife formula

64 1/2

~PMc(E) = —'„' X lPMc(E) PJ(E)] . (2.11)
k=1

TABLE I. First partition function zero. Due to reasons explained in the text, we have multiplied the
error bars of Ref. 12 by a factor of 3. For L =3 and 4 the entries are exact results. ' Their weights in
the fits are determined by assigning an error of 1 to the last given digit.

Re(u', )

This paper

Im(u l ) Re(u 1 )

Reference 12

Im{u l )

3
4
5

6
8

10
14

0.365 053. . .
0.384 283. . .

0.397 578{18)
0.402 728{17)
0.405 395(16)
0.408 078(09)

0.141 742. . .
0.087 739. ~ .

0.045 443(16)
0.028 604(14)
0.020 006(15)
0.011 673(09)

0.392 787(15)
0.397 563(15)
0.402 718(15)
0.405 405(15)

0.060 978(15)
0.045 411(15)
0.028 596(15)
0.019996(15)
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TABLE II. Convergence of the patching procedure for the 14' lattice.

Number
of patches Re(u, )

First zero

Im(u 1 ) Re(u', )

Second zero

Im(u2)

0.408 063(14)
0.408 075(09)
0.408 078(09)
0.408 078(09)

0.011 703(11)
0.011 678(10)
0.011 672(09)
0.011 673(09)

0.400 81(14)
0.394 51(11)
0.402 96(08)
0.402 93(08)

0.015 12(13)
0.015 60(12)
0.018 33(08)
0.018 27(08)

the partition becomes a polynomial of degree 3L /2+1
in u (we only consider L even). Its coefficients are deter-
mined by the spectral density, numerically calculated in
the previous section. Using the Newton-Raphson
method, as described in Ref. 25, we calculated the first
few zeros which are closest to the infinite volume critical
point. The results for the first zero u1 are given in Table
I. The relevance of our patching procedure is illustrated

by means of Table II. For our largest lattice we give the
dependence of the first and second zero on the number of
patches. For the special case of one patch errors due to
bias are clearly visible. From three samples on these er-
rors are of the same order of magnitude as the statistical
error bars. For five samples, convergence is already satis-
factory. Clearly, the convergence is better for the first
than for the second zero. There are still reasonable re-
sults for the third zero, but for subsequent zeros higher
statistics and more patches would be needed. It is re-
markable that, in contrast to the claims of Ref. 10, al-
ready for one patch the results for the first zero are quite
reasonable. This is even more astonishing in view of the
large lattice size L =14)&8. Likely, it is related to our
way of suppressing the noise of short scale fluctuations.

The calculation of zeros was repeated 64 times, once
for each jackknife sample. This analysis yields the re-
ported error bars. Calculating, instead, the error bars by
applying the Gaussian model of Ref. 11 to our data gives
values approximately three times smaller. The difference
is due to the already mentioned correlation of the data
within one histogram. This casts some doubts on the er-
ror analysis of Ref. 12. As in their approach each histo-
gram has only four entries, one may argue that the effect
is presumably less pronounced. The correlations between
entries within one histogram would be described by the
4X4 covariance matrix. The essence is that the correct
error bars for the zeros of Ref. 12 can only be recovered
by producing at least some new data with their method.
The conservative approach is to multiply their reported
errors by a factor of 3. This is supposed to be a reliable
upper bound, and is in accordance with the error correc-
tion done in Ref. 12 for the final estimate of v. For the
convenience of the reader, we include the thus modified
results of Ref. 12 in Table I. The thus collected data are
slightly overconsistent with one another. This might hint
towards too large error bars, but with only three indepen-
dent samples to compare (L=6, 8, 10) a thorough
analysis is hardly possible. The statistically weighted
average from the joint data set is now used to estimate v.

Let us define u, =u (p, ) and carry out the FSS analysis

for the first zero. It is well known that for sufficiently
large L

u(L)=u + AL 'i [1+O(L )], co) 0 . (215)

In first approximation this is reflected by the linear re-
gression

1—1niu, (L)—u, i
=const+ —ln(L) . (2.16)

4.5

C&

t

= 0 61981(11)

Q=OOO

I I | I I I I I I I i I I I I I I

1.5 2.5

1n(L)

FIG. 3. Linear regression for —1n~u, (L)—u, i in the range
L =4—14.

