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Ultrashort solitons in coupled electron-phonon systems
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We numerically investigate the dynamical properties of a nonlinear quantum-mechanical model

system of local electronic two-level centers coupled to acoustic phonons. Nonadiabatic processes
are included. No rotating-wave approximation has been used. In spite of the discreteness of the lat-

tice, "ultrashort" solitons are found with half-widths down to one wavelength of the phonons which

are in resonance with the energy splitting of the two-level centers. In homogeneous systems solitons
are created in pairs, while in heterosystems they may appear isolated. The solitons of a pair have

difFerent velocities, but the same half-width. We investigate the threshold behavior of the soliton
formation and the stability of solitons against fluctuations. We perform numerical simulations of
soliton-soliton and soliton-phonon interactions and discuss reflection processes at the end of the
chain.

I. INTRODUCTION

The appearance of nonlinear excitations in anorganic
structures as well as their possible formation in struc-
tured semiconductors is of increasing interest, especially
for the development of new microelectronic devices. ' In
the area of self-induced transparency (SIT) it has been
found experimentally and theoretically that light pulses
in resonance with the energy splitting of two-level centers
embedded in a crystal may travel almost without any at-
tenuation and retain a certain shape. However, in order
to obtain such nonlinear effects sumciently high light in-

tensities are necessary. This is a disadvantage for the ap-
plication in the field of information processing.

In this way the question arises of whether such a
coherent pulse propagation may be possible in the case of
phonons instead of photons. Aspects of this problem
have already been investigated using a continuum approx-
irnation: The underlying model in this case is an array
of noninteracting, equidistant electronic two-level sys-

tems locally coupled to a lattice bearing acoustic pho-
nons. A possible application of this model could be the
transport of nonequilibrium acoustic phonons in insulat-

ing crystals with a high concentration of ionic two-level
centers, as found, for example, in ruby.

The main difference between the photon and phonon
cases is obvious: While the typical photon wavelength
extends over hundreds of two-level systems, the wave-
length of the "carrier phonons, " i.e., those which are in
resonance with the electronic center energy splitting, may
well be of the same order as the typical distance between
adjacent electronic centers. In order to draw conclusions
about the stability of coherent excitations involving pho-
nons with such a short wavelength, a number of com-
monly invoked approximations should be avoided: this
applies to the mean-field approach as used in the SIT
case, in which the centers are described in terms of a po-
larization density; instead, it is necessary to consider fluc-
tuations caused by the discrete distribution of electronic

centers. This is done in this paper by a direct numerical
solution of the system of second-order differential equa-
tions of motion for the discrete model system.

In this approach, fluctuations are not regarded as a
slight distortion of the soliton which can be taken into ac-
count by perturbation theory. The local basis allows us
to directly take into account the whole phonon spectrum
by which fluctuations are included without limitation au-
tomatically. Under certain circumstances this may lead
to the decay of solitons which otherwise would be stable.
Apart from fluctuations, for ultrashort pulses it is, of
course, necessary to take into account the whole phonon
spectrum, since the less extended the pulses are in real
space the more extended they are in k space. Spontane-
ous decay is not considered.

Finally, we also avoid the rotating-wave approximation
(RWA), where only the envelope of a given pulse is con-
sidered. Our numerical approach is applicable for any
electron-phonon coupling constant. It makes it thus pos-
sible to investigate the properties and the stability of ul-
trashort pulses, which are defined by half-widths of the
order of the resonant phonon wavelength (compare Ref.
6). In the numerical investigations it turns out that there
exist solitons down to a half-width of about one wave-

length of the carrier phonons: this corresponds to six lat-
tice constants for the set of parameters chosen here and is
remarkable because the solitons we describe are not topo-
logical, for they decay if the electronic and the vibration-
al excitations decouple. For information transport and
processing, ultrashort pulses are of special importance in
order to optimize (i) length scales and (ii) switching
times.

