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Influence of alloy disorder on the vibrational properties of Si/Ge superlattices
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A systematic study of the influence of disordered layers on the vibrational properties of Si/Ge su-
perlattices is presented. The formalism used allows us to calculate the phonon Green function in
the mixed representation for a superlattice with a general stacking of monolayers (presently along
the (001) axis). The disordered layers are described within the coherent-potential approximation.
Two arrangements of disordered layers in the superlattice are studied: thin interfacial alloy layers
representing a diffuse interface and a superlattice whose one component is the Si-Ge alloy. Drastic
suppression of superlattice quantum effects and the formation of modes induced by the alloy layers
are predicted in both cases. The results show the sensitivity of the phonon spectrum of the superlat-
tices to a long-range coherence of their chemical composition and to the perfection of their prepara-

tion.

I. INTRODUCTION

Superlattices (SL’s) are one of the modern alternatives
used in engineering device structures exhibiting low-
dimensional phenomena. The quantum effects character-
izing the SL systems arise from the change of material
properties at the interfaces of an alternating sequence of
heterojunctions. The behavior of the SL is determined
not only by the chemical composition of the layers, but
also by the layer thickness.

The dependence of the physical properties of the SL on
the atomic arrangement is most clearly visualized in the
spectrum of elementary excitations. Particularly pro-
nounced effects are observed in the vibrational spectra of
tetrahedral semiconductors. The reason for this is an
isoelectronic substitution which is characteristic of the
semiconductor SL. While the electronic structure is usu-
ally not changed very much, the phonon spectrum is
strongly affected by the substitution since the involved
atomic masses differ significantly in the isoelectronic
case. An important feature of the spectra is the appear-
ance of modes confined to only one component of the SL.
These modes have been predicted theoretically and also
observed by means of the Raman spectroscopy.' ™*

The large difference of the atomic masses makes the
phonon spectrum sensitive to the local bonding
configurations and to fluctuations of the chemical compo-
sition. A typical example is the three-mode behavior of
the phonon spectrum of Si-Ge alloys.® This raises an im-
portant question about the role of disordered (alloys) lay-
ers in the SL. The disordered layers are present not only
in superlattices in which an alloy is intentionally used as
one component of the SL, but always when the interfaces
are not sufficiently abrupt. The alloys layers introduce
their own spectral features. In addition, they destroy the
long-range coherence of the waves. As long as the ex-
istence of the quantum SL effects requires the waves
coherent over a region large compared with the SL
period, an intense disorder scattering is expected to modi-
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fy the behavior of the SL significantly. In the extreme
case of an annealed SL, this may lead to a relaxation of
all features specific to the SL, and the resulting SL spec-
trum then resembles a spectrum of the bulk alloy.

The influence of the alloy layers on both confined and
propagative modes in the SL has been theoretically inves-
tigated only recently.®’ The quantitative calculations us-
ing the recursive method were performed for the case of
the GaAs/(Ga,ADAs SL.® It was shown that the
confinement of some modes can be largely reduced by the
alloying. This unexpected feature was explained in con-
nection with the fact that the spectrum of the (Ga,ADAs
alloy has, in contrast to the spectrum of pure AlAs, an
overlap with the optical-phonon branches in GaAs.

In this paper we present a systematic study of the pho-
non spectrum of the (001) Si/Ge SL with various ar-
rangements of the disordered layers. The Si/Ge system
has been selected not only for its practical importance,
but also for its model character and simple short-range
nature of the covalent bonding forces in this material.
We develop a Green-function technique suitable for the
calculation of various projections of the phonon density
of states in superlattices with an arbitrary stacking se-
quence of monolayers. The Soven-Taylor coherent-
potential approximation® (CPA) is generalized to the
disordered layer structures and combined with an
efficient recurrent procedure for calculating the matrix
elements of the Green function. We also derive an ex-
pression for the averaged phonon spectral function. The
theoretical formalism is described in Sec. II. The follow-
ing results are discussed in Sec. III, which is divided into
three subsections. In Sec. III A we start with the case of
pure silicon and germanium crystals and with the Si/Ge
SL consisting of perfect crystalline slabs. The main re-
sults, concerning two different arrangements of disor-
dered layers in the Si/Ge SL, are presented in the other
two subsections, and compared with the reference data
obtained for the crystalline SL. In the first case, the
disordered layers form a diffuse interface between the Si
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and Ge slabs. The other arrangement corresponds to a
Si/Si-Ge SL, where the Si-Ge alloy is used as one of the
components of the SL.

