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KSect of biaxial strain on acceptor-level energies
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Biaxial compressive strain produced in pseudomorphic epitaxy is known to alter the valence-band
structure considerably. A theoretical formalism is presented to study the consequences of strain on
carrier masses and hydrogenic acceptor levels in quantum wells. Using a nonvariational numerical
method, we calculate the acceptor binding energy in an Al„Gal „As/In~Gal ~As quantum well as
a function of indium content and position of the acceptor impurity in the well. The acceptor-level
energy is found to be a strong function of strain and could be used as a signature to study the
valence-band structure.

I. INTRODUCTION II. THEORETICAL FORMALISM

The effect of strain on the electronic band structure of
semiconductors has been an area of intense research for
several years. Recently, this area has attracted consider-
able renewed interest due to the ability to epitaxially
grow lattice-mismatched layers. Theoretical and experi-
mental studies show that if a material with bulk lattice
constant uL is grown as a thin film on a thick substrate of
different lattice constant a„ the film will grow pseu-
domorphically up to a critical thickness above which lat-
tice coherence will be lost with dislocation generation. '

In the pseudomorphic regime, the in-plane lattice con-
stant of the overlayer is the same as that of the substrate
while the perpendicular lattice constant adjusts via the
Poisson effect producing a built-in strain. A consequence
of this strain is the change in the band structure and car-
rier masses accompanied by degeneracy lifting at certain
points. In particular, the valence band is dramatically
affected, especially near the band edges. These changes
are reflected in lowering of the hole masses in biaxial
compressively strained quantum wells. The improved
hole properties in strained quantum wells are useful for
electronic and optical devices. At present there have
been no studies of acceptor levels in the strained quantum
well, although work on lattice-matched quantum wells
has been reported.

In this paper we will examine the effect
of biaxial strain on hydrogenic acceptor levels in
A1~Ga& „As/InyGa, yAs quantum wells. In Sec. II we
present a nonvariational numerical technique which al-
lows us to solve the acceptor problem in arbitrary
quantum-well profiles as a function of strain and dopant
position in the well. We present the results of our calcu-
lations in Sec. III. In particular, we show that acceptor-
level energies can be an important guide to the valence-
band structure in strained quantum wells and we con-
clude in Sec. IV.

In this section we discuss the effect of strain on the
valence-band structure of a pseudomorphically strained
quantum well. The acceptor-level problem is also dis-
cussed and its solution via a nonvariational numerical
technique is presented.

A. Eft'ect of strain on quantum-well band structure

In bulk III-V compound semiconductors the top of the
valence band is fourfold degenerate and at the Brillouin-
zone center the eigenstates have pure angular momentum
character corresponding to

~
—,', +—,') heavy-hole (hh} and

~
—,', +—,

' ) light-hole (lh) states. In GaAs the split-off band

(~ —,', +—,')) is far enough removed that its effect on most
hole-related properties can be ignored. To describe the
valence-band structure in quantum wells, it is important
to retain the mixing of hh and lh states since the states
mix very strongly away from k=0. We choose to de-
scribe the valence-band states via the degenerate k-p for-
malism which accurately accounts for the mixing. In
this the hole state

~
m, k ) is given by

Ik-P~

(r„~m, k) = '
Xg (k zt }Uo(rh )

V

where k is the in-plane two-dimensional wave vector, p&
is the in-plane radial coordinate, zz is the coordinate in
the growth direction, the Uo are the zone-center Bloch
functions having spin symmetry v, and m is a subband in-
dex. The envelope functions g" (k, zh) and subband ener-
gies E (k} satisfy
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Here 5 is the separation of the hh and lh states in a bulk
material due to the strain. For the In Ga, As system it
is given by 5= —5.966@., where c, is the lattice mismatch
between the well and the Al„Ga1,As barrier. Note
that the functions g'(k, zl, ) depend on k as well as zl, and
that the energy bands are not, in general, parabolic. The
matrix entries in Eq. (2) are given by