We use the accurate estimate (Ref. 21) u, =0.412047
+0.000010 and depict in Fig. 3 the corresponding two
parameter fit of the L )4 zeros. Although the straight-
line behavior is very impressive, it is pointless to judge
the quality of this fit by eye. The invisible reason is the
high precision of our data. As a matter of fact, the
"goodness" Q of this fit is zero (more precisely ( 10 ' ).
Figure 3 is obtained relying on the Fortran subroutine
FIT of Ref. 25. In addition to the maximum likelihood fit

and its associated errors, this subroutine calculates y,„„,
and the probability Q that the y value of an appropriate-
ly defined normal distribution could exceed y,„~,. Q is a
standard measure for the goodness of a fit, and in the
average Q=0.5. Consequently, the likelihood that our
zeros are well described by the straight-line fit (2.16) is for
all practical purposes zero and the v estimate of Fig. 3
has to be discarded.
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TABLE III. Determination of v by linear regression.

fu,' —u, f

Results from
Im(u

&
)

(4,5,6,8,10,14)

(5,6,8, 10,14)

(6,8,10,14)
(8,10,14)

0.6198(2)
0.6248(3)
0.6260(3)
0.6274(6)

~ 10
—17

10-"
0.02
0.90

0.6184(2)
0.6221(3)
0.6231(3)
0.6244(6)

&10 "
10
0.02
0.66

)u, (L)—u, (=a,L ' '+a2L (2.17)

Including L =3 we already find Q=0.93 and, on the scale
of the previous figure, the fit and its resulting v estimate
are depicted in Fig. 4. The corresponding exponent a3 is

a3 =4.86+0.12. Although the goodness of the fit cannot
improve, it seems advisable to omit the exact L=3 and
L =4 results from the final estimate, as their assumed pre-
cision may obscure the accuracy of the final estimate and
may give an overweight to the least relevant region. In
this way we obtain

O

I

O

l

4.0

3.0

v = 0 62859(

Q =093

How can we do better? The straightforward way is by
omitting the smallest lattices, responsible for the largest
finite-site corrections, from the linear regression. In that
way one obtains the v values of Table III and their corre-
sponding Q's. Omitting successively L=4, 5, and 6 im-
proves the goodness of the fit. With only L=8, 10, and
14 left, the straight-line fit is self-consistent. Obviously,
for the remaining section of the straight line the finite-
size corrections are overwhelmed by the statistical noise.
It is interesting to note the systematic increase of the v's
of Table III. The accuracy of the zeros from Table I sug-
gests to try multi-parameter fits for estimating the finite-
size corrections explicitly. Following Ref. 12 we carry
out the four parameter fit

v=0. 628S+0.0019, (2.18)

with a corresponding a3=4.7+1.9. Of course, multi-
parameter fits tend to become unstable with diminishing
accuracy of the data. In that case one has to fall back to
extrapolating the asymptotic estimate from the values of
Table III.

In case of the 3D Ising model u, is known with high
precision. For many models of interest this is not true
and one better relies on Im(u t ). Replacing ~u t

—u, ~ by
Im(u, ), and repeating the previous analysis, we arrive at
the numbers in the fourth column of Table III. The en-
countered differences with the numbers in the second
column may serve as an indicator for the systematic er-
rors still to be expected. It would, however, be a mistake
to average over both columns of results as the absolute
value already takes the appropriate average over real and
imaginary parts of u, . Finally, for the sake of complete-
ness we collect our results for the second and third zero
in Table IV.

III. MONTE CARLO MASS-GAP CALCULATIONS

The MCTMA of this section is carried out on a cylin-
drical L L, geotnetry (L =4,6, . . . , 12), where by practi-
cal limitations L, =256 approximates L, = 00. To
achieve accurate correlation length estimates, it is
relevant to keep one direction of the lattice as long as
possible. In principle one may estimate the correlation
length g from plain spin-spin correlations (s;s ). In
practice, however, this is not a suitable method as the
power law corrections to the asymptotic falloff of the
correlation function would severely spoil the accuracy of
the obtained estimates. In contrast, zero-momentum
spin-spin correlation functions exponentiate. To our
knowledge this was first noticed in the context of a
lattice-gauge theory strong coupling investigation, and
soon after was exploited for MC glueball calculations. '

The zero-momentum spin is defined by

I I I I I I I I I I I I I I I I I

1n(L)

FIG. 4. Four parameter fit for ~u, (L)—u, ~
in the range

J =3—14.

