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Thermal instability of the trans-polyacetylene polaron
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The trans-polyacetylene polaron decays to a kink-antikink pair {because of the greater entropy of
the latter state) at a temperature which vanishes as the length L of the chain goes to infinity, ap-

0

proximately as 1/lnL. For a typical length of L —10 —10' A, the corresponding temperature is

10 -10 K.

I. INTRODUCTION

This work was motivated by the observation that the
polaron' of polyacetylene theory is not a solution of
the Ginzburg-Landau (GL) equation. Recall that po-
lyacetylene theory (continuum version) is formally almost
identical to BCS theory. ' The hyperbolic-tangent order
parameter of the kink solutions of the Bogoliubov equa-
tions of BCS theory and polyacetylene theory is also a
solution of the GL equation (to which BCS theory
reduces in the limit T~T, ).

The polyacetylene kink has a trivial temperature be-
havior (as shown by Takayama, Lin-Liu, and Maki ), for
the kink is robust: at T =0, it is self-consistent regardless
of the occupation of the midgap state; more importantly,
the kink links two degenerate states, and must exist at all
temperatures in the ordered state, since it can be enforced
by topology. On the other hand, the polyacetylene pola-
ron is fragile, and its existence at T & 0 is not so obvious.
First, it is not enforced by topology, and it is therefore
not required to exist at all T. Second, its self-consistency
depends crucially on the occupation of the two bound
states; at T =0, the upper must be singly occupied and
the lower doubly (or the upper empty and the lower sing-
ly occupied), and so nonzero temperature may disrupt the
polaron. The conclusion that the polaron disappears
with increasing temperature is confirmed below.

Section II reviews results of the continuum, quasiclas-
sical theory for the single-particle energies. In Sec. III,
the free energy is calculated as a function of temperature
T for a chain of length L =N, a; N, is the number of ions
(an even number) and a is the ionic spacing in the undi-
merized state. The number of electrons %, is one greater
than the number of ions (X, =X, + 1 }; because of the
particle-hole symmetry, our results apply also when the
number of electrons is one fewer than the number of ions.
At T=O, the polaron state is self-consistent and has
lower energy than both the homogeneous and kink-
antikink states. ' We show that the polaron solution
remains self-consistent at nonzero T. Using an approxi-
mate expression for the positional and motiona1 contribu-
tion of the solitons to the free energy, we find that, as T

increases from 0, the free energy of the polaron (P) state
increases relative to that of the kink-antikink (EK) state
and eventually passes above the latter, essentially because
the P state has only one soliton to the EE state's two.
The temperature at which the P state becomes metastable
with respect to the EK state vanishes in the limit of
infinite chain length, approximately as 1/1nL. Section IV
discusses approximations and related work.

II. SINGLE-PARTICLE ENERGIES

gg„=2%;.
E„

(2.1)

Our formalism and approximations (the ions are stat-
ic, and are treated classically; electron-electron interac-
tions and interchain coupling are neglected) are standard.
The electrons move in the potential energy
V(x) =26,(x)cos(Qx) created by the displacements of the
ions from their undimerized positions; the wave number

Q is tr/a, and the Fermi velocity is uF =fiQ/(2m ). The
energy eigenvalues c and E of the Schrodinger and Bogo-
liubov equations (the former is solved in the quasiclassi-
cal approximation) are related by E= s —so, where
so=fi (Q/2) /(2m) is the midgap energy. Periodic
boundary conditions (rather than the Dirichlet conditions
used in Ref. 8 to determine the origin of the midgap state}
are applied. The number of ions X; is even; otherwise
periodic boundary conditions force a kink into the sys-
tem.