The concept of a soliton is introduced here from a
rather practical point of view. In this paper a "soliton" is
a nonlinear excitation of pulse shape that is stable over a
period of time, some orders of magnitude larger than the
decay time of resonant excitation pulses far below thresh-
old. Their decay is generally caused by dispersion; in the
present case the dispersion originating from the electron-
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phonon coupling is much more important than the lattice
dispersion, very similar to SIT, where dispersion clearly
originates from the defect centers only. The term "pulse
shape" refers here to the spatial dependence of the expec-
tation value of local observables. Solitons in this sense
may exist both in systems with translational invariance
and in finite systems. In certain scattering processes they
may lose small amounts (e.g., about 6%) of their energy
and, if fluctuations are too strong, they even may decay.
These are not solitons in the exact (idealized) meaning.
Nevertheless, in this paper we will call these states soli-
tons in order to stress their significance for a broader
class of model systems, also. It should also be mentioned
that SIT solitons lose energy in scattering processes in the
case where different directions of motion relative to the
lattice are considered.

Our paper is organized as follows. After introducing
the model Hamiltonian and the resulting equations of
motion in Secs. II and III, we investigate the threshold
behavior of the ultrashort-pulse dynamics in Sec. IV,
which results in a hierarchy of fundamental excitations
represented by phonons, breathers, and solitons. In Sec.
V we discuss the nonlinear dynamics above soliton
threshold and the coexistence of fundamental excitations.
Our numerical approach with its direct solution of the
second-order field equations allows a detailed investiga-
tion of the soliton stability during interaction processes
where both directions of motion relative to the lattice are
considered. This is presented in Sec. VI, together with a
discussion of the stability against phonon interactions.
Finally, in Sec. VII we turn to finite systems and investi-
gate the reflection of ultrashort solitons from the end of
the lattice.

Computer simulations can be regarded as "experi-
ments, " performed on model systems which may be
defined by a set of differential equations, as in our case.
Since initial values and parameters clearly have to be
specified for each simulation, the method of deriving
physical conclusions from numerical results is necessarily
inductive. Determination of the range of parameters and
initial conditions for the validity of our conclusions is
very delicate because of the large state space of such a
many-particle problem.

However, the results presented in this paper have been
verified for a larger number of initial conditions and
different combinations of coupling parameters. The dia-
grams presented in this paper only serve to exemplify the
results.

II. MODEL HAMILTONIAN

+g(u„+,—u„}(AAo „++AX'o„), , (2.1)

where u„and p„are the displacement and momentum

In a local representation the system of noninteracting
electronic two-level centers with the same energy split-
ting fiQ, which are locally coupled to a linear lattice bear-
ing acoustic phonons, has the Hamiltonian

H=Q p„+g —,'D(u„+, —u„) +A'Qg(N~)„
1

2M

operators of the mass M at lattice site n, and D denotes
the next-neighbor coupling. The last term of Eq. (2.1)
stands for the electron —acoustic-phonon interaction with
the coupling constant A, . We have

(N, )„=(c,)„(c,)„, (2.2a)

(Nz)„=(cz)„(cz)„,
o„+=(c2) (ct)
o „=(c,)„(cz)„,

(2.2b)

(2.2c)

(2.2d)

the operators for the electronic system at lattice site n.
(c, )„, (c2)„, (c, }„,and (cz)„are Fermi creation and an-
nihilation operators that act on the electron in the
ground state (index 1) or in the excited state (index 2).
(N, )„and (N2)„are occupation-number operators for
the lower and upper level, respectively. (N&)„, (N2)„,
0.„+ and o „obey the Pauli spin algebra commutator rela-
tions

[(N2)„,o „]=So „*,

[o„+,o„]=(N2)„—(N, )„,
(2.3a)

(2.3b)

where cr„+ and 0.„play the role of the spin-flip operators.
As the electronic centers do not interact directly, the
electronic operators belonging to different elementary
cells n commute.

III. EQUATIONS OF MOTION
AND THE NUMERICAL PROCEDURE

The time evolution of the model system is obtained by
Heisenberg's equation of motion

A = [H, A ], — (3.1)

where A stands for the electronic and phonon operators,
respectively. As the phonon operators and the electronic
operators commute, we obtain the equations of motion

u„= (u„,—2u„+u„+,)+ [A,(o„+—cr„+,)+H. c.],

o „=iOcr„++i(1—2(N2)„}A,'(u„+, —u„),
(N2)„= —i(u„+,—u„)(Acr„+ —H. c. ) .