C(z)=(S,S, &-
kp

=exp( —mz), for z~ ee

S,= g s„„where (x,y) EL
x,y

and we have

(3.1)

(3.2)
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for the large distance behavior of the zero-momentum
correlation function C(z). Relying on the transfer-
matrix formalism, a detailed discussion is given in Ref.
17.

A. From correlation functions to mass-gap estimates
03

z z z I

0 4 I I I l

~

I I I I

)

1 I I I

L=4

We have assembled a small, illustrative data set for the
toy case of the 2D Ising model and three large data sets
for the 3D Ising model. We shall describe in detail the
results obtained from the largest data set. In that case
each (L,P) data point relies on 128 000 sweeps plus an ad-
ditional 16000 discarded sweeps for reaching equilibri-
um. Of course, we have these statistics in a multiplicity
of 64 independent lattices per data point. The other two
3D Ising model data sets are more of exploratory charac-
ter. The first relies on 32000 sweeps (plus 4000 for equi-
librium) per data point and the corresponding numbers
for the second data set are 32000 sweeps (plus 8000 for
equilibrium). The second data set was taken to check
into questions about equilibration and random numbers.
With the experience of the first two data sets we decided
about appropriate lattices and P values for the long runs.
The estimates of the critical exponent v are consistent for
all three data sets. Therefore, we shall include the statis-
tics gained by the "exploratory" runs in the Anal esti-
mate. For the 2D Ising model we assembled data points
on L 1024 (L =4,6, . . . , 12} lattices with statistics of
16000 sweeps (plus 2000 for equilibrium) each.

Our MC estimator CMc(z) for C(z) is obtained by
measuring S, S, with distance d(z„z2)=z every 10

I 2

sweeps. Here, the distance function d(z„z2) takes care
of the periodic boundary conditions and the average over
all z„zz with d(z„zz)=z is performed. Once the zero-
momentum correlation functions are numerically known,

L=6

~zxzE L=B

0 1
I I I j I I I

5 10

m m m m

I & i i & I

2015

L=10

FIG. 5. Effective masses at P=0.2215. High statistics simu-
lations are done on L'256 lattices as explained in the text.

mass-gap estimates still face serious difficulties. As a
matter of fact, with the present state of the art a certain
amount of subjectivity cannot be eliminated. Recently a
data analysis package that does the spectroscopic analysis
of correlation functions entirely on statistical grounds has
been developed. With our present data we did tests of
this package and found that it still suffers from a number
of instabilities and, when many data sets from variant P
values are available, it cannot yet beat the human experi-
ence. Therefore, we essentially follow in this paper the
pragmatic approach of Ref. 17.

Effective masses m (z) at distance z are defined by the

CMc(z)

CMC(z —1)
exp[ —m (z)z]+exp[ —m (z)(L, —z)]

exp[ —m (z)(z —1)]+exp[—m (z)(L, —z + 1)]
(3.3)

For P=0.2215, Fig. 5 gives a visual impression of the
effective masses belonging to the large statistics data set.
Already at fairly short distances, the effective masses
m (z} become, within their error bars, indistinguishable
from the asymptotic value m =m ( &n ). With an ap-
propriately chosen value zo, a single eff'ective mass m (zo )

will serve as our estimator for m. Experience shows that
in practice no or little improvements are obtained when

one incorporates information from a whole z range by
means of a suitable fitting procedure. The reason is that
subsequent m (z), m (z + 1), etc. , are strongly correlated,
as is obvious from Fig. 5. A subtle issue is the choice of
z0. This is what still brings in the subjective aspects. The
following rules serve to determine zo. (i) As a first guess

zo should be chosen such that m (zo) is the first effective
mass that is statistically consistent with the rest, this

TABLE IV. Second and third partition function zeros {MC results of our simulation only).

