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A new theoretical scheme appropriate for studying the electronic structure of ionic crystals is

presented and applied to nine AB-type cubic lattices ( A =Li, Na, K; B =H, F,Cl). The scheme,

called the ab initio perturbed-ion (PI) method, is based on the theory of electronic separability and

the ab initio model-potential approach of Huzinaga. In the PI method, the self-consistent-field

(SCF) equations for each different lattice ion are first solved in a lattice potential that contains nu-

clear attraction, Coulombic, and nonlocal exchange operators, and lattice projectors enforcing the

required ion-lattice orthogonality. The ionic SCF solutions are then used to compute the lattice po-

tential, and the process is repeated until ion-lattice consistency is achieved. The lattice energy and

other equilibrium properties are immediately obtained from the PI wave functions. The most re-

markable ideas suggested by this crystal simulation are the following: (a) The crystal potential pro-

duces a contraction of the free-ion valence radial density, large for the anions but very small for the

cations, that works as a bonding mechanism able to describe accurately the stability and equilibrium

elastic constants of simple ionic crystals; (b) the PI method explains well the variation of several

crystal properties with hydrostatic pressure; (c) the crystal bonding can be clearly analyzed in terms

of simple cationic and anionic contributions. Moreover, the PI code may be used as an eScient
source of environment-consistent ionic wave functions and energies.

I. INTRODUCTION

The cluster approximation is a traditional approach to
the study of the electronic structure of transition-metal
ions in ionic crystals. It was first applied in a nonempiri-
cal manner to KNiF3 by Sugano and Shulman. ' Since
then many cluster calculations on pure crystals and im-

purity systems like Cu+:NaF have been reported. Some
important recent works are those in Refs. 2—11. These
studies have shown that although the cluster approxima-
tion gives, in general, reasonably accurate descriptions of
the localized electronic states, an adequate treatment of
the cluster-lattice interaction is a necessary component of
the calculation.

In using the cluster approximation, one has to pay at-
tention to the following three broad questions: (a) the
description of the finite cluster, (b) the description of the
extracluster lattice ions required to compute the cluster-
lattice interaction, and (c) the mathematical and physical
consistency between these two descriptions. A rigorous
molecular-structure method is required in deaIing with
the first equation. Questions (b) and (c) have received less
attention and are far from being completely solved at the
present time. In many instances, the lattice ions have
been disregarded or simulated by point charges, and
question (c) neglected. '

Recently, some authors have considered a quantum-
mechanical description of the lattice ions. " %'inter,

Pitzer, and Temple have used total ion potentials for
the cluster nearest neighbors. Barandiaran and Seijo"
have remarked upon the significance of the cluster-lattice
orthogonality and have taken care of it by means of the
ab initio model-potential (MP) description' of the crys-
tal. Kunz and co-workers ' ' have discussed the
cluster-lattice consistency and have developed lattice-
consistent localizing potentials to compute the total ener-

gy of the cluster.
%e have recently investigated the cluster approxima-

tion' ' in the light of the theory of electronic separabil-
ity' ' (TES) and the ab initio MP approach of Huzinaga
and co-workers. "' These studies suggested the idea of
analyzing a limiting case of the cluster approximation in

which a cluster reduced to a single center is coupled to a
crystal lattice through a rigorous quantum-mechanical
cluster-lattice interaction. The outcome of this approach
is a new crystal model based on the idea of ion-lattice
consistency. %'e have called it the ab initio perturbed-ion
(PI) method. In this paper we present the PI method and
an application to simple ionic crystals. A preliminary re-
port has been given elsewhere. '

In the PI method we assume that the crystal electronic
density is a sum of the densities of the individual ions.
We obtain the best wave function for each di8'erent lat-
tice ion (the "cluster" ) by minimizing its effective energy
in the field of the crystal lattice. The effective energy is
written as a sum of the intraionic energy, or net energy of
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the ion, and the ion-lattice interaction energy. The latter
is the expectation value, in the cluster space, of an opera-
tor made of the lattice effective potential (containing nu-
clear attraction and Coulomb and nonlocal exchange
operators) and the lattice-projection operator that en-
forces the cluster-lattice orthogonality. The best ionic
wave functions are then used to compute the lattice
effective potential and the lattice projector. The process
is iterated until convergence in a way that resembles the
method of the lattice-consistent localizing potentials of
Kunz and Klein. '

The output of the PI method is a set of crystal wave
functions and orbital, net, and effective energies for each
different lattice ion. The lattice energy is immediately
computed from the net and interaction ionic energies.
The equilibrium geometry and elastic constants of the
crystal are obtained from this energy. The zero-
temperature Gibbs free energy of the crystal is readily
written as a function of the external pressure and the lat-
tice parameters. Crystal properties like polymorphic
transition pressures are then predicted ' from the
Gibbs function.

The PI method can also be considered as a basis-set
generator, useful as an auxiliary tool in complex cluster
calculations. This use of the ionic PI orbitals would fol-
low the suggestions of Yamashita and Kojima, Hosino
et al. , and Katsuki, who emphasized the necessity of
using lattice-consistant ionic wave functions rather than
Hartree-Fock free-ion orbitals in solid-state calculations.
On the other hand, the PI basis would be more appropri-
ate than the free-ion basis in the analysis of a large
variety of experiments on ion crystals.

We have applied here the PI method to the study of
the chemical bonding, equilibrium properties, and
response to the hydrostatic pressure of several alkali hy-
drides and halides. These systems have been extensively
analyzed in the literature by different theoretical
methods. Their electron-energy band structures have
been recently discussed by Kunz and by Yamashita and
Asano. ' ' Bonding and equilibrium properties were dis-
cussed in detail by Gordon and co-workers ' in terms
of nonempirical pair-potential theory. The cluster model
has also been applied to the alkali halides. Menzel
et al. reported several cluster calculations on LiF
directed to compare this approach with' the infinite-
crystal analysis. More recently, Winter, Pitzer, and Tem-
ple presented cluster calculations for pure NaF (Ref. 6)
and NaCl (Ref. 7), and Winter and Pitzer for pure MgF2,
in their studies of transition-metal impurities in these
halides. Being a cluster calculation, the present work can
be related not only to the latter cluster analyses, but also
to the local-orbital procedures of Kunz. The lattice-
induced orbital deformation appearing in the PI method
is also related to that discussed by Boyer et al. in the
potential-induced breathing model.