II. THEORY

A. The model

We consider a general superlattice with alloy com-
ponents and graded interfaces. It is defined by the chemi-
cal composition of a sequence of monolayers (labeled by
i) along the SL axis, as specified by the concentration
profiles ¢y (i) of atomic species Q. In the periodic SL
considered here the function cy (/) is periodic with the SL
period.

The local atomic arrangement in such a SL deviates in
several respects from that found in the corresponding
crystals. The most important change is a formation of an
internal strain field due to the misfit of the lattice con-
stant of the materials used as the SL components. The
strain field may also be introduced by a partial ordering
in the alloy layers. Other deviations from the ideal local
atomic arrangement are caused by fluctuations of the
chemical composition in the alloy. All these aspects of
the atomic structure of a SL are reflected in the spectral
properties of SL’s, but we neglect them for the present
and assume a perfect underlying lattice. This approxima-
tion is reasonable in the case of Si-Ge systems where the
atomic masses of Si and Ge differ so much
(Mg, /Mg =2.6) that both SL- and disorder-induced
effects are caused mostly by the mass difference.

The phonon dispersion curves in the semiconductor
crystals are, on a semiempirical level, described best
within the bond-charge model.>!° It was shown that all
essential interactions of the model are of a very short
range for both Si and Ge; the remaining long-range part
originating from the Coulomb ion-bond charge forces is
unimportant.'® The model can be fitted quantitatively
well for simple crystals, but the transferability of its
several parameters to more complex structures (alloys,
amorphous semiconductors, and superlattices) is not
trivial. Only the short-range nature of the forces can be
assumed as long as the charge transfer between the atoms
is negligible. This allows us to use a simpler Born mod-
el,>!! which has been widely used to describe the vibra-
tional properties of disordered semiconductors. > !?

Under assumption only of the nearest-neighbor cou-
pling, the deformation energy in the Born model consists
of two terms:

3B
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These represent the central and noncentral (angular)
forces acting in the covalent semiconductor lattice. The
summation in Eq. (1) runs over all lattice sites I, I + A be-
ing one of four nearest neighbors of I. u,; is the displace-
ment vector of an atom I and r,(]) is a unit vector direct-
ed along its Ath bond.

In parametrizing our model we made a further
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FIG. 1. Phonon dispersion relations for germanium as calcu-
lated within the Born model (solid lines). The crosses indicate
experimental data from Ref. 13.

simplification by assuming the same force constants «,f3
for all Si—Si, Si—Ge, and Ge—Ge bonds. The similarity
of the force constants in both crystals results from similar
electronic structure and has been experimentally
justified.® This restriction lowers the possibility of fitting
the details of the dispersion relation in both Si and Ge,
but it overcomes the problem of parametrizing the force
constants in the alloy. The optimum values of the only
two parameters, « and [, of the model fitted to the
dispersion along the I'—-X direction in both pure crystals
area=51Nm~'and B=37Nm™"

Figure 1 shows the phonon dispersion relations of ger-
manium calculated for the Born model together with the
experimental results.!> It illustrates the basic features
and limitations of the simply parametrized model we use.
Although we assume the same force constants for both
Ge and Si, the width of the photon spectrum of each of
these two crystals is described reasonably well. The mod-
el is less satisfactory in those spectral regions where the
noncentral forces are important, especially for the (TA)
branch, as expected.'® The fit can be partly improved by
taking also the interactions between the next-nearest
neighbors, but the profit from this becomes doubtful at
the interfaces and particularly in the alloys.

B. Green functions

To calculate the phonon spectrum of the SL we use the
Green-function formalism. The central quantities
characterizing the spectrum are projected densities of
states (PDOS’s) which combine information about the en-
ergy distribution of modes and about their spatial behav-
ior. The PDOS’s are directly related to the diagonal ele-
ments of the Green-function matrix.

The dynamical behavior of the single-phonon processes
is described by two different kinds of Green functions.’
The displacement-displacement Green function G defined
as
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G=(Mo*—F)"! )

is related to the Raman and infrared-absorption spectra.
The diagonal matrix M contains the masses of the atoms
forming the SL, and F denotes the matrix of force con-
stants [second derivatives of the deformation energy V,
Eq. (1)]. o is the angular frequency. The normalized
density of the modes is determined by the displacement-
momentum Green function g,

g=20(e*—1—-D)7". 3)

where D=M'"2F M'/? denotes the dynamical matrix of
the system. The relation between these two Green func-
tions is

g=20M'*GM'"*. @

In the case of the SL containing disordered layers, the
physically meaningful quantities are the Green functions
averaged over all possible atomic configurations con-
sistent with the concentration profile c,(i). Assuming
that the disorder is homogeneous in the layers perpendic-
ular to the SL axis, the averaged Green function has the
symmetry of the underlying SL structure. This is impor-
tant because then the calculational procedure developed
for an ideal SL without disorder can be used also in the
case of disordered layers to obtain the averaged physical
quantities.