6
8

10
14

Re(u 2 )

0.377 59(09)
0.39007(12)
0.396 61(13)
0.402 93(08)

Second zero
Im(u ~ )

0.072 73(10)
0.045 32{11)
0.031 92(14)
0.018 27(08)

Re(u 3)

0.3626(06)
0.3823(15)
0.3911(09)
0.3962{05)

Third zero
Im(u )

0.0944(06)
0.0610(14)
0.0392(09)
0.0217(05)
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means all masses m (z) with z zo. (ii) For theories with

positive definite transfer matrix (like Ising models) the ex-

act effective masses have to decrease with increasing z.
By statistical fluctuations an actual increase of m (z) with

z may happen. Whenever this happens, it signals that the
statistical accuracy does not allow to determine the
correction we are after and it is pointless to choose zo
(much) further out. (iii) A spurious decrease of m (z)
with increasing z is more difficult to diagnose. Besides of
possibly being real, it is more likely a finite-size effect be-
cause of too short a lattice length in the I., direction. '

In the latter case, going too far out with zo may give a
disastrous underestimate of m. (iv) Altogether, most im-

portant for choosing zo is to establish a stable and con-
sistent overall pattern for the complete data set. In-
gredients of this pattern are the rules

and

zo(Pz} &zo(Pi) for P2&)33i and L fixed (3.3a)

zo(L2 ) & zo(L, ) for L2 & L, and P fixed . (3.3b)

In that way we obtain the mass estimates of Table V.
The peculiar choices of P values and why we give

Lm (P,L) instead of m (P,L) are explained by the pur-
poses of the next section.

B. Finite-size scaling analysis

It should be emphasized that we have defined the mass

gap from the two-point function including the discon-
nected part. For the infinite system this implies

(3.4)

A mass rn is defined from the connected two-point func-
tion. In the disordered phase m =m because (s, ) =0,
but in the infinite volume ordered phase m) 0, in con-
trast with m. We do not calculate m in this paper.

In finite systems, and away from the critical point
P=P„we have exponentially smail corrections to (3.4),
which are typical for periodic boundary conditions ' '

TABLE V. Mass-gap estimates for the large statistics data set: Lm(P, L) is given. By [z] we denote the distance at which the
effective mass is taken to be asymptotic. Data marked by an asterisk are not used for the straight-line fights, because they lead to
unacceptable Q's.

0.2182
0.2186
0.2188
0.2190
0.2192
0.2194
0.2196
0.2198
0.2200
0.2202
0.2204
0.2206
0.2208
0.2214
0.2215
0.2222
0.2224
0.2226
0.2228
0.2230
0.2232
0.2234
0.2236
0.2238
0.2240
0.2242
0.2244
0.2248

L=4

1.4416(24) [4]
1.4287(25) [4]
1.4188(25) [4]
1.4130(26) [4]
1.3985(21) [4]

1.3057(26) [4]

1.2171(17) [4]
1.2070(18) [4]
1.2028(18) [4]
1.1955(17) [4]
1.1790(16) [4]

L=6

1.4710(18) [4]
1.4555(19) [4]
1.4375(19) [4]
1.4281(18) [4]

1.2801{16) [4]

1.1378(14) [4]
1.1221(15) [4]
1.1077(12) [4]
1.0940(15) [4]

1.5294{18) [4]

1.4813(19) [4]
1.4555(19) [4]
1.4298(17) [4]

1.2718(17) [4]

1.1197{19)[5]
1.0926(17) [5]
1.0710(18) [5]

1.0274(16)* [5]

L =10

1.5382(23) [5]
1.4951(20) [5]
1.4655(23) [5]

1.2738(18) [5]

1.0900(18) [5]
1.0582(19) [5]

L =12

1.6313(25) [6]

1.5332(31)" [6]
1.4855(25) [6]
1.4417(26) [6]
1.3064(22) [6]
1.2766(24) [6]
1.1211(21) [6]
1.0787(24) [6]
1.0410(26)* [6]
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m(p, L, )=m(p, oo }[1+0(e '@"' }] for p(p,
(3.5a)

is valid in a neighborhood of the critical point. Let us
consider a critical observable P (p, L). Critical means

and

m(p L)=O(e I~"'
) for p)p, , (3.5b}

P(p, -)- I p p—, I
(3.6)

where X denotes the reduced interfacial tension. For the
Ising models we are dealing with second-order phase
transitions. %'e11 established finite-size scaling theory

where o. is the critical exponent of P. For instance, 0.=v
in case of the correlation length g. Fisher's FSS assump-
tion is

P(P, L} L
P(P, oo) g(P, oo)

(for L large, lP —P, l
small) . (3.7)

For a finite lattice there are no singularities, i.e., P(O, L) =lim& &
P (p, L)= finite, and the equation

C

P(O, L)- lim lP —P, l f L
P P, q

oo

implies

L
g(p, oo )