Our results show that the PI procedure is an accurate
algorithm for the prediction of electron densities, equilib-
rium geometry, lattice energy, and elastic constants of
simple ionic systems. The response of the NaF to the
external pressure is we11 described by the PI method up
to about 20 GPa. These results suggest that the cluster

approximation can work very well if the cluster-lattice
consistency is secured and the cluster-lattice interaction
is accurately computed, even if the cluster is reduced to a
single ion.

The present version of the PI algorithm can be im-
proved in order to deal with open-shell systems and elec-
tron correlation. We are presently working in these ques-
tions. Further applications of the PI method to more
complex fluorides and oxides are also in progress.

The layout of the paper is as follows. Section II is
dedicated to the formulation of the PI method. Section
III contains our results for nine halides and hydrides
computed at the observed equilibrium geometry. In Sec.
IV we report the PI description of the response of NaF to
the hydrostatic pressure.

E,"tr(elec) = (%„|H,"fr tlt„)

with

(4)

H,"if= g h," (it)r+
1 j&i N~

h,"tr(i) = T(i) —g Z "r,„' + g [ V,tr(i)+P (i)],
a=1 S (WA)

(6)

II. THE AB INITIO PI METHOD

According to the TES, ' ' ' ' ' if a system can be
partitioned into weakly interacting groups, its electronic
wave function can be written as an antisymmetrized
product of group wave functions. If these satisfy strong-
orthogonality conditions, ' the total energy of the sys-
tern is the sum of intragroup or net energies and inter-
group interaction energies. We are interested in the wave
function tp„of a particularly relevant group, the active
( A ) group, whose self-consistent-field (SCF) equations are
solved in the field of the remaining (frozen) groups. All
contributions of the A group to the total energy can be
collected in the effective energy

EA EA + ~ EAR EA +EA
eff net ~ int net int

R (AA)

that gives by minimization the best VA for a set of given
frozen groups.

The total energy of the system is not the sum of the
group effective energies. However, we can define the ad-
ditive energy of the A group as

A A AR A & A
add net +T Zi E int Enet + TE int

R (XA)

and see that the total energy of the A, BbC, system is
the sum

E =aE,"dd +bE,dd +CE,dd +
If the frozen groups can be described by single Slater

determinants, Eeff can be derived from an effective elec-
tronic Harniltonian
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where i,j run over the N„electrons of the active group, a
and g over its v„nuclei, and S over frozen groups.
V,fr(i) represents the potential energy of the ith electron
of the active group in the field of the S frozen group:

vS

V,s(i) = —g Z r;s '+ Vc(i)+ V~(i) .

The projector P (i) in Eq. (6) represents the ortho-
gonality constraints between the active group and the S
frozen group. For closed-shell ions, this operator can be
written in the form' '

where I ~aim, S) } are products of spherical harmonics
and primitive radial functions for the S ion. A (l, ab, S)
are the elements of the matrix

A=S 'KS (12)

limr V,s(r) = —Z
r~0

(14)

and S and K the overlap and exchange matrices for the S
ion in I ~aim, S ) I.

This effective potential has the following asymptotic
limits:

gES

where g runs over all occupied orbitals gg with orbital
energies c .

The effective energy is the energy in Eq. (4) plus the nu-
clear term

E,"~(nuc) = —g g Z,"Vs~(R )
a= 1 S |,'WA)

Z.'Zp"R p',
1~P(a&v~

where V,tr(R, ) is the effective potential of the S group at
the a nucleus of the active group. Only the nuclear-
attraction and Coulombic-repulsion terms of the effective
potential contribute to this nuclear effective energy.

These are the basic equations of the TES. To complete
a calculation within this framework one has to select (a) a
meaningful partition of the system into active and frozen
groups, (b) an adequate basis set to describe the frozen
groups, and (c) an approximate form for the effective po-
tential.

The ab initio PI method is a TES-consistent algorithm
defined by a particular answer to these three require-
ments, as follows. We consider each different lattice ion
as the active group. The lattice effective potential and
projection operators are computed, as described in detail
to follow, in terms of a trial basis set. The SCF equations
are solved for a11 different ions at each PI cycle and their
solutions transferred to the lattice. The PI cycles are re-
peated until ion-lattice consistency is reached. For a
given set of primitive functions, the PI calculation gives
the coefficients that minimize the effective energy of all
different lattice ions.

Let us see now the form of the effective potential. For
the closed-shell system considered in this paper, the
Coulombic part is given by

VC(rl )= Jp (r2)r12 &2

where p (r) is the radial density of the S ion. This form
can be accurately represented by the Bonifacic-Huzinaga
equation.

The exchange part can be written as the nondiagonal
spectral resolution:"" '

1

Vz(i)= —g g g ~aim, S)A (l, ab, S)(blm, S~, (11)
l m= —lab

where Ns is the number of electrons of the S ion.
This formulation of the TES can be easily adapted to

any atomic or molecular SCF program. We have used a
Roothaan-Bagus program to write the PI code. ' This
is a highly efficient code that performs four independent
calculations: (a) basic one-center integrals S, T, U, P, and

Q (Ref. 40), (b) matrix elements of the effective potential
and lattice operators, (c) an atomic SCF process with or
without ion-lattice interaction, and (d) generation of the
effective potentials. The PI atomic orbitals (AO's) have
identical radial functions for all subspecies of a given
symmetry. This treatment is exact for sp ions located at
octahedral or cubic sites.

III. THE AS INITIO PI DESCRIPTION
OF THE ALKALI HYDRIDES AND HALIDES

TABLE I. Experimental cell constants, a (in A), for alkali
hydrides and halides AB (with A =Li,Na, K, and B=H,F,C1).