(3.2a)

(3.2b)

(3.2c)

In order to solve this coupled set of equations numeri-
cally, we proceed from the equations of operators to
equations of expectation values. ' These expectation
values are the matrix elements of the operators taken
over coherent states. This restriction is justified because
in our model we consider coherent excitations in both the
electronic and the vibrational systems. Furthermore,
since we are interested in nonlinear effects, excitation en-
ergies are expected to be rather high. Thus the precondi-
tions are given to confine ourselves to expectation values
in a good approximation. We thus obtain

ii„= (u„&—2u„+u„+
&
}+ Re[A(o „—o'„~)],+ +

M
(3.3a)
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o „+=i Qo „++i(1—2(Ni )„)A.'( u„+,—u„),
(Ni)„=2(u„+,—u„)lm(Ao'„+ ) .

(3.3b)

(3.3c)

Besides the bilinear product in Eq. (3.3c), the origin of
the nonlinearity is the factor 1 —2(Nz)„ in Eq. (3.3b)
which arises from the Fermi commutation relation of the
electronic operators. This is a pure quantum-mechanical
effect. The coupling to Fermi systems can introduce non-
linear effects because if such a two-level system is excited
to inversion [i.e., (Nz )„=1],it is saturated and cannot ac-
cept any further excitation energy, i.e., the "spring" that
transfers energy to the system has softened. If the factor
1 —2(Nz )„was dropped, the system would no longer lead
to solitons.

Equations (3.3) are numerically integrated with period-
ic boundary conditions for systems of 300 and 600 lattice
sites, respectively. An adequate algorithm to solve this
problem is the combined prediction-correction multistep
procedure of Adams, Bashford, and Moulton, "with a lo-
cal error of order O(h ), where h is the iteration time
step. This algorithm is very stable for the system of Eqs.
(3.3) and the range of parameters investigated here. The
convergence of the procedure is always checked very
carefully by testing the local error of the local variables
u„, cr„, and (Nz)„. To adjust the iteration time step h, it
also turned out to be very useful to calculate the expecta-
tion value of the total energy E„„which is very sensitive
to numerical errors. E„, was allowed to deviate by less
than 1%. The stability of the algorithm is illustrated by
the fact that even after a peak deviation amounting to
1%, e.g., in all the simulations the deviation of E«, and
the local error of the local variables again reduced below
0.1%, where it stayed approximately constant.

In this paper we apply the "natural" unit system (us),
in which lengths are measured in units of the lattice con-
stant a, the mass in units of the mass M of one elementa-
ry cell, and velocities in units of c/2 (where c is the sound
velocity for k =0). Consequently, with a„,=l, M„,=l,
and c„,=2 in this unit system we obtain D„,=4. The en-

ergy unit e.u. is given by 1 e.u. =M(c/2) and the time
unit t.u. by 1 t.u. =2a/c. Planck's constant is then
iri„,=R/(e. u. Xt.u. ). The actual nuinerical calculations
are performed for A„,=1. A concrete physical applica-
tion with fi„,@1necessitates the rescaling A, '=Pi„, ' k and
u' ——S'"u .n us n'

IV. FUNDAMENTAL EXCITATIONS

In most of the simulations we assume, as an initial con-
dition, a running phonon wave packet

u„(t =0)=uosech[(n no }/h]co—skon, (4.1)

with the carrier phonon wave number ko=m/3 and a
sech-type envelope of maximum value uo, while
(Ni)„=o „+ =0 at all sites n. The parameters no and b,

denote position and width of the phonon pulse, respec-
tively. With ko=~/3 the resonance condition for the
coupled system is fulfilled for D =4, M = 1, and 0=2. If
the physical realization requires 0&2, ko has to be ad-

justed appropriately. This, however, has no substantial
influence on the physical results presented in the follow-
ing sections, provided that ko is not so large that lattice-
dispersion effects become too strong for soliton forma-
tion.

Extensive numerical studies have shown a significant
difference between the time evolutions for the cases
h~h, h=4 and h&A, h.