To describe the spectral properties of the SL, we use a
mixed representation which is natural for systems with
two-dimensional periodicity. @ We introduce two-
dimensional Bloch waves labeled by the wave vector
K =(k,,k,) and use the basis of Bloch waves also in the
case of an alloy. The transformation to the Bloch repre-
sentation is not done in the direction of the SL axis and
the use of the layer index i is retained. Because of the
periodicity in the layers (at least after the averaging) all
quantities of interest are diagonal in K, and for each K we
can decompose the spectrum into the contributions of in-
dividual layers i. Finally, we distinguish between the vi-
brations in different directions labeled by the Cartesian
coordinate pu of the atomic displacement vector. This
defined the projections we use.

The corresponding (K,i)-resolved densities of states
(DOS’s) n;(K,w) are related to the diagonal element of
the displacement-momentum Green function g [see Eq.
(3)]. In the general case we take the averaged Green
function so that

3

n,~(K,w)=;—7:Im 3 <g,-l“~#(K, a)+i0)> . (5)
=z

The factor } guarantees the normalization of the DOS to
unity and we use ¢ - - - ) to denote the averaged quanti-
ties.

The local DOS at the site I =(m,n,i) is related to the
local projection of the Green function in the same way.
The diagonal element of the Green function in the site
representation corresponding to an atomic site (m,n) in
the layer i can be constructed by the Fourier transforma-
tion. This reduces to the integration over the two-
dimensional Brillouin zone (BZ) in the case of the diago-

3771

nal elements,

_ d’K
glulu(w)— fBZ (2#)2g,‘u,‘#(K,CO) . (6)
81 1u(®) does not depend on the indices m,n. This re-
veals the two-dimensional homogeneity of the SL. An
analogous relation also holds for the displacement-
displacement Green function,

_r dXK
=1, G K, 0) . (7)

G lo) 2m)?

C. The layer-dependent CPA

In the case of SL’s with disordered layers we are in-
terested in the configurationally averaged Green func-
tion. To obtain this quantity we use the CPA approach
of Taylor® which can be applied to the alloys with pure
mass disorder. We have only to generalize the CPA to a
layer-dependent form appropriate for the inhomogeneous
SL structure and to perform the averaging of the matrix
elements of the Green-function diagonal in the mixed
rather than in the commonly used site representation.

In applying the CPA to the phonons it is important to
comment first on the different ways the mass disorder is
represented in the two Green functions G and g. The
dynamical matrix D in the definition (3) of g exhibits a
multiplicative two-center disorder. The problems con-
nected with the multiplicative disorder, or equivalently
with averaging the products of three random matrices in
Eq. (4), have been solved recently'* for the case of the
electronic structure. We proceed in the same way and
apply the CPA to the displacement-displacement Green
function G which is expressed in terms of the diagonal
mass matrix M. Only at the end of the calculation do we
transform (G ) into (g ) by using a modified Eq. (4).

The generalization of the CPA to the SL case is
straightforward. The distribution of atoms in the SL, ac-
cording to the arbitrary concentration profile cy (i), is as-
sumed homogeneous in each layer so that the averaged
Green function (G ) is diagonal in K. (G ) corresponds
to some effective SL with atomic masses replaced by
frequency-dependent complex coherent mass functions
M;,, (o) forming a block-diagonal coherent mass matrix
M w). They have to be determined self-consistently. In
contrast to the case of an isotropic bulk alloy, the
coherent masses are not the same for all lattice sites but
depend on the layer index i. This behavior reflects the
microscopic one-dimensional inhomogeneity of the SL.
It is important to note that even in the case of the
constant-concentration profile within the alloy slabs of
the Si/Si;_,Ge, SL the coherent-mass function in the al-
loy layers depends on the distance from the interface and
is not equal to the coherent-mass function of the bulk
Si;_,Ge, alloy. For those layers of the SL, where no
mass disorder is present, the coherent mass reduces to the
corresponding atomic mass.

Another feature connected with the anisotropy of the
SL is that the atoms in the effective SL are not character-
ized by a single mass function. At least longitudinal and
transverse masses must be distinguished. Generally, we
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have to consider (3X3) blocks formed by M;,, (). To
simplify the notation we drop the Cartesian indices u and
join the matrix elements differing only in u into blocks
M{(w). In what follows we shall use this block represen-
tation also for all other quantities.