(k.'+ k,')(r 1+r2) —(r 1
—2y2)

pair states. In Fig. 3 we show the two degenerate states
of the first light-hole band (lhl). Again, the probability
density changes dramatically with k and there is also a
substantial asymmetry between the two degenerate states.
The sharp change in the functions at k =0.10/A reflects
the crossing of the hhl and lhl bands in Fig. 1(a). For
higher-order subbands, the qualitative change in the wave
functions with k and the asymmetry between degenerate
states is even more extreme. We will show below that

+ V"(zs ),

H 1h
mo

a2
(k2+ky2)(yl-y2)-(yl+2y2)

2
Bzh

-0.65—

L

+ V"(zs ),
c = — [y2(k„—ky ) 2i y3k„—kY ],v/3a2

2mp

(4)
-0.74—

~g) —0.83—

(3
0-
CL
LLJ -0.92—
LLJ

where m p is the free-electron mass, V" is the potential
profile for the hole, and for GaAs y 1

=6.85 pz =2. 1, and

y 3
=2.9.
We solve Eq. (2) by writing it in finite difference form

and diagonalizing the resulting matrix to obtain the in-
plane band structure. Figure 1 shows the [100] band
structure for a 100 A quantum well confined by
Alp 3Gap 7As. The well region is lattice matched GaAs
for Fig. 1(a) and Ino 2Gao sAs for Fig. 1(b); all the bands
are doubly degenerate. The effect of the strain is evident
in the sharper curvature at the zone center in Fig. 1(b).
Away from the zone center, though, the curvatures are
similar for the strained and unstrained cases. As a result,
the change in the acceptor-level energy is not as great as
the change in the near-band-edge hole mass, since the ac-
ceptor is made up of states from all k, while the effective
mass reflects only the curvature of the bands near the
zone center.

In Figs. 2 and 3 we plot the probability density func-
tion g ~g" (k, zz ) ~

as a function of k and z& with k along
the [100] direction for a 100-A GaAs quantum well
confined by Ala 3Ga 7As. Figures 2(a) and 2(b) corre-
spond to the two different eigenfunctions of the doubly
degenerate energies. Figure 2 shows the form of the
probability density for the two spin-degenerate states of
the first heavy-hole band (hhl). We see that there is a
significant change in the functions as k changes and that
there is also a slight asymmetry between the two spin-
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FIG. 1 . Valence-band structure in a 100-A (a) GaAs/

A)Q 3GaQ, As and (b) In() 2GaQ gAs/AIQ 3GaQ 7As quantum well.
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'

y- ole interaction into account,

& m, k~ V~m, k

dzh "'(k zgm, zz )g~ (k', zz ) V(k —k'
V

z ' ', „—;z,,z„, (7)

where
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the full Hamiltonian H becomes

H=H +V,
E . (7).Coulomb potential described by q.

l%) d i E tTo get the acceptor states 4 an ene
solve

&l~&=ale&

To do this, we expand l
4 ) as

l~)=y fdklm, k)F.(k .

e the hole probability density functionoccurs since t e o e
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equation
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FIG. 6. hh1 acceptor-level binding energy as a function
of well width in a GaAs/Ala 3Gao 7As (solid curve) and
Ino 2Gao SAs/A10 3Gao 7As (dotted curve) quantum we11 with the
impurity at the center. Experimental points are from Ref. 9.

FIG. 7. hh1 acceptor-level binding energy as a function of In
content (y) in a 100-A In~Ga, „As/Alo, Gao 7As quantum well
with the impurity at the center.

in the envelope functions shown in Figs. 2 and 3. As the
impurity is moved from the center of the quantum well,
inversion symmetry is lost and its potential couples more
strongly to one of the degenerate states and less strongly
to the other, depending on which side of the well the im-
purity is placed in. Of course, the splitting is reversed if
the impurity is moved to the other side of the well. This
effect cannot be noticed if we make the zone-center ap-
proximation that g„g"'(k,zi, )g" (k', zz ) =g„~g" (O, z~ )

~

as other authors have done when solving k-space equa-
tions variationally. Hence, we see a qualitative difference
between variational and numerical solutions.