Li
Na
K

H'

4.08
4.88
5.70

Fb

4.028
4.634
5.348

Cl

5.140
5.640
6.294

'Reference 60.
Reference 56.

A. The crystal model

At room temperature and pressure, the nine crystals
analyzed here show the rocksalt structure (see Table I).
We will consider a collection of ionic layers surrounding
the active ion, the ith layer containing ¹ equivalent ions
at the same distance R; from the active ion. In Table II
we list the characteristics of the first 15 layers. Only the
closer layers will contribute to the lattice-projection ener-

gy of the active ion because the overlap integrals appear-
ing in the expectation values of the lattice projectors are
exponentially decreasing functions of the interionic dis-
tance. The effective potentials tend to reach the pointlike
asymptotic limit at rather short distances. We have in-
tegrated the projection operators and effective potentials
for the first ten layers. This represents 170 ions with
a/2+R; +11' a/2. From Table I we see that 11' a/2
is 6.68 A for LiF and 10.44 A for KC1. Lattice ions at
larger distances give vanishing projection energy and
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TABLE II. Characteristics of the ionic layers surrounding a cation in the rocksalt structure. (Note
that the positions of all ions in a layer are given by all combinations of the indicated coordinates and
signs. )

Layer
number

1

2
3
4
5

6
7
8

8

9
10
11
12
13
14
15
15

'In units of a/2.

Type of
ion

Cl
Na
Cl
Na
Cl
Na
Na
Cl
Cl
Na
Cl
Na
Cl
Na
Na
Cl
Cl

Number
of ions

6
12
8
6

24
24
12
24

6
24
24

8

24
48

6
24
24

Ionic coordinates'

(+ 1,0,0)
(+1,+1,0)

(+1,+1,+1)
(+2,0,0)

(+2,+1,0)
(+2,+1,+])

(+2,+2,0)
(+2,+2,+1)

(+3',0,0)
(+3,+1,0)

(+3,+1,+1)
(+2,+2,+2)
(+3,+1,+Q)
(+3,+2,+ 1)

(+4 Q Q)

(+4,+1,0)
(+3,+2,+2)

R, '

1
21/2

31/2

41/2

51/2

61/2

81/2

91/2

91/2

(10)'"
(11)'/
(12)
(13)1/2
(14)'"
(16)1/2

( 17 )
1 /2

(17)1/2

V,„,(r)= —gz /~r —Rs~ .
S

(15)

contribute to the effective energy of the active ion
through the term

As described in detail in Ref. 17, we compute V,„,(r)
by the Ewald method, and approximate it by the ac-
curate one-electron operator:

6

Vs, (r)=C&+ g Ckr"+C7r +(Csr+C9r +C~or )(x y +y z +z x )
k=2

+(C&&+C~2r}(x +y +z )+C&3(x +y +z }+(C&4r+C&&r )(x y z ), (16}

where the C s are fitting parameters. This form repro-
duces the Ewald values within 3X10 hartree at any
point inside a sphere of radius 7 A centered at the nu-
cleus of the A ion.

We have used the optimized 4s Slater-type orbital
(STO) basis of Table III for the H ion, and the STO

I

bases of Clementi and Roetti for the remaining ions: 4s
(Li+), 5s4p (Na+), 5s5p (F ), 7s5p (K+), and 7s6p
(Cl ). These bases are very close to the Hartree-Fock
(HF) limit. The coefficients of these atomic orbitals have
been used as trial vectors.

B. Convergence of the PI calculation

Basis 1s

Orbital energy: —0.046 22
1s 1.513429 0.149 999 2
1s 0.779085 0.427 703 3
1s 0.404 876 0.454 056 1

1s 0.284763 0.045 344 3

TABLE III. Optimized (4s) STO basis set for the 1s 'S
ground state of the H ion. All entries in atomic units.

As described before, the PI algorithm proceeds by a
series of cycles starting from a trial basis set. In the crys-
tals studied here convergence is reached after a short
number of cycles (see Fig. 1). These energies converge
within 10 hartree in 3—4 cycles and significant changes
in the basis sets appear just in the first cycle. This pat-
tern is followed in all other cases, although the conver-
gence process tend to be somewhat slower for crystals in-
volving smaller ions. Properties other than orbital ener-
gies converge in a parallel manner.

HF total energy:
Potential energy:
Kinetic energy:
Virial ratio:

( r )„=2.503 393 6

—0.487 930
—0.975 857

0.487 927
—2.000005

C. Lattice effects on the electronic energy levels

In Table IV we present PI valence orbital energies and
interaction energies for the nine crystals considered here.
It is interesting to compare the interaction energy, which
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0.0

0.4-

-2.8-

2p

' 2S

Na+

F

2p:
I

cationic orbital energies within these limits and that all
states of the halide anions are well below this range, with
the exception of the highest occupied np state. The 1s en-
ergy of the hydride ion lies also within this range.

All cationic AO's and those anionic AO's having orbit-
al energies outside the range spanned by the interaction
energy are essentially unaffected by the process of crystal
formation. Only the 1s orbital of the hydride ion and the
np highest occupied orbital of the halide ions suffer no-
ticeable deformation upon lattice formation. These re-
sults suggest that an orbital would be affected by a lattice
potential if its energy is close to the ion-lattice interaction
energy. Since the Madelung energy is a good approxima-
tion to the interaction energy, this conjecture could be a
useful rule in the search for ionic systems with apprecia-
ble lattice-induced orbital deformations.

The cationic orbital energies increase and the anionic
energies decrease along the PI process. To simplify the
discussion we use the average shift

0 1 2 5 4 5 2 1 0
Pl cycles (g&) g + (&PI &free) (17)

FIG. 1. Orbital energies of the Na+ and F ions for the first
four cycles of the PI calculation on NaF.

is a rough measure of the energy involved in the process
of crystal formation, with the orbital energies. In Table
IV we see that the interaction energy ranges from —0.23
to —0.45 hartree. Also, we observe that there are not

where i runs over the occupied levels of the ion, N; is the
number of electrons in the ith level, and e,..