With this convention, the averaged Green function can
be written as

(G;(K,0))={[M ()0~ E(K)] '}, , ®)

where F(K) is the appropriate projection of the force-
constant matrix F.

The CPA condition for the coherent mass M{(w) is
formulated in terms of the site-diagonal matrix elements
(G (w)) of the averaged Green function. For a site
I =(m,n,i) belonging to the layer i, this is obtained by
applying the Fourier transform [Eq. (7)]. We point out
again that (G;;(w)) does not depend on the actual posi-
tion of the site I but only on the layer index i. Now we
introduce an auxiliary function Q;(w). which describes
the influence of the surroundings of the vibrations of the
atom I (see Ref. 14), by writing the local Green functions
in the form

(Gy(w)=[M{)o*—Q,(0)] " . 9)

This form of { G, (w)) is particularly well suited for the
formulation of the CPA self-consistency condition.
Namely, if we fix an atom Q at site /, the corresponding
conditionally averaged local Green function { G§(®)) is

(GHw))=[M%*—Q(0)]". (10)

The CPA condition is that (G (w)) is just the averaged
value of (G§(w)):

(Gpl))= 3 co({GR(w)) . (11
Qo

Equations (8)-(11) together with (7) define the self-
consistent coherent-mass functions. They have to be
solved iteratively by calculating, in every step, the (K,i)
projections of the averaged Green function of the
effective SL and integrating them over the two-
dimensional Brillouin zone according to (7). In contrast
to the bulk alloy, the self-consistency must be carried out
for all nonequivalent layers of the SL.

The local densities of states n(I,w) are related to the
diagonal elements of the average displacement-
momentum Green function {g{®)), which can easily be
constructed as a weighted average of the “impurity”
Green functions { G§(w)) with the corresponding atomic
masses M <

n (1o)== 221m [ oM@ | a2
u

The problem of central importance is to obtain the
spectral properties defined in (K,w) space, reflecting the
macroscopic symmetry of the SL. As long as we are not
dealing with the site-diagonal elements, the averaged
Green-function matrix (g ) cannot be constructed from
(G ) in a simple way analogous to Eq. (12). The multipli-
cative form of the mass disorder in the dynamical matrix
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D which appears in the definition of g, however, makes it
possible to find an explicit relation between (g ) and (G )
within the CPA. This relation has recently been derived
for the electronic Hamiltonian.* The close analogy be-
tween the tight-binding Hamiltonian and the Born model
used in the present work allows us to write a matrix equa-
tion for the Green function (g ),

(g(0))=20[C0){G(0))C(w)+D(w)] . (13)

A derivation of Eq. (13) is given in the Appendix. The
matrices @ and D are diagonal in the site representation
and their matrix elements depend on the layer index i,

@"(“’)=MTI—M_B{ [MA—Mi)](MP)2
+IME—Mi(w) (M2, (14)
Dy0)= (MALZ:%B)I/Z [c ()M A+cp(i)M>
—Mf(w)]/0* . (15)

The diagonal elements of the matrix (g) in the mixed
representation, which determine the (K,i)-resolved DOS,
are obtained from (13) in the form

(g:(K,0)) =20[C,(0){G;(K,0))C/(0)+D;()] ,
(16)

where the two-dimensional Fourier transform was easily
performed since the matrix elements of ¢ and D are con-
stant within each layer.

D. Evaluation of the Green function

In this subsection we describe the method used to cal-
culate the matrix elements of the Green function in the
mixed representation [cf. Eq. (8)]. We state again that
the modes with different wave vectors K are completely
decoupled from one another because of the periodicity of
the (effective) SL. The three-dimensional problem
reduces to a set of one-dimensional chains labeled by K.
All chains representing a given SL have the same struc-
ture, schematically shown in Fig. 2(a), and are character-
ized by the same periodic sequence of atomic masses.
The inversion appearing at the right-hand side of Eq. (8)
can be straightforwardly done by using the large unit cell
of the SL. Such an approach to the CPA in the superlat-
tices was recently suggested by Ting and Chang.'> Their
formulation of the CPA involves the manipulation of
large matrices and simplifying approximations must be
used.

We do not follow this method but instead we combine
the CPA with the recursive procedure which takes ad-
vantage of the local nature of the mass disorder, and of
the finite range of the interactions between layers (nearest
neighbors in our case). The local properties of a mono-
layer are then determined by two factors: the forces act-
ing within the layer, and the influence of all other layers
which can be treated by using various dialects of the
“partitioning” technique. One possibility is to use the
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FIG. 2. Schematic representation of the calculational pro-
cedure (for details see text).

transfer-matrix method'®!” or the renormalized projec-
tions of the Hamiltonian.'®* We do not use such a re-
currence procedure in its simple form, but instead com-
bine it with the layer-doubling scheme!® which allows us
to reduce the computational effort in the case of a SL
with a long period.