' e/v

lp p, l— (L constant and lp —p, l~0),

as this is the only way to cancel the singular behavior of
P (p, oo ). Combining these two equations gives

follows from Eqs. (3.5) that Lm (p, L) and L'm (p, L'), as
functions of p, will crossover at some value p=po(L, L'),
which is a fixed point of the transformation

P(O, L)-L ~" for L ~ oo . (3.8a) P'~P defined by L'm(P', L')=Lm(P, L) . (3.9)

Of particular importance for us are the special cases
o.= —v and o =1—v

The fixed points are finite volume estimates pp(L, L') «
the infinite volume critical couphng p,

m (P,L)-L ' and m (P L)l -Lp=p lim po(L, L')=p,
L' —+ oo

(3.10}

(3.8b)

%e shall compare numerical results for di8'erently sized
lattices. In case of two lattices L and L', with L )L', it

Figure 6 summarizes our illustrative results for the 2D

Ising model. The straight lines do not correspond to fits

of the data, but are instead least-square fits to exact re-

mL

L=12

L=1OL (09 —
L 8 L
L=6 1T1L

1 6 &

I

' t s

L=8 L=10
L=6

L=4

I I

I

I I I I

I

I

08 0 19

0.7

I I I I I 1 I I I I I I I I I I I I I I I I I I I

0.435 0 4375 0 44 0.4425 0.445

1.0

0. '18 0

Q=O
Q=O 45

Q=O 29
Q=O 18

I

0.222 0 224 0.226

FICz. 6. MC results vs analytical results for the 20 Ising
model fixed point. The straight lines are fits to the exact results.

FIG. 7. MC results for the 30 Ising model fixed point. The
straight lines are least-square fits to the data.
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TABLE VI. 2D Ising model: estimates of 130(L,L'). For comparison, the exact result is

Il, = —' ln( 1+v'2) =0.440 6868. . . .

L/L'

4
6
8

10
12

L=4

0.437 03(37)
0.438 30{17)
0.439 18(11)
0.439 55(10)

0.437 15

0.439 59(40)
0.440 21(19)
0.440 29(16)

L=8

0.438 43
0.439 72

0.440 77(41)
0.440 58(26)

0.439 09
0.440 05
0.440 39

0.440 42{45)

L =12

0.439 48
0.440 26
0.440 52
0.440 66

suits in the range 0.435(P(0.445, in increments of
bP=0.001, and with equal weights given to all points. In
that way the analytical results reAect finite step effects
due to approximating the derivative (d Idp)m (p, L)

~ & &

by a ratio of finite differences. The required exact masses
m (P,L) are easily computed from results in the extensive
literature (see Ref. 23, and references given therein). It is
a curious accident of the 2D Isig model that (3.8b) and
the exact derivative of m (P,L) at P, give, for all L, the
exact value v=1. Table VI compares the analytical
values for Po(L, L') with MC estimates. Within the sta-
tistical errors numerical and analytical results are found
to be consistent. For our smallest pair of lattices
(L=6,L'=4) the systematical error is approximately
1%, and for our largest pair of lattices (L = 12,L'= 10) it
is about 100 times smaller, namely in the 5th significant
digit. But in this case the statistical error is large, mainly
because of the rather limited amount of computer time
spent on this illustration.

Figure 7 summarizes our analogue 3D data for the
large statistics data set. Now, the straight lines are least-
square fits, relying on the Fortran subroutine FIT (Ref.
25). As in Sec. II B, Q indicates the quality of the fit. To
increase the accuracy of the fitted lines, one would like to
use P values as far apart from one another as possible.
What is possible. As in Ref. 20, we answer this question
by monitoring Q. As long as a straight line is a self-
consistent fit to our MC data we feel on the safe side, be-
cause anyhow our data would not be precise enough to
analyze the deviations. This procedure determines rather
well the last admissible points. Adding more points that

are further out results often in a dramatic decrease of Q.
Numbers around 10 and even smaller are not rare. For
all three 3D data sets the thus obtained Po(L, L') esti-
mates are given in Table VII. Altogether, the various es-
timates are consistent. However, the error bars of the
large statistics set do not scale with —,', as compared with
either of the other two sets. Mainly responsible seem to
be increased efforts to avoid all kinds of systematical er-
rors, for instance for the asymptotic mass estimates. As a
last entry in Table VII we give weighted averages over all
3D data sets. In this way our best estimate of P, becomes

P, =Pe(12, 10)=0.221 57+0.00003 . (3.11)