' and e.;"' are
orbital energies of the ith level in the PI and free-ion
descriptions, respectively. It is also useful to observe the
typical deviation of the energy shifts from the average in
Eq. (17). These numbers are collected in Table V.

TABLE IV. PI valence orbital energies and interaction energies (in hartrees). [Note that the numbers appearing below each orbit-
al energy are the differences e(PI) —e(free ion). ]

Crystal

LiH

Cation

(1s): —2.355 63
0.436 75

—0.430 14

Anion

(1s): —0.315 95
—0.269 73

E,„,: —0.355 77

Crystal

LiCl

Cation

E,„,: —0.356 67

(ls): —2.432 71
0.359 67

(3s):

(3p):

Anion

—0.996 15
—0.263 20
—0.409 28
—0.259 36
—0.309 80

NaH (2s):

(2p):

—2.699 16
0.37449

—1.423 53
0.373 62

—0.377 87

(1s): —0.282 32
—0.236 10

E,„,: —0.325 72

NaC1 (2s):

(2p).

E

—2.746 32
0.327 33

—1.468 75
0.328 40

—0.329 56

(3s):

(3p):

E,„,:

—0.979 87
—0.246 92
—0.395 79
—0.245 87
—0.289 60

KH (3s):

(3p):

E

—1.645 54
0.31890

—0.852 01
0.31908

—0.325 45

( 1s): —0.237 03
—0.19081

E,„,: —0.280 68

Kcl (3s) —1.672 22
0.292 22

(3p): —0.875 40
0.295 69

E;n, —0.291 53

(3s):

(3p):

Etnt:

—0.947 09
—0.214 14
—0.365 42
—0.215 50
—0.230 39

LiF

KF

( 1s): —2.335 18
0.457 20

E;„,: —0.445 56

(3s): —1.618 71
0.345 73

(3p): —0.821 25
0.349 84

E-,„,: —0.325 41

(2s):

(2p):

(2s):

(2p).

—1.447 12
—0.372 68
—0.548 74
—0.367 89
—0.430 26

—1.338 38
—0.263 94
—0.447 23
—0.266 38
—0.301 27

NaF (2s): —2.676 77
0.396 88

(2p): —1.400 54
0.396 61

E,„,: —0.386 06

(2s):

(2p):

E,„,:

—1.403 16
—0.328 72
—0.506 28
—0.325 43
—0.386 65
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TABLE V. Average shifts, Eq. (17), and relative deviations shown by the ionic orbital energies upon
crystal formation (in hartrees).

Crystal
Madelung

energy
Cation

Deviation
Anion

Deviation

LiH
NaH
KH
LiF
NaF
KF
LiC1
NaC1
KC1

+0.453 32
+0.379 00
+0.32448
+0.459 17
+0.399 12
+0.345 84
+0.359 83
+0.327 93
+0.293 86

+0.436 75
+0.373 85
+0.319 16
+0.457 20
+0.397 35
+0.351 94
+0.359 67
+0.328 47
+0.296 88

0.000 36
0.000 12

0.001 42
0.003 19

0.000 84
0.002 18

—0.269 73
—0.236 10
—0.19081
—0.35606
—0.315 27
—0.256 19
—0.227 62
—0.218 34
—0.188 57

0.027 53
0.023 19
0.020 22
0.030 26
0.025 69
0.024 60

We see that the cationic energy shifts are very close to
the Madelung potential at the cationic site. Shifts for
different cationic orbitals are very similar, as revealed by
the small typical deviations. It appears that the response
of the cations to the PI algorithm is mainly determined
by the electrostatic ion-lattice interaction. On the other
hand, the stabilization shown by the energy levels of the
anions is about 50—70% of the Madelung potential at the
anionic site. Deviations from the average shift are larger
than those obtained for the cations. Thus, the response
of the anions deviates significantly from point-charge
electrostatics, as it should for these more deformable and
polarizable entities.

like the two-center overlaps will be rather different in
these two bases.

E. Bonding and cohesive energy

We will see now how the PI method describes the crys-
tal binding without resorting to the familiar molecular-
like delocalized orbitals. Numbers in Table VI reveal
that the interaction energy is, in general, a small part of

D. Lattice e8ects of ionic wave functions
and charge densities

2

In Fig. 2 we plot the PI cationic and anionic radial
densities for LiH, NaF, and KC1. The other six crystals
show analogous behavior. The PI cationic densities prac-
tically coincide with the free-ion values. However, we
observe a contraction of the hydride density and analo-
gous although smaller effects for the Auoride and the
chloride ions. The deformations of the halides appear in
the outer region of the density, the core regions remain-
ing nearly unchanged. All these results agree with those
reported by Kunz.

Plots in Fig. 2 are poor indicators of the response of
the valence orbitals to the lattice potential because the al-
rnost unaffected inner orbitals dominate the charge densi-
ty. For this reason it is convenient to examine separately
the highest occupied anionic orbitals, as we do in Fig. 3.
A clear contraction of these orbitals as apparent, the
effect being larger for lithium crystals. The behavior of
these orbitals in the sodium and potassium salts is very
similar, in spite of the rather different cell constant. This
suggests that the size and electronic properties of these
anions in the crystals considered here should be nearly
the same.

The orbital deformation revealed by the PI calculation
is quite important in the outer tail of the external anionic
orbitals, but it is almost nil in the inner parts. Thus,
inner operators such as the spin-orbit coupling would
give very similar expectation values within the Hartree-
Fock and PI bases. However, more external properties

10

0

2 3
r (bohr)

FIG. 2. Free-ion (solid lines) and PI (dotted lines} radial den-
sities for LiH, NaF, and KC1.
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0.7-
0.6-

cryst Eadd + add net + net +
2 (Eint ++int ) i (18)

0.5
0.4

0.3

0.2

O. i

0.0-
O.S-
07-
0.6-
0 5

0.3

where C and A stand for cation and anion, respectively.
The crystal potential energy per molecule is obtained in
the same way, whereas the kinetic energy is the sum of
the cationic and anionic kinetic energies. The virial ra-
tios obtained from our PI calculations (see Table VI) are
greater than the exact value —2 in all these cases. Ac-
cording to the Hellmann-Feynman theorem, this means
that in the PI description obtained at the experimental
geometry there is a force tending to separate the nuclei.
Thus, the internuclear distances predicted by the PI
method will be somewhat larger than the experimental
ones, a trend usually found in molecular Hartree-Fock re-
sults.