The calculation of the free energy for the three states,
the homogeneous (uniformly dimerized or D), polaron
(P), and kink-antikink (KE) states requires the single-
particle energies E„andthe degeneracy factors g„.Table
I gives the scattering-state results for the D and P states;
two cases must be distinguished, whether the number of
ions is divisible by 4 (X;=4%') or not (N, =4JV+2).
Sums over states are cut off at low energy (because the
quasiclassical energies have no lower bound) and at high
energy, the latter to maintain particle-hole symmetry,
and also so that the "band" (the conduction and valence
bands plus any bound states in the gap) can hold exactly
2X, electrons; the sum over degeneracy factors is
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TABLE I. Scattering state energies E„anddegeneracy factors g„,with E„=2 [60+(h'vF k„)']'~'.

Uniformly dimerized state; N, =4JV:
k„=2nm./L for n =0, 1,2, . . . , JV

gp=2; g„=4for n =1,2, . . . , (JV'—1); g~=2

Uniformly dimerized state; X;=4JV'+2:
k„=(2n+1)m./L for n=0, 1,2, . . . , JV
g„=4for n =0, 1,2, . . . , (JV—1); g~=2

Polaron state; N, =4%':
k„L=2nm. —2arctan(~/k„) for n =1,2, . . . , JV
g„=4for n=1, 2, . . . , {JV—1); g~=2

Polaron state; N, =4JV+2:
k„L= (2n + 1)m —2 arctan(z/k„) for n =0, 1,2, . . . , JV

gp 2 g 4 for n =1,2, . . . , (JV—1); g~=2

(a) Homogeneous state: h(x)=b, o, independent of x
[including the undimerized state with 6(x)=0]. There
are no bound states.

(b) Polaron state: '
F=Fe] +Fjoll (3.1)

The electronic contribution F,~
is found from

F,~

= U, &

—TS,~, where

b (x)=bo RuFa[—t+ (x) t —(x)], (2.2) Uei=XgnfnE (3.2a)

where t~(x)=tanh[a(x+X)] and the parameters ho, a.,
and X are related by

E„

S,i
= —kiig g„[f„lnf„+(1f„)ln(1—f„)];—(3.2b)

tanh(2aX) =fiuFi~/bo . (2.3)

Bound states: The energies are +Ez, where
Eii =[ho —(iiiuF~) ]'; the degeneracy factor is 2 for
each state. The Bogoliubov functions u(x} and u(x) are

u( )x= [a1/c (+)x+i sgn(E)/c (x)],
u(x) =a[i /c+ (x)+sgn(E}/c (x)],

(2.4)

u (x)=Se'""[I —C t+ (x)+C' t (x)],
u(x}=Ve'"'[1 —C+ t+ (x}+C+t (x)];

the constants Q, V, and C+ are given by

'M=(1+fiuFk/E)'~ A

V=(1 A'uFk/E)'~ sg—n(E)A,

C+ =a( RuF k+E —id o) I(2k b o) .

The normalization constant A is found from

iAi =k W/[2L(k +ir )],
where W is a correction factor for the finite length:

W= [1 2al[L(k —+a.)]].

(2.5)

(2.6)

(2.7)

(2.8)

the normalization condition for both bound and scatter-
ing states is

f [iu„(x)i'+iu„(x)i']dx=1 . (2.9)

where c+(x)=cosh[i'(x+X)]; these are normalized if

Scattering states: The Bogoliubov functions u (x) and
u(x) are

here f„=[exp[P(E„—p)]+ 1j ' is the Fermi function
and p is the chemical potential relative to the midgap en-
ergy. The dependence on the order parameter A(x) is
through the energy eigenvalues E„(and the degeneracy
factors g„}.Omitting a term which vanishes due to the
particle-hole symmetry of the model, one finds

F,i=+g„((f„—I/2)p ks T lnI2—cosh[P(E„—p)/2]I ) .
E„

(3.3)

The calculation of the ionic contribution to the free en-

ergy is more difficult. The sine-Gordon model was inves-
tigated in Refs. 9 and 10, but we know of no similar treat-
ment of the trans-polyacetylene model, which is less sim-
ple. We approximate F;,„as

F;,„=A ' f6 (x)dx k&TN, ln(LI—A,, ) .