To calculate the projections G,;(K,w) we proceed in
two steps. First, the SL is cut at an interface and the pro-
jections of the Green function on the surface layers (ter-
minal atoms of the chains) are calculated [see Fig. 2(b)].
The direction in which the semi-infinite chains are ter-
minated are symbolically labeled by / and r. The corre-
sponding surface Green functions are denoted by I'{; and
I'l,. For simplicity, we drop the arguments K and
where it does not lead to confusion. The surface Green
functions are calculated by a recursive procedure (cf. Ref.
19), and used in the second step to construct all matrix
elements G;;(K,w) layer by layer.

To calculate the surface Green function we apply argu-
ments similar to the Born—van Karman periodic bound-
ary conditions and imagine that the SL is defined on a
circle containing n periods [see Fig. 2(c)]. The cut SL is
then represented by finite chains. As long as the chains
are finite, both surfaces interact and we have to consider
also the matrix elements of the Green function connect-
ing both surface sites. Let us denote the projection of the
Green function onto the space spanned by both surface
sites of such a chain,

(m Tl

! Fl:ﬂ I“(n)
Wlth this notation, we have I'j;,=T, T}, =T{_,
I, =T{,,=0. To perform the limit n — c we use a re-

cursxon cycle in which two chains are connected to form
a longer chain, and the Green function I',, is renormal-
ized correspondingly. This is illustrated in Fig.2 (d).
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Let us assume that we have constructed a chain con-
taining one SL period. We now connect two of them to
form a chain two periods long, then four, etc. The pth
step represents a slab of 2” periods and the Green func-
tions converge rapidly. Also the first SL period, entering
the iteration process above, can be constructed in the
same way by sticking the chains which, in general, have
different thicknesses and different atomic compositions.

The first step of the procedure consists of constructing
a biatomic chain. The corresponding Green function is
given by

L= [

Here F"' and F'" are the projections of the force-constant
matrix F(K) and the atomic sites at the surfaces / and » of
the chain, and E’1=(El’)+ are the force constants between
them.

In deriving the stacking formula describing the renor-
malization of the Green function when two chains with n
and m layers are connected, we introduce the transition
matrix related to the coupling between the two chains.
The interaction V connects, say, the surface layer r of the
chain containing m atoms with the surface / of the chain
containing n atoms,

Q Elr
Er[ 0

(19)

The transition matrix T (,, , corresponding to the in-
teraction V is, according to the standard scattering
theory,

T(mn) Tlmn)
Lown=\gr 100 =Y(1-Lna¥)"", 0
with ‘
Ly 0
Coww=| o rr, @1

The renormalized surface Green functions are obtained
by solving the corresponding Dyson equations

(m+n) F(m)+F )T(mnrim)’
l—‘(m+n)_—r1m)T1r n)r(n) ’
1—\(m+n)—_21:1)lw(rm n)L(rm) ’
rd =Lt +rl

(m +n)

(22)

(m n)F(n)

The second step is the calculation of the diagonal ma-
trix elements of the Green function G, (K,w) from the
knowledge of surface Green functions '}, and T'};. This
is demonstrated for layer 1 [see Fig. 2(a)]. The partition-
ing to the matrix element G, (for each K) is given by

n=M 0*—F

—F 12252521_5 11£;15 11)“1 . (23)

Here F

E ;; denotes (3X3) submatrices of the force-
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constant matrix F(K) between layers i and j. The appli-
cation of Eq. (23) requires the knowledge of the surface
Green function I 4, belonging to the cut between layers 1
and 2. Using the partitioning again, we obtain an impli-
cit relation for L %),

-I:lllz(M 1‘02_.E n—F 22[32521);1 , (24)

which can easily be inverted. Equations (22) and (23) are
sufficient to calculate G ;;. To calculate G ,, we also need
the Green function:

L= 1“2_Ell_fn£qlfn)_l . (25)

Repeated application of the equations analogous to
(22)-(25) is used to calculate the matrix elements of the
Green function at all layers. The resulting (K, i)-resolved
DOS is given by Eq. (5).