The lattice energy El,« in the PI method is given by

0,2. C A
latt cryst E0 E0 (19)

O. i

0.7
O.e
0.5
0,4
Oa3

0.2
O. i
0.0

—O. i
-0.2
-03

—Ed,f+Ed,f+ —,'E;n, +—,'E;n,

C
Ebind +Ebind (20)

where we have defined the deformation energy of the K
ion as

where the subscript 0 stands for free-ion values. El,«can
be written in an interesting form by introducing Eq. (18)
into Eq. (19}:

e o
eg0

r tbohr)
EK =EK -EK

def net 0 (21)

FIG. 3. Radial wave functions of the outermost valence or-
bital of the H, F, and Cl ions. Free-ion functions are plot-
ted in solid lines; dotted, dashed, and dotted-dashed lines are
used for the PI solutions in lithium, sodium, and potassium
crystals, respectively.

the effective energy, the hydride ion being a noticeable
exception. Cations and anions are stabilized by the ion-
lattice interaction energy. The crystal energy per mole-
cule is obtained though Eq. (3):

and the binding energy of the K ion as

K K & K
bind Edef + 2Eint (22)

According to Eq. (20},we can partition the lattice ener-

gy into a sum of cationic and anionic binding contribu-
tions each made, in turn, of two factors [Eq. (22)]: one
that measures the energy associable to the orbital defor-
mation, Ed,f, and another one that is one-half of the in-
teraction energy of the ion. The first factor cannot be

TABLE VI. Energy terms related to the lattice formation (in hartrees).

H
(a) Total energy of the free ions

Cl Li+ Na+

—0.487 93 —99.459 37 —459.576 70 —7.236 41 —161.676 92 —599.017 30

Anion
(b) Ionic energies in the crystals

Cation

Ecryst

Crystal
Virial

LiH
NaH
KH
LiF
NaF
KF
LiC1
NaC1
KC1

—0.749 81
—0.74001
—0.696 44

—99.836 40
—99.807 59
—99.726 73

—459.81945
—459.817 56
—459.762 83

—0.394 04
—0.414 29
—0.415 77

—99.406 14
—99.420 93
—99.425 46

—459.509 67
—459.527 96
—459.532 44

—7.666 38
—162.054 79
—599.342 76

—7.681 20
—162.062 86
—599.342 54

—7.592 85
—162.006 45
—599.308 79

—7.236 26
—161.676 92
—599.017 30

—7.235 64
—161.676 80
—599.017 14

—7.236 19
—161.676 89
—599.017 25

—8.023 24
—162.443 00
—599.736 14
—107.079 69
—261.484 09
—698.755 94
—467.079 08
—621.51443

—1058.81066

—1.988 57
—1.999 92
—1.999 95
—1.998 94
—1.999 83
—1.999 78
—1.999 25
—1.999 63
—1.999 69
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TABLE VII. Cationic and anionic deformation, interaction, and binding energies for several ionic

crystals (in hartrees).

Crystal

LiH
NaH
KH
LiF
NaF
KF
LiC1
NaC1
KC1

C
Edef

0.000 15
0.00000
0.000 00
0.000 77
0.000 12
0.000 16
0.000 22
0.00003
0.00005

I C

—0.215 06
—0.188 94
—0.162 73
—0.222 78
—0.19303
—0.162 71
—0.178 34
—0.164 78
—0.145 77

C
Ebtnd

—0.214 91
—0.188 94
—0.162 73
—0.222 01
—0.192 91
—0.162 55
—0.178 12
—0.164 75
—0.145 72

Edef

0.093 89
0.073 64
0.072 16
0.053 23
0.038 44
0.033 91
0.067 03
0.048 74
0.044 26

1 A
—,Etnt

—0.177 89
—0.162 86
—0.140 34
—0.215 13
—0.193 33
—0.150 64
—0.154 89
—0.144 80
—0.11520

Ebind

—0.084 00
—0.089 22
—0.068 18
—0.161 90
—0.154 89
—0.11673
—0.087 86
—0.096 06
—0.070 94

—0.21 ~

'
g-0.17 ~

C

—0.13

0.09 0.11

1/a (bohr &)
0.13

FIG. 4. PI values for cationic and anionic interaction energy
vs the inverse of the observed cell constant. Open squares are
used for cations and solid triangles for anions.

negative. To see this, we recall that E„„and Eo are the
expectation values of the free-ion Hamiltonian in the PI
and free-ion bases, respectively. Since the latter basis
does minimize this expectation value, E„„&ED. Thus,
the deformation energy is always a destabilizing contribu-
tion to the ionic binding energy. The second factor is
negative. Deformation and binding energies for the nine
crystals studied here are collected in Table VII.

The numbers in Table VII tell us that whereas the
rather passive response on the part of the cations to the
PI orbital deformation leads to negligible deformation en-
ergies, the larger anionic deformation gives appreciable
deformation energies (up to 50 kcal/mol). In all cases,
the anionic interaction energies are larger in absolute
value than the corresponding deformation energies, and
so the anionic binding energies are always negative.

Since the cationic and anionic interaction energies are of
the same order of magnitude, the differences in deforma-
tion energy lead to anionic binding energies smaller than
their cationic counterparts. See, for instance, the LiH.
Thus, the anions are much more sensitive than the cat-
ions to the orbital deformation induced by the crystal po-
tential, but the cations give a larger contribution to the
lat tice energy.

Since the interaction energy plays such a significant
role in determining the lattice energy, it is interesting to
examine its variations from crystal to crystal. These
changes are quite substantial for cations and anions, as
can be seen in Table VII. In Fig. 4 we show the variation
of E;„, with the cell constant. The cationic interaction
energy of these nine crystals is nearly linear in a, in

agreement with the close relationship between this quan-
tity and the Madelung potential at the cationic site (see
Tables IV and V). Anionic interaction energies show no-
ticeable deviations from this linear relation.