The first term is the ion-ion interaction, and the second
comes from the thermal motion and positional entropy of
the N, solitons. We ignore both the thermal motion of
the iona and soliton-soliton interactions. In the second
term, k, is the thermal de Broglie wavelength of the soli-
ton: A,, =h /(2irm, kit T)' with m, the mass of the soli-
ton; the expression is valid at thermal energies large com-
pared to the spacing of the single-soliton energy levels
[ks T ))(iriir/L ) Im, ]. Because of the approximations,
the above expression is a poor approximation for the ion-
ic contribution to the free energy, but the errors largely
cancel on calculating differences in free energies. The
ion-ion interaction energy for the homogeneous, polaron,
and kink-antikink states is, respectively,

A 'f 6 (x)dx
(c) Kink-antikink state: The energies and degeneracy

factors for the state are found from the polaron results
given above and in Table I by setting AvF~= hp.

III. FREE ENERGY

vrkuF b,oN, b,oN;
X

A 4cp
'

4cp

16~a Eo b,oN

4&p

4hp

(3.&)

The free energy is split into electronic and ionic contri-
butions:

The free energy is to be minimized with respect to any
variational parameters (b,o, for example) in the order pa-
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rameter b (x }, subject to the constraint on the number of
electrons (which determines the chemical potential):

gg„f„=N,.
E„

(3.6)

Self-consistency of the polaron at T)0: The parame-
ters Ap and K of the polaron solution are found variation-
ally; the equations r}F/r}ho=0 and BF/Bii=0 are

2 " gnfn gnfn

n n

g„f„a ~ g„f„k„W„
n n

(3.7a)

(3.7b)

where the sums are over the bound (b) and scattering (s)
states. On the other hand, the self-consistency equation

2b(x)/A= —g g„f„[u„(x)u„'(x)+c.c. ] (3.g)
E„

yields (from results listed in Sec. II) the two relations

2 gnfn Wn

A ~ E„L
ng„f„E„~g„f„E„W„

z 2(A'u~) a z (Ruz) L(k„+a )

(3.9a)

(3.9b)

But Eq. (3.9a) is a linear combination of Eqs. (3.7a) and
(3.7b), and Eq. (3.9b) is a second. Hence the polaron is
self-consistent (as at T=O), regardless of the length of the
chain, when the three quantities bp K and p are deter-
mined as described above; of course, the three equations
must have solutions.

We assume that the chains are long enough that finite-
size corrections (of order 1/N; ) to the amplitudes bo are
negligible. The temperature region of interest is
T (0.16pp/kB; the dePendence of the amPlitudes on T is
therefore also negligible, and the amplitudes hp of the
three states are equal to the BCS amplitude at zero tem-
perature, happ. We assume also that T is low enough that
the thermal depletion of the valence band is negligible;
the requirement (well satisfied at the temperatures con-
sidered below) is

' 1/2
P[p+~ ] L 2kB T

e )&-
~6,uu

(3.10)

(a) Homogeneous (D) state. At T=O, the chemical po-
tential p lies at the bottom of the conduction band. With
increasing T, the large density of states in the conduction
band forces p, to decrease rapidly toward midgap (since
the model has particle-hale symmetry} so that the num-
ber of electrons remains fixed. If the Fermi function for
all the conduction-band states is «1 (the chemical po-
tential must be well below the lowest state; the assump-
tion surely fails when kBT ~ the spacing of the levels at
the bottom of the band), Eq. (3.6) gives the following ex-
pression which determines the chemical potential:

where K, (z) is a modified Bessel function" and
g=fiu~/hou. Using the asymptotic expansion of the
Bessel function, we find the free energy of the D state as

FD( T)=FD( T =0)—ki, T

—
kii T ln{ (L /g)[2kii

T/(educe)]'
(3.12)

Fp(T}=FD(T=0)+(2i/2/n —1)boo

—2kii T ln2 —
kii T ln(L /A, p ) (3.13)

at low T. We have used the known difference ' in the en-
ergies between the D and P states at T =0. The electron-
ic entropy of the P state does not vanish as T~0, but the
term is of order kii (rather than N, kii). The last term in

Eq. (3.13) is the contribution from the motion of the pola-
ron; if the polaron is pinned, this term is replaced by—Wp, where Wp( & 0) is the pinning potential. Further,
we have

Wp & kii T In(L/A, z) (3.14)

as long as the pinned polaron is stable compared to the
free polaron, and hence both pinned and free polarons are
stable against the D state.