III. RESULTS

A. The ideal Si/Ge superlattices

We investigate a symmetric {001 ) SL with a SL period
of 16 monolayers. The (K,i)-resolved DOS is calculated
at the I’ point of the two-dimensional Brillouin zone.
This point represents the projection of the dispersion re-
lation along the SL axis and is therefore well suited to
show the quantum effects arising from the SL periodicity.
The transverse and longitudinal modes decouple at this
point, and the linear-chain model can directly be applied
to the crystalline SL as done in Refs. 7, 19, and 20.

We start with the (K,i)-resolved DOS for pure silicon
and germanium crystals for K=(0,0). This quantity is
shown in Fig. 3. It can be obtained by integrating the
spectral function along the I'-X line in the three-
dimensional Brillouin zone (see Fig. 1). The spectra of

Transv.

.

Long.

Densi1ty of states

S 10 15
Frequency (THz)

FIG. 3. (K,i)-resolved density of vibrational states of Si
(dashed lines) and Ge (dotted lines) projected on the I" point of
the (001 )-layer Brillouin zone.
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the two materials are related one to another by a simple
scaling

nS(K,0)=nSK, (Mg, /Mg.)" *0) , (26)

and have a form typical for the one-dimensional bands
with sharp peaks at the band edges. The existence of two
sublattices is reflected in a down-folding of a longitudinal
band. The transverse modes form two separate bands:
the TA branch corresponds to the bond-bending vibra-
tions, the narrow (TO) band is formed by the stretching
modes.

Both materials are now combined to form an (8,8)
Si/Ge SL, (Sig)/(Geg). Figure 4 shows the corresponding
(K,i)-resolved DOS at all nonequivalent layers for both
transverse and longitudinal modes, respectively. In ac-
cordance with Ref. 19 we distinguish the spectral regions
of extended and confined modes. The extended modes,
belonging to the spectral range where the silicon and ger-
manium bands overlap, are characterized by the forma-
tion of minibands separated by small gaps. The
difference between the silicon and germanium spectra in-
creases with increasing frequency and this is reflected in
the decreasing dispersion of the minibands and in the
widening of the gaps between them. Most of the region
of the extended states can be described within a continu-
um approximation. %!

The confined modes have a very short penetration
depth into the barrier layers. They can be described by
standing waves inside the slab and are determined essen-
tially by the bulk properties of the corresponding materi-
al. The standing waves correspond to the wave vectors

Transv. Long.
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(0] Ge
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° % JL o
] . Ao
>
o % A Ge
° | e
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I }
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¥ 4 i A “
) vl
«MMJL J >
S l:) 15 5 10 15
Frequency (THz)
FIG. 4. (K,i)-resolved density of vibrational states of the

(8,8) (001) Si/Ge crystalline superlattice at K =(0,0)7 /a.



41 INFLUENCE OF ALLOY DISORDER ON THE VIBRATIONAL ...

T

k, ™
where d is the monolayer spacing and n is the number of
monolayers in the slab. The frequencies of these modes
are given by unfolding the wave vectors into the bulk fcc
Brillouin zone. This so-called “unfolded rule,”? predict-
ing the existence of five separated confined modes, is illus-
trated well for the LO modes in Fig. 4.

An abrupt Si/Ge interface is characterized by the
transverse interface mode at about 11.8 Thz.*!® It origi-
nates from the large change of the atomic masses at a
monolayer distance, and represents vibrations localized
mostly at the interfacial Si/Ge layers, with damped oscil-
lations penetrating into the silicon slab.

m=0,1,...,n/2 27

B. The disordered interface layer

We consider now a Si/Ge SL with a diffuse interface.
The SL is modeled by six Si and six Ge layers separated
by two interfacial alloy layers of composition Si, ,Ge, 4
and Sij 3Ge, 5, respectively. The (K,i)-resolved DOS for
such a SL is presented in Fig. 5. The results of the ideal
counterpart (Fig. 4) are also shown for selected layers for
comparison.

The effect of the disordered interfacial layers is
different for different kinds of modes. The transverse
modes are only slightly altered by the disorder scattering.
This behavior can be explained by the fact that the trans-
verse modes are determined largely by local symmetry
within the slabs; due to their extreme confinement they

Transwv. Long.
Ge i
N
—~\ L L o M .
| e L ,ﬁ;‘_“\gh

SiGe

N

‘M Si pa, "‘.' A g
-é [} AR

10 15

(K, i)-resolved DOS

Frequency (THz)

FIG. 5. The same as Fig. 4 for the (8,8) Si/Ge superlattice
with graded interface (see text). The results from Fig. 4 are in-
dicated at selected layers for comparison (dotted line).
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do not respond sensitively to the changes at the interface.
Apart from the disorder broadening, the frequency shift
of the confined TA modes is well described by a barrier
with a graded rather than steplike potential. A different
situation is found near the interface. We observe that the
interface mode survives, but its nature is modified.
Formerly a vibration of the interface layer, it is now a
collective vibration of number of layers in the interface
region. Also its frequency is changed. The result
confirms the conjecture that the true interface vibrations
are characteristic of an abrupt interface.