Let us now see the lattice energies predicted by the PI
method at the experimental geometry (Table VIII). The
agreement between the PI results and the thermochemi-
cal data is remarkable for the three fluorides; it is better
than that obtained by Kim and Gordon and comparable
to the results by Cohen and Gordon. ' In the chlorides
the differences are as large as 30—35 kca1/mol, rather
larger than those in Ref. 22. This suggests that the PI
method may describe the fluorides better than the
chlorides because the former are more ionic compounds.
Further research will reveal the possible correlation be-
tween the covalency and the performance of the PI
method. The deviations for the hydrides (about 20—30
kcal/mol) are comparable to those obtained in Ref. 2
with a rninirnal basis.

Our theoretical values are generally smaller, in abso-
lute value, than the experimental ones. Three factors can
contribute to this deficiency. First, we have not opti-
mized the equilibrium geometry of the crystal. This limi-
tation introduces a very slight error because, as we dis-
cuss later on, the variation of the lattice energy with the
cation-anion distance is very flat in the equilibrium re-
gion. Second, there is the intrinsic variational restriction
in the PI method associated to the lack of mixing of cat-
ionic and anionic wave functions. This mixing would fur-
ther reduce the crystal energy and thus the lattice energy.
Third, we have neglected the electron correlation.



3808 VICTOR LUANA AND L. PUEYO

TABLE VIII. Lattice energies (in kcal/mol).

Crystal

LiH
NaH
KH
LiF
NaF
KF
LiCl
NaC1
KCl

Expt.

—217'
—194
—171b

—242.3 ( —246. 8)'
—214.4 ( —217.9)'
—189.8 {—194.5}'
—198.9 ( —201.8}'
—182.6 ( —185.3)'
—165.8 ( —169.5)'

This work

—187.6
—174.5
—144.9
—240.9
—218.4
—175.2
—166.9
—163.7
—136.0

Theor.

—178, —212

—260.2, ' —240. 5
—222. 3, ' —211.9
—204. 1,' —194.4'
—206. 1,' —202.0

—182.7, ' —179.9, —152K
—175.3, ' —170.1

'Reference 61.
Thermochemical data from Ref. 62.

'Reference 43. Values in parentheses are extrapolations for T=O K given by Brewer, as quoted in Ref.
55.
HF calculations in Ref. 2. The first number corresponds to a minimal basis set and the second one to

an extended basis.
'Reference 22.
'Reference 23.
gReference 63.

We believe that the latter limitation is the more serious
source of error here. The HF approximation predicts
ionization potentials for the alkali-metal atoms discussed
in this paper deviating 0.05—0.34 eV from the observed
values (see Table IX). However, the electron allinities are
seriously underestimated in this approximation. For the
H ion, for instance, the HF value has even the wrong
sign. It is sometimes argued that the HF approximation
should give good lattice energies for ionic crystals be-
cause the correlation errors of the free-ion and crystal
wave functions tend to cancel out. The orbital deforma-
tion induced upon crystal formation casts a serious doubt
over the plausibility of this assumption.

In line with previous arguments, the correlation error

could be partitioned in the PI method into cationic and
anionic contributions, these contributions being the
diference between the crystal and free-ion correlation er-
rors. Since the PI and free-ion cationic densities are al-

(I) Susceptibility of the anion A

A in crystals
NaAA in Uacuo

H
F
Cl

—14.905
—12.640
—30.340

—5.708
—10.463
—25.260

—5.661
—10.638
—25.885

—5.657
—10.753
—26.022

TABLE X. Theoretical diamagnetic susceptibilities for the
ions and crystals studied in this work, in units of 10
cm' mol

TABLE IX. Electron affinities and ionization potentials (in
eV).

C in Uacuo

(II) Susceptibility of the cation C
C in crystals

CH CF Ccl

Atom

F
Cl

0.747
3.448
3.613

—0.328
1.363
2.581

(a) Electron affinities
Observed' HFRb ~Ecorr

1.075
2.085
1.032

Li+
Na+
K+

—0.705
—5.079

—15.496

—0.698
—5.079

—15.494

—0.688
—5.094

—15.429

—0.696
—5.070

—15.458

Atom
(b) Ionization potentials

Observed' HFR ~Ecorr

Li
Na
K
H
F
Cl

5.392
5.139
4.341

13.598
17.422
12.967

5.342
4.952
4.006

13.606
15.718
11.795

0.050
0.187
0.335

1.704
1.172

'Gas data at 0 K, Ref. 56, p. E—67.
Obtained as di6'erences of Hartree-Fock-Roothan (HFR) total

energies of the atomic and ionic ground states with basis sets
optimized for each state.
'Reference 64.

Crystal

LiH
NaH
KH
LiF
NaF
KF
LiCl
NaCl
KCl

—15.610
—19.984
—30.401
—13.345
—17.719
—28.136
—31.045
—35.419
—45.836

—6.406
—10.740
—21.160
—11.151
—15.745
—26.182
—25.956
—30.955
—41.498

—10.1
—16.4
—23.6
—24.3
—30.3
—39.0

'Sum of the free-ion values.
Sum of the ionic PI values.

'Reference 56, p. E—124.

(III) Susceptibility of crystals
HFR' PI Expt c
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TABLE XI. Dimimensionless Lambm term, Eq. (24).

(a) ree-ion values
Cl Li+ Na+

CT L ( 10 ) 2.43 48.02 114.93 9.54 62.38 132.54

Crystal

LiH
NaH
KH
LiF
NaF
KF
LiCl
NaC1
KCl

(b) PI values (10 )

Anion

3.26
3.11
3.07

48.30
48.25
48.24

115.05
115.08
115.08

Cation

9.56
62.38

132.54
9.57

62.36
132.57

9.57
62.39

132.55
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TABLE XII. Energy terms for NaF (in hartrees) at several Na+-F distances (in bohrs).