' For the case 5 h, h, the
hierarchy of fundamental excitations is illustrated in Fig.
1 for 6=8 and electron-phonon coupling constant
A, =0.5. The only difference between Figs. 1(a)—1(c) is the
initial phonon amplitude uo which ranges from u0=0. 21
to uo=1. 176. The case 6 & h, h will be discussed subse-
quently.

For small amplitudes [Fig. 1(a)] the phonon pulse is
completely blurred over the whole system, as expected.
In a first step, the initial phonon pulse, while moving to
larger n, is completely absorbed by the electronic centers.
However, although the electronic centers are only very
slightly excited [i.e., expectation value (Nz)„&0.04], the
tail of the fading phonon pulse stimulates the electronic
centers to reemit energy into the phonon system, by
which a new, though retarded and broadened, phonon
pulse is built up. In this way the excitation width con-
tinuously increases [see Fig. 1(a), t =150] and finally ex-
tends over the whole lattice. However, because of
(Ni )„((1[i.e., the factor 1 —2(Ni )„ in (3.3) could be re-
placed by unity] this is not a nonlinear effect: The small-
amplitude excitations of this type are therefore called
"linear excitations" or sometimes "phonons" in this pa-
per, although, strictly speaking, they are coupled excita-
tions of the vibrational and the electronic system (com-
pare the phonons in Ref. 13). In contrast to these linear
excitations, solitons and breathers are nonlinear excita-
tions.

An essential feature of the dynamics is the energy
transfer between the electronic and the vibrational sub-
system. The vibrational system is responsible for the
transport of the excitation and the electronic system for
its localization. This shows that even for weak (i.e.,
linear) excitations nonadiabatic processes are most im-
portant to describe the dynamical behavior adequately:
Although the electronic excitation energy is yet very
small, nonadiabatic processes are responsible for the blur-
ring effect.

For larger excitation energies (i.e., increasing uo) the
nonlinear term 1 —2(Ni)„of Eq. (3.3b) becomes impor-
tant [see Fig. 1(b)]. Because of this nonlinearity the local-
izing influence of the electronic centers produces a one-
dimensional "self-focusing" effect [compare Fig. 1(b),
t =180 to Fig. 1(a), t =150]. Despite complete inversion
[see Fig. 1(b), t =9} and although the total energy is
larger than the energy of a single slow soliton, we are still
below the threshold and no solitons are formed.
Comprehensive numerical studies show that for this type
of initial condition [phonon pulse in homogeneous sys-
tem, (Nz }„(t=0)=0] only pairs of solitons are formed,
and the minimum energy —threshold energy E,—for
such a pair (which is dependent on the initial pulse width
6, see below) is not yet obtained.

Below soliton threshold the excitation does not yet



3630 K. HASENBURG, E. SIGMUND, AND G. MAHLER 41

0D4(

N2

[0

(c)

Nq
[0

~ahaaaAAAA~vvvvvvvyyyvv"-

100 200
LATTICE SITE n

I

100 200
LATTICE SITE n

TIME
(2%)

150

24

20

16

12

4
1 u„(rrb
Jp units)

300

TIME
(2o/c)

390

180

18

12

6
1.„( b
Jp units)

I

300

TIME
(2a/c)

390

210

190

6
1.„(eb
J0 units)

split up into solitons, but, rather, periodically changes its
shape and transfers energy between the vibrational and
the electronic systemv Such an oscillation is depicted in
Fig. 1(b), t =3—18. We call this excitation type "breath-
er," corresponding to the same type of solution in SIT.
In contrast to the "linear excitation" the breather is self-
focused and does not blur over the whole system [Fig.
1(b), r = 180]. Similar to the SIT case, complete inversion
is not necessary for breather dynamics. However, the
"ultrashort breather" discussed in this paper is not as
stable as a SIT breather. The long-time evolution reveals
a dynamical behavior which significantly differs from the
SIT case. The breather finally [for the simulation in Fig.
1(b) after t =285] splits into two stable pulses [see Fig.
1(b), r =390], which do not reach complete inversion

[(N2),„=0.4]. In the further time evolution the two
pulses completely separate. Methods to analyze these ex-
citations are being developed at the moment and are
planned to be presented in a forthcoming publication.