(c) Kink-antikink (KE) state. At T=0, the chemical
potential p is at midgap; it must remain there for an
infinitely long chain at T & 0. For finite chains,
p=kBT ln3 at low T; the temperature above which this
approximation fails decreases to zero (probably as 1/lnL )

as the length L of the chain increases. The free energy is
then

Fxx( T)=FD( T =0)+(4/m —1)buu

kii T ln( —",,' ) —2k'—i T ln( L /A, xz ) . (3.15)

This expression omits the interaction between the soli-
tons (which is justified for long chains); more seriously, it
neglects also interchain interactions, as discussed in Sec.
IV.

One sees easily that the free energies of the P and EK
states cross at a temperature determined by

(4—2v'2)phoo!sr=

ln(LAP�

/Azx ); (3.16)

One sees that the free energy decreases rapidly with in-
creasing T. The large term comes from the entropy of
the conduction-band states (but large terms cancel in the
two contributions to the free energy).

(b) Polaron (P) state. The chemical potential is at the
upper bound state at T =0, and remains there at low T:
the Fermi function at the upper bound-state energy must
remain equal to —,

' since there are no states near in energy.
Like the chemical potential of the D state, the chemical
potential of the P state must eventually drop to midgap,
but the drop for the P state is preempted by the instabili-
ty of the polaron. If fives/duo .remains equal to I/v'2 at
low T (this assumption has been checked numerically),
then the single-particle energies do not change with T,
and the free energy is

1 =e~" K, (Pb,oo),
2L

(3.1 1) above this temperature, the polaron is at most metastable
with respect to a KE pair. An order-of-magnitude esti-
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mate of the instability temperature is obtained by putting

mxz =mt, =m, ( the electron mass), although m„~and

mp are certainly larger than m, . Inserting a typical
0

length (undisrupted conjugation length) L —10 —10 A,
we find T-10 —10 K.

IV. DISCUSSION

The result of Sec. III, namely that the trans-

polyacetylene polaron is unstable above a temperature
which vanishes in the thermodynamic limit, was obtained
under several approximations. The most serious is our
neglect of interchain interactions (including structural
coupling, Coulomb correlations, and interchain hopping).
On the one hand, the structural coupling tends to bind
the kink and antikink, reducing the free energy of the
kink-antikink state below our estimate (which assumes
that the entropy is that of two free solitons); on the other
hand, it is known that the polaron becomes unstable in
the presence of interchain coupling. ' As for the other
approximations, the thermal motion of the ions should
not change the differences in the free energies of the mac-
roscopic states in the harmonic approximation; also, we
see no reason to expect anharmonic effects or electron-
electron interactions to favor the polaron state over the
others. More realistic calculations are desirable.

As discussed in Ref. 4, clear experimental evidence ex-
ists for kinks (charged and neutral), but not for polarons,
in trans po-lyacetylene I.n view of (i) our result, (ii) little
experimental evidence for the polaron, and (iii) that the
stability of the polaron even at T =0 has recently been
questioned, ' the existence of the trans-polyacetylene po-
laron appears doubtful, unless it is pinned at impurities
or crystalline defects.

Our result has no applicability to the cis-polyacetylene
class of polymers (which includes polypyrrole and po-
lyphenylene), for here the ground state is nondegenerate.

Our work questions the thermal stability of one self-

trapped soliton, the polaron. The thermal stability of
another, the Davydov soliton, ' has also been ques-
tioned for the latter the instability arises from
random-noise forces, and the soliton is stable at low T.
In contrast, the decay of the polaron is due to the lower
free energy of a state with more solitons, and the decay
takes place at arbitrarily low T in the thermodynamic
limit.
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