Within four significant digits this is in agreement with the
most accurate results reported in previous literature,
P, =0.221 654+0.000006 (Ref. 21) and P, =0.221 650
+0.000005. Obviously, we cannot reach this precision.
Further, within its own error bar our P(12, 10) result is
inconsistent (99.4% confidence level) with these best
values. It is not quite clear which systematical errors are
the origin of the discrepancy. Likely, our somewhat lim-
ited lattice sizes are to blame for at least part of it. How-
ever, MC results that are significant to four or more di-
gits are notoriously difficult to obtain and one should
keep in mind the possibility of random numbers, ' '

rounding errors, etc. , contributing. Our present investi-
gation used the shift register random generator. '

By linearization around the fixed points 13o(L,L') we
estimate (di'dP)m(P, L)~& &

for various L and exploit
C

Eq. (3.8b) to estimate v. For our large statistics data set

TABLE VII. 3D Ising model: MC estimates of Po(L, L') From up to down. , the first three "trian-
gles" correspond to data sets 1—3, respectively, and the last triangle gives the weighted average.

L/L'

4
6
8

10
12

0.220 64(4)
0.221 09(2)
0.221 27(2)
0.221 35{2)

0.220 66(3}

0.221 45(3)
0.221 50(2)
0.221 51(2)

0.221 03{2)
0.221 35(3)

0.221 54(3)
0.221 54{2)

10

0.221 28(2)
0.221 52(2}
0.221 65(4)

0.221 53(4)

12

0.221 37(2)
0.221 53(2)
0.221 59(2)
0.221 54(4)

4
6
8

10
12

0.220 69(2)
0.221 06(2)
0.221 25(2)
0.221 35(2)

0.220 71(3)

0.221 36(2)
0.221 46(2)
0.221 51(2)

0.221 06(2)
0.221 34(2)

0.221 56(2)
0.221 56(2)

0.221 24(2)
0.221 44{2)
0.221 54(2}

0.221 57(3)

0.221 35(2)
0.221 50{2)
0.221 56{2)
0.221 59(3)
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5.0

f

I

I l f i

I

I I t I

v= 0 6320(25)
0 10

TABLE VIII. Estimates of (dldp)m(p, L)~&=& as obtained
C

from Fig. 7.

4. 0

4
6
8

10
12

—39.98(24)
—75.57(26)

—120.41(49)
—168.96(82)
—227.3(1.5)

0.19
0.45
0.29
0.18
0.18

1. 5
I I I I I I I I I I I I I I I I I I I

1.75 2 225 2 5

[n L

FIG. 8. Linear regression for v by means of Eq. (3.8b).

ical result is v=1.00+0.02, in perfect agreement with ex-

act analytical results. However, due to the limited scope
of the 2D investigation the statistical error is rather
large.

IV. SUMMARY AND CONCLUSIONS

v=0. 6321+0.0019 . (3.12)

It should be remarked that finite-size corrections to the
linear regression for v seem to be smaller in case of the
mass gap than for the partition function zeros. Using our
MC data for the 2D case along the same lines, the nurner-

the estimated derivatives are collected in Table VIII and
the linear regression by means of Eq. (3.8b) is depicted in

Fig. 8. The final Q values are in an acceptable range, but
as already in Fig. 7 they fall short of the would be ideal
0.5 average. This is not really surprising, as it indicates
only that our data are already precise enough to feel the
involved systematical errors, mainly due to applying the
straight-line fit over a finite range. In view of the often
used Q =0.05 cut in statistical studies, we think that our
range of Q values is admissible. We do certainly not care
too much about systematical errors as long as they do not
exceed the statistical error bars. However, as by other
reasons concluded for the results of Sec. II B, we should
keep this range of systematical errors in mind.

The estimate corresponding to Fig. 8 is v=0. 6320
+0.0025. For the other two data sets we get v=0. 6301
+0.0033 and v=0. 6344+0.0042. Performing the ap-
propriately weighted average, we arrive at

By two entirely different lines of approach we have cal-
culated consistent estimates of the critical exponent v for
the 3D Ising model. Averaging over (2.18) and (3.12)
gives

v =0.6303+0.0014, (4.1)
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th&s is in agreement with the value (Ref. 21)
v=0. 629+0.004, and with other results of the extensive

literature, see for instance Refs. 32. The methods ex-

plored by this study are also suitable for treating other
models and problems in statistical mechanics, as well as
in lattice-gauge theories.
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