R(Na+-F+ )

Na+ ion
C

Edef
1 C

—,Eint
C

Ebind

3.7

0.001 78
—0.212 27
—0.21049

4.0

0.000 59
—0.204 35
—0.203 76

4.2

0.000 25
—0.198 56
—0.198 31

4.397

0.000 12
—0.19303
—0.192 91

4.4

0.000 11
—0.192 38
—0.192 27

4.6

0.00005
—0.186 11
—0.18607

4.8

0.00002
—0.179 92
—0.179 90

5.0

0.00001
—0.173 92
—0.173 91

F ion
A

Edef
1

—,Eint
AEbind

Ei.t
Virial

0.10348
—0.163 28
—0.059 80

—0.27029
—1.99641

0.065 61
—0.187 50
—0.121 89

—0.325 65
—1.998 41

0.049 35
—0.192 91
—0.143 56

—0.341 87
—1.999 30

0.038 44
—0.193 33
—0.154 89

—0.347 80
—1.999 83

0.037 31
—0.193 13
—0.155 82

—0.348 09
—1.999 89

0.028 04
—0.18961
—0.161 57

—0.347 64
—2.000 28

0.020 79
—0.184 04
—0.163 25

—0.343 15
—2.000 55

0.015 12
—0.177 50
—0.162 38

—0.336 30
—2.000 73

IV. COHESIVE PROPERTIES
OF THE NaF LATTICE

R, =4.481 bohr, as can be observed in Fig. 6. Its curva-
ture at R, gives the bulk modulus

A. Equilibrium properties at zero pressure
and temperature

BP 1

BV 18R,
8 U(R)

BR R=R
(26)

We now present cohesive properties of the fcc NaF de-
duced from the PI results at several values of the
sodium-fluoride distance R. In Table XII we collect Ed f,
—,'E;„„and E»„d for Na+ and F, as well as the lattice en-

ergy and virial ratio obtained at eight values of R.
The positive deformation energies of Na+ and F are

decreasing functions of R, revealing an increasing reor-
ganization of the electronic density at smaller distances.
Ed f(Na+ ) is very small even at 3.70 bohrs. Thus, ac-
cording to Eq. (22), Eb;„d(Na+ ) is practically —,'E;„,(Na+ ).
The R dependence of the latter is very close to R '. The
deformation energy of the F ion is much greater than
Ed«(Na+) (about 23 kcal/mol near R, ). The R depen-
dence of E;„,(F ) is very different from that of E;„,(Na+)
and shows a shallow minimum near R, . Eb;„d(F ) is a
decreasing function of R in the range analyzed here.

The lattice energy also shows a shallow minirnurn at

The virial ratio plotted in Fig. 6 shows that the exact
value is nearly satisfied at R, . The agreement between
our value for R, and the observed one (4.378 bohrs, Table
I) is most remarkable when we recall the results of ela-
borated multicenter cluster calculations. Winter, Pitzer,
and Temple found that the isolated (NaF6) cluster has
a continuously repulsive ground-state nuclear potential.
The same result was found by Recio and Pueyo ' using
minimal Slater-type basis sets. When dressed with 26
point charges representing the nearer neighbors, this
cluster shows a minimum at 5.38 bohrs. If the sodium
ions of these 26-member set are represented by total ion
potentials, R, becomes 4.54 bohrs. The prediction im-

proves further if the rest of the lattice is taken into ac-
count by simulating the Madelung potential. The
cluster-in-the-lattice calculation of Ref. 51, in terms of a
pure electrostatic lattice, also gives a bound ground state.

-160- - -1.996

- -1.998

-O--
- -2.000 'g

2 -200-
—-2.002

-220-
I

4.0
I

4.4

Q&~ F Cbohrk

I

4.8

-2.004

FIG. 6. Lattice energy {solid line) and virial ratio (dotted line) for NaF vs the internuclear distance.
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TABLE XIII. Equilibrium properties of NaF at zero pressure and temperature.

Property

a (A)
p (g/cm')
8 (GPa)

Erat (kcal/mol)

Expt.

4.634'
2.803'

46.5, ' 51.4, 51.7'
—214.4, ' —217.9, —221'

PI value

4.742
2.616

49.1
—218.7

Ref. 23

4.88
2.40

45 ~ 5
—211.9

'Reference 43.
Data for 1 atm and 298 K, Ref. 53.

'Extrapolated value to 0 K, Ref. 54.
Extrapolation to 0 K, Ref. 55.

'Reference 56, p. D-91.

As shown by Bermejo et al. , the cluster-in Uacuo level
can give a very weakly bound ground state if a number of
polarization functions are included in the calculation.

The significance of an adequate treatment of the
cluster-lattice interaction in highly charged clusters like
(NaF6) is evident. By comparison with the model in
Ref. 6, the PI scheme deals with a much more simple
cluster but with a more detailed cluster-lattice interac-
tion. In the language of the TES, the PI model represents
a di8'erent lattice partition that emphasizes the cluster-
lattice interaction by computing it in an ab initio way and
maintaining cluster-lattice consistency.

The equilibrium properties of the NaF computed in

0 ~ I f r I r e y e r g e

,r' 2p, F

2s,F

this work at zero pressure and temperature are presented
in Table XIII together with the observed values and the
theoretical results obtained by Cohen and Gordon.
Since our PI calculation gives a value for R, that is 0.11
0
A larger than the experimental one, our computed densi-

ty is 0.2 g/cm smaller than the observed one (2.803
g/cm ). We obtain 49.1 GPa for the bulk modulus. This
value lies within the experimental range (46.5—51.7 GPa)
reported by several authors. ' ' The lattice energy
computed at our theoretical geometry, —218.7 kcal/mol,
differs by 0.3 kcal/mol from that obtained at the experi-
mental geometry and agrees well with available experi-
mental data that ranges from —214 to —221
kcal/mol. ' ' Our results are comparable and even
better than those from the semiempirical calculation in
Ref. 23.