Figure 5 shows the real-space probability density func-
tion for the upper energy hh1 acceptor state for a 100-A
GaAs/Alo 3Gao ~As quantum well with the impurity
placed at (a) the center (z =0) and (b) the edge (z = —50
A} of the quantum well. We see that the wave-function
shifts to the side of the well and extends farther in p„as
the dopant is moved to the edge of the well. This change
in the zz dependence of the acceptor-level wave function
comes from the variation with k of the envelope func-
tions and from the mixing in of higher-order m states.
Hence, it is essential to include the coupling between
states IAm' in Eq. (13) in order to accurately compute
the wave function. If the zone-center and uncoupled-
subband approximations are made, the zI, dependence
will be the same for all dopant positions.

Figure 6 shows the hh1 acceptor-level binding energy
for an on-center impurity in a GaAs (solid curve) and
Ino zGao sAs (dotted curve) quantum well bounded by
A103Gao7As as a function of well size. Experimental
points from Ref. 9 are also plotted for the lattice-matched
curve and we see good agreement. Finally, in Fig. 7 we
show the effect of strain (In composition) on the hhl ac-
ceptor state in a 100-A In Ga, As well as a function of
y with the dopant in the center. Note that the acceptor-
level energy is significantly afFected by the strain and can
be used as an important signature to characterize the
valence-band structure in a strained well.

IV. CONCLUSIONS
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APPENDIX: NONVARIATIONAL NUMERICAL
SOLUTION TO THE EIGENVALUE EQUATION

To solve Eq. (13) we first make the assumption that the
hole energies and envelope functions depend only on k;
thus we expect that the I' (k) will depend only on the
magnitude of k. In addition, we note from Eq. (8) that
our potential V(k —k', z;,zz ) depends only on ~k —k'~, so
we write V(~k —k'~;z;, zz):—V(k —k', z;,zh} and choose
our coordinate system so that

~k
—k'~ =[k +(k') —2kk'cos8]'~ (A 1)

With these approximations we can simplify Eq. (13) to

In this paper we have addressed the problem of
acceptor-level binding energies in pseudomorphically
strained In Ga, As/Al„Ga, „As quantum wells. The
acceptor-level energies show a sharp decrease as the
strain in the system increases. We note that the decrease
is due to the biaxial strain and not due to the addition of
In. Although several experimental groups have focused
on hole masses in strained quantum wells, the acceptor
levels have not been probed. Our studies show that the
effect of strain on the acceptor binding energies is quite
large and could be used quite efFectively to probe the
valence-band structure in these strained wells.
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g f dk' k' f d 8fdz„g g "'(k,z„)g".(k', z„)V[ [k'+ (k') —2kk'cos8]';z, ,z„ I F (k')
0 0

=[E—E (k)]F (k) . (A2)

We have now reduced the problem to a one-dimensional integral eigenvalue problem, but this is not the most con-
venient form for numerical treatment. To solve Eq. (A2), we symmetrize the integral kernel by multiplying Eq. (A2) by
&k and setting

R (k)=&kF (k) . (A3)

This transformation gives the integral equation

dk'h .(k, k')R (k')=[E —E (k)]R (k),
m

where the Hermitian kernel is given by

h (k, k')= &—kk'f d8f dzh gg"(k, zh)g' (k', z(, )VI[k +(k') —2kk'cos8]'~;z;, zz) .
0

(A4)

(A5)

We solve Eq. (A4) by breaking up the k axis up into discrete intervals of width hk and by assuming that h .(k, k )

and R (k) are constant over each interval. This discretization yields a Hermitian matrix which we diagonalize to get
the eigenvalue E and the eigenvector R (k). We see from Eq. (8), however, that the bare Coulomb potential
V(k —k;z, ,zh) is singular at k=k. Since the ~k —k

~
singularity occurs in two dimensions, though, it is integrable

and Eq. (A4) has well-defined solutions. To find these solutions by a discretization of Eq. (A4}, we must treat the inter-
val where k =k' carefully. Instead of approximating h .(k, k'} on this interval by its k =k' value, we must integrate
the singularity and use the average value

h, (k, k)—: f dk'h (k, k')
Ak k —(hk/2)