Longitudinal modes confined in the silicon slab fill a
wide spectral region and are strongly affected by the dis-
order at the interface. Figure 5 illustrates how much the
scattering of the confined modes by the disordered inter-
face relaxes the quantization which formerly lead to the
standing waves. The envelope of the layer-resolved spec-
trum resembles the spectrum of the pure crystals in Fig.
3. Additional small peaks, indicating the position of
quasiparticle standing-wave excitations, appear at fre-
quencies corresponding to a Si (10) slab. It is known
from the studies of the electronic structure that the grad-
ed interface with a linear dependence of the alloy compo-
sition exhibits confined states at nearly the same energies
as the SL with an abrupt interface and with slabs thicker
by about one-half of the interfacial region. We see that
this conclusion is not valid now: the peaks characteristic
for both Si (8) and Si (10) slabs are present, with reduced
intensity, in Fig. 4.

Generally speaking, the effect of the disordered interfa-
cial region can be understood as a reduced coherence of
the waves. This becomes particularly produced for the
optical modes and results in a relaxation of quantum
effects induced by the SL. The two components of the SL
then seem to be rather independent. The features related
to the local symmetry within the slabs dominate over
those induced by the SL, as demonstrated, e.g., by the ab-
sence of the first confined LO mode.

C. The alloy superlattice

The other case that we consider is the Si/Si-Ge SL
whose second component is the alloy. Such a SL has
great practical importance, since the alloy composition is
an additional free parameter controlling the properties of
the SL. It is interesting to contrast the vibrational spec-
trum of the alloy SL to the results obtained in the preced-
ing paragraphs. As a representative example we chose
the (Si)y/(Si sGe, 5)g SL assuming an abrupt interface be-
tween the silicon and alloy slabs. The continuous spec-
trum of (damped) excitations in the Sij sGe, 5 alloy ex-
tends over almost the whole silicon spectrum. The over-
lap between the Sij sGe, 5 spectrum and the bands of pure
Si is therefore larger than for Ge and Si, and this makes
the alloy layers “transparent” for the siliconlike excita-
tions. The nature of the modes in this region depends on
the localization of these modes in the alloy as well as on
the thickness of the alloy slab.

Figure 6 shows the (K,i)-resolved spectrum of the su-
perlattice. Again, the results for the reference Si/Ge SL
are indicated by dashed lines. Comparing the behavior of
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the transverse modes in silicon for both cases, we find a
pronounced similarity in accordance with the arguments
presented before. It is interesting to comment on the in-
terfacial mode. It appears at the same frequency as for
the Si/Ge SL, but does not show the characteristic peaks
in the silicon slab. There are, however, small peaks in the
alloy slab. We conclude from this that the interfacial
mode has now a nature of an alloy mode, induced by the
presence of adjacent pure-silicon layers. It is important
to note that this mode will be, in reality, overlapped by a
large density of local Si/Ge modes characteristic for the
alloy, >?? but not accounted for in the present CPA calcu-
lations.

The behavior of the confined longitudinal modes de-
pends on the frequency domains. In the middle of the
range of the confined modes, approximately at 11.5-13
THz, the peaks corresponding to the standing waves in
the Si/Ge SL are observed. In this region the quasiparti-
cle excitations in the alloy are strongly damped. The al-
loy acts as a barrier, i.e., it has a similar role as Ge in the
Si/Ge SL. The disorder scattering of the modes is
reflected by the broadening of the peaks.

Near the germanium and silicon spectral bounds, on
the other hand, the isolated peaks disappear and features
resembling the minibands are found around the positions
of the first and fourth confined LO modes. These modes
reflect the “transparency” of the alloy layers to the sil-
iconlike excitations predicted in Refs. 6 and 7.

At highest frequencies, namely above the edge of the
continuous spectrum of the alloy, the true confined
modes are formed. They have been observed in the Ra-
man experiments.*
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IV. CONCLUSIONS

We studied the influence of the disordered layers on
the phonon spectrum in the silicon-based superlattices.
The disorder in the alloy layers was described within the
CPA generalized to the inhomogeneous SL structure and
combined with an efficient scheme for calculating the di-
agonal elements of the Green function. In contrast to all
previous CPA calculations, we were able to obtain not
only the averaged local densities of states, but also the
averaged spectral functions defined in the mixed (K,i)
representation.