The variation of the NaF orbital energies with R is
small: they change by less than 10% in the range
3.7~R ~5.0 bohrs (Fig. 7) and tend to their free-ion
values when R increases. The ionic radial densities do
not show any appreciable change with R in the range
considered here. Even the deformation of the sensitivity
2p fluoride orbital is nearly independent of R.

rh

'ol

C
Q

2p, Na+

'.,2s,Na'

B. Pressure e8'ects on the equilibrium properties of the NaF

G (R;P, T)= U(R )+PV(R) —TS (R ), (27)

where U stands for lattice energy. At zero temperature,

%e will consider here the Gibbs free energy of the lat-
tice:

,.' 1s,F
r

-261.0
50

-40-

'll

1s Na+ .4- 10

4.5 5.0 free
QN F (bohr)

5.0

FIG. 7. PI orbital energies for NaF vs the internuclear dis-
tance.

FIG. 8. Gibbs free-energy isobars for NaF as functions of the
internuclear distance.
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1.0

O.Q

0.8

O.T

0 10 20
P (GPa)

30 40

FIG. 9. PI values (solid line) for the relative cell volume of NaF vs the experimental data of Ref. 57.

we obtain G(R;P, O) from U(R), Fig. 6, and the molecu-
lar volume of the fcc phase V =2R . We will neglect any
contribution from lattice vibrations.

In Fig. 8 we present seven G(R;P, O) isobars for NaF,
from P=O to 50 GPa. Each isobar has a minimum at
R, (P). The figure shows that R, (P) decreases with in-

creasing pressure, in agreement with the observed results.
Also, G(R;P, O) increases with the applied pressure, as it
should be. In Fig. 9 we plot the volume ratio V/Vo
versus the applied pressure. In this plot, V is
V(P =P, T=0), and Vo is V(P =0, T =0). Our
theoretical curve can be compared with the room-
temperature experimental data reported by Drickamer

et al. The PI results are compatible with these data up
to 20 GPa.

The bulk modulus can be written as a function of P and

B(P,T)= a'U l aU
18R QR~ 9R2 dR R=R (p, T)

In Fig. 10 we present the pressure dependence of the
theoretical B (P, O) up to 45 Gpa. This function is nearly
linear within this range. Observed bulk moduli at zero
pressure and temperature are available. ' ' Also, the
pressure dependence of 8 up to 1 GPa has been reported
by Hart et a/. ' Thees data give 8 and its first and
second pressure derivatives at zero pressure. Such values
can be seen in Table XIV, together with our PI predic-
tions. The theoretical zero-pressure 8 lies within the ex-

TABLE XIV. Bulk modulus and first and second pressure
derivatives at zero pressure.

00 fo
P (GPa)

FIG. 10. Pressure dependence of the bulk modulus of NaF
according to the PI calculation.

B(P =0) (GPa)
dB/dP(P =0)
d B/dP (P =0) (GPa ')

'Reference 43.
Reference 53.

'Reference 54.
Reference 58.

Expt.

46.5, ' 51 4 51 7'
503

—0.12

PI
value

49.1

4.31
—0.189
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perimental range, and the PI values for the zero-pressure
derivatives agree reasonably well with the observed data.

All these results are satisfactory and promising. They
suggest that the PI method can be used to describe the
equilibrium properties of more complex ionic crystals
and, possibly, their variation with applied pressure.

V. CONCLUSIONS

We have developed a new theoretical scheme, the ab
initio perturbed-ion method, adequate to analyze the elec-
tronic structure and chemical bonding of ionic crystal lat-
tices. Following the theory of electronic separability, the
ab initio model potential approach, and the restricted
Hartree-Fock-Roothaan approximation, the PI method
gives a set of atomic orbitals for each different lattice ion
(the PI basis) that minimizes the ionic effective energy
and ensures ion-lattice consistency. The PI basis is then
used to compute the lattice energy and other properties
of the crystal.

We have applied the PI method to nine alkali hydrides
and halides and have found that the radial density of the
cations remains almost unchanged in the process of crys-
tal formation. The anionic radial density is contracted
with respect to the free-ion curve: we find a charge
transfer from the outer to the inner valence regions. The
core regions remain unaffected. This change in the
anionic electron density is mainly determined by the radi-
al deformation of the outermost occupied orbital, it is al-
most independent of the interionic separation, and nearly
the same for analogous crystals.

In the new method, the bonding mechanism is a com-
bination of the orbital deformation just described and the
ion-lattice quantum-mechanical interaction. In the
binary systems considered, this mechanism raises the or-
bital energies of the cations and lowers those of the
anions. Furthermore, the lattice energy of the crystal can
be written as the sum of cationic and anionic binding
contributions, each one containing a deformation and an
interaction term. Our results show that although the
anions show larger orbital deformation, the cations give
larger contributions to the crystal binding.

Our computed lattice energies are in very good agree-

ment with the thermochemical data for the fluorides. In
other cases, they deviate as much as 30 kcal/mol. These
deviations are assigned to lack of electron correlation
and, to a minor extent, to insufficient variational freedom.

The orbital deformation upon crystal formation leads
to detectable changes, with respect to the free-ion
description, in those crystal properties mainly determined
by outer operators. The diamagnetic susceptibility is an
example of this type of observable. Properties deter-
mined by more internal operators, like the electronic
form factors, remain essentially unaffected.

Finally, the PI method has been applied to analyze in
more detail the cohesive properties of the NaF. In the
limit of zero pressure and temperature, we find an equi-
librium interionic distance 0.11 A larger than the ob-
served one and a bulk modulus within the experimental
range. The crystal response to the applied pressure seems
to be well described by the PI method up to 45 GPa.

It appears that the PI method, a TES-consistent cluster
model in which the emphasis is centered on the cluster-
lattice consistency and the quality of the cluster-lattice
interaction more than on the size of the cluster, is able to
give a reasonably accurate description of the bonding,
stability, equilibrium properties, and pressure response of
simple ionic crystals. We hope that the model could also
be useful in the study of more complicated systems. We
are presently exploring these applications and working on
the elimination of the two main limitations of the present
approach: the local-symmetry restriction on the active
center and the closed-shell structure of the lattice ions.
Removing of these two constraints should noticeably ex-
tend the domain of possible applications of the method.
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