[k +(k') —2kk'cos8] ~zg z/f

= ' fdz, yg."(k, , )g."(k, ~) f dk'«k'f d8
2me " ' " ' " hk ( (a( ni — 0 [k +(k') —2kk'cos8]'

(A6)

We are interested in the two inner integrals

[k +(k') —2kk'cos8] ~z,.
—

z& ~

b« (~1 ni o [k-'+(k')' —2kk'cos8]' ' (A7)

Note that the region of integration used to define I is an annulus in the k plane of thickness b,k and radius k. Since the
integrand in Eq. (A7} is only singular when k =k' and 8=0, we choose a small enough b.8 such that the singularity is
confined to the region where —58 ~ 8 68; the precise meaning of this will be made clear later. We then write I as

[k +(k') —2kk'cos8] ~z,.
—

z& ~

+(a ~ 'dk'&kk' ~ed8
b,k I —(al n( ae [k~+(k')z —2kk'cos8]'

[k +(k') —2kk'cos8] tz,. —z& i

dk'&kk' d 8 (A8)
Ak k —(hk/2) [k~+ (k')z —2kk'cos8]'

Since 68 is small and the region of integration on the k
axis is small, we assume k=k' everywhere in the first
term of Eq. (A8) to get

(k +k —2kk cos8) ~z —
z& j

&kk d8
(k +k —2kkcos8)'

(A9)

Now the singularity is confined to the region of integra-
tion in the second term of Eq. (A8} which we denote by
D; note that D is shaped like a polar volume element.
Since 68 is small, the area A of this region D is approxi-
mately the area of a polar volume element (d A =r dr d 8)
so that we have (r~k, dr ~5k, d 8~2 68)

A =2k hk 60. (A 10)

Now since 58 was chosen very sma11, our region D looks
almost like a rectangle with height 2k 50 and width hk;
we choose this rectangle to be a square so we set

2k 58=6k 60= 5k
2k

(A 1 1)

Thus, given a small step size Ak and a particular value of
k, a small 58 is determined. We are still faced with the
problem of evaluating the second term of Eq. (A8),
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[k +{k') —2kk'cos8] ~z,. —z& ~"+'~"
~dk /kk d8

5k k —(b,k/2) —ae [k~+(k'}2—2kk'cos8]'~
(A12)

To do this, we first approximate k =k' everywhere but in the denominator and assume that the exponential factor
changes little from its k =k', 0=0 value of 1. This gives

dk'&k'k' d 8 [k'+(k'}'—2kk'cos8]'"
1 k, 1 (A13)

To evaluate the integral in Eq. (A13) we approximate the region D by a disk D of radius ri centered at the point where
k =k' and having the same area as D. Thus we choose g so that

(A14)

where Eq. (Al 1) was used. We now approximate1, 1 1, 1
(A15)

We have made this approximation as good as possible by choosing the region D to be squarelike, thereby making its
shape as much like a circle as any polar volume element shaped region can be. Finally, we shift to local coordinates by
setting u —=k —k'. We can then evaluate the integral over D' as

(A16}

Thus we have now evaluated

which we can use to evaluate

[k +k —2kk cos8] jz, —
z& i

[k +k —2kk cos8]'
(A17)

2

h~~ (k, k)= f dz& gg '~(k, z )gi~(k, zi, )I(k;z;,zi, ) .
27TE

(A18)

This method gives excellent agreement with analytic solutions when it is applied to two- and three-dimensional hy-
drogen atoms. Therefore, since the two-dimensional hydrogen atom has the same ~k —k

~
singularity as Eq. (7), we

expect the method to give accurate solutions to the acceptor problem.
After we solve Eq. (A4) for R (k), we can use Eqs. (12) and (A3) to get the real-space probability density function

P(ri, ). It is given by

P(ri, )—:(4~5(r —ri, )~'P) = g fdkF'(k) g fdk'F (k')/m, k~5(r —ri, )~m', k')
m m'

=f dk k J&(kp& )f dk'&k'Jo(k'pi, ) g R '(k) g R .(k') gg"'(k, zh )g" (k', zi, ) .
m'

where Jo is the zeroth-order Bessel function and the angular integrals were evaluated with the aid of Ref. 10.

(A19)
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