The calculations are based on the Born model as the
simplest approximation for the lattice vibrations in
homopolar covalent materials. The calculational
method, however, does not depend on this choice and can
easily be used also for more sophisticated short-range in-
teraction models. The applicability of the method is also
not restricted to the case of the simplified geometry of the
SL which we used (neglected internal strains).

The application of our method to a crystalline Si/Ge
SL with an abrupt interface reproduces well results ob-
tained by other approaches.!’ In particular, we found
standing wavelike excitations that are strongly confined
because of the large difference between the atomic masses
of Si and Ge. A local mode of Si—Ge vibrations was ob-
tained at the abrupt interface.

Important novel features were obtained in the case of
SL’s containing disordered layers. The standing-wave ex-
citations, typical for the SL arrangement, disappear in
the presence of even a small number of disordered layers
in the SL with diffuse interfaces. Individual slabs are
then effectively decoupled one from another. This
confirms the fact that the formation of quantum effects in
SL requires abrupt interfaces and the coherence of the
waves along the SL axis.

Two effects are found in the case when the alloy is used
as one component of the SL. In regions of strong scatter-
ing and low penetration depth into the alloy, the alloy
acts as a barrier for the siliconlike excitations. Near the
bounds of the confined modes, on the other hand, the
“transparency”®’ of the alloy to the siliconlike excita-
tions is reflected in a series of localized modes, but with
the DOS similar to a miniband.

When comparing the results with the Raman spectra,*
it should be stressed that in this case the actual atomic
positions and the incorporation of the strain field may be
important. Therefore, we do not expect that the spectral
densities presented here reproduce all details of the actual
spectral distribution. This is partly connected with the
limitation of the CPA as a single-site approximation. It
described appropriately the damping of the Bloch waves
in the alloy and the effects connected with the formation
of the Si/Si-Ge SL, i.e., the features induced by alterna-
tion of the silicon and alloy layers. On the other hand,
the CPA is not well suited to describe the local modes
due to the specific bonding configuration even in the bulk
alloy which exhibits a three-mode behavior.>?> To
reproduce these features of the DOS in the alloy layers,
cluster corrections have to be included. The structure of
the DOS related to the modes at the local atomic
configurations superimpose over the superlattice spec-
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trum calculated within the CPA. This differential effect
can be estimated quantitatively just by comparing the
CPA calculations with the results of the cluster calcula-
tions.>!2 The role of the internal strain could be estimat-
ed in the same way.

APPENDIX

It has already been stated in the text that the structure
and the transformation [see Eq. (4)] between the phonon
Green functions g and G is very similar to that of the
Green function g and the auxiliary resolvent G studied in
Ref. 14. In fact, only the analytical properties of the
resolvents and the Dyson equation have been used to
derive the relationship between both matrices averaged
within the CPA. The steps taken in Ref. 14 can be re-
peated for the case of the phonon Green functions by
making the following substitutions:

Wy—D,

W—FE,,

D—E,,

a—sM"V?,
L(z)—>L(w,i)=(Mw*—F,),
L(z)>L(w,i)=(M©*~F ),
A—>(MA-MP)»? .

In the case of the SL the locator L(w,i), as well as the
masses of the alloy components, is dependent on the layer
index i. The final expression of Ref. 14 can be rewritten
for the phonon case by using projection operators P, (i)
selecting the uth Cartesian coordinate of displacements

in the layer i (all other symbols have the same meaning as
in Ref. 14):

(g(@))=3 3 C, (P, (){G(x))P,(j)CL))
Lj v

+D,(i)P, (18,8

ijOpv (A2)

where we introduced diagonal matrices ¢ and 2 with the
matrix elements

€= (MO ALAD] T (L, 0] )

—(MNVHILEO] = [LD]T]) . (A3
(M )1/2_(M )]/2 2
#i)=[ = = 2 ]gcAm[ymr‘
+eg(D[LEH]!
—[LO171} . (A4)

The matrix notation introduced here replaces the summa-
tion used in Ref. 14. The explicit expression in Egs.
(13)=(15) is derived by using the relations (A1).

The site-diagonal elements of {g) appearing in Eq.
(12) for the local DOS are obtained from (A2) by using
the CPA equations in the form [we correct a misprint in
Eq. (28) of Ref. 14]

(gr(w))=3 co(OMAL+ {[LAN] "' —[L ()]}
Qo

X(Q 1[(60)))_1<Q [1((0)) .
(A5)

The term in curly braces is rewritten by using Egs. (9)
and (10) and the final form presented in (12) is obtained.
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