In the breather regime, varying uo does not lead to an
accordingly varying amplitude of the two pulses that re-
sult from the breather decay. Their respective ampli-
tudes do not considerably exceed (N2),„=0.5. For the
given parameters, I,=0.5 and 6=8, this behavior drasti-
cally changes for u o

~ ( u o ), = 1. 176, the threshold pho-
non amplitude (with related threshold energy F-, =44.37,
see Table I) . Here the electronic amplitude of the two
resulting pulses abruptly jumps to (Nz ),„=1. The
threshold case is depicted in Fig. 1(c) [cotnpare Fig. 1(c),
t =390 to Fig. 1(b), t =390]. The small variation of ini-
tial amplitude from uo = 1.175 [Fig. 1(b)] to uo =1.176
[Fig. 1(c)] yields for small t a correspondingly similar
time evolution of breather oscillations [see Figs. 1(b) and
1(c), t =3—9], whereas for large t [see t =390 in Figs. 1(b)
and 1(c)] there is a qualitative change. In Fig. 1(c), the
breather finally decomposes (t =190—210) into two ul-
trashort solitons (see t =390). The half-width of the soli-
tons amounts to little more than one wavelength of the
resonant phonons, i.e., the solitons here are orders of
magnitude narrower than those of SIT.

Contrary to both the phonon and the breather excita-
tions, the processes of absorption and induced emission,
which before acted on different phonon pulses, now act
on the leading edge and the tail of the same phonon pulse
inside the soliton, with the result that there are no more

I

100 200
LATTICE SITE n

300

FIG. 1. Displacernent u„(thin line) and occupation number
(N2)„(heavy line) of the upper electronic level at site n, for a
lattice of 300 sites. The time steps t and the electron-phonon
coupling constant A, =0.5 are measured in the units defined in
the text. The initial condition is a resonant sech-type phonon
pulse [see Eq. (4.1)] with 6=8. (Xzi„=o„+=0for all n The.
initial maximum amplitudes are (a) u0=0. 21, resulting in a
linear excitation; (b) uo=1. 175, a breather excitation finally
splitting into two pulses without inversion; (c) u 0

= 1.176, the
threshold case. Breather excitation, decomposing into two ul-
trashort solitons, which finally decay into decoupled vibronic
and electronic excitations.

5 (a)

2
4
4.5
6
8

12
16

(uo), (a)

3.00
1.89
1.70
1.422
1.176
1.025
0.975

E, (e.u. )

75
58
52
49
44
50
61

TABLE I ~ Numerical results for the threshold amplitude
(uo), and energy E, for different initial phonon pulse widths 6,
for a system specified by A, =0.5, D =4, M =1. The units are
defined at the end of Sec. III.
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FICx. 2. Same as Fig. 1(c) (uo=1. 176, 5=8), but with 600
lattice sites: the two ultrashort solitons are more stable.

breather oscillations, but there are stable pulse shapes for
both the electronic and the vibrational excitations. There
is now a metastable equilibrium of absorption and in-
duced emission processes. The soliton half-width is much
smaller than that of the initial phonon pulse. This type
of "acoustical pulse compression" is very similar to the
case in nonlinear optics.

Finally, the solitons decay into localized electronic ex-
citations and decoupled phonons [see Fig. 1(c), r =660].
This is not due to the discreteness of the lattice, as one
might assume, but to fluctuations induced by those pho-
nons, which are not bound to solitons but have been
formed besides the solitons as a sort of "background exci-
tation. " The interaction of such phonons with a soliton
may decouple the soliton's electronic part from its vib-
ronic part. This will be discussed in Sec. VI [see, e.g.,
Fig. 6(b) for the analogous case of destructive soliton-
soliton scattering]. The soliton instability increases with
decreasing soliton half-width. Figure 2 [same initial con-
dition as in Fig. 1(c), but system size N =600] shows that
the smaller the phonon concentration the larger is the
soliton lifetime. Here, the slower soliton decays after
t =780 and the fast one not before t =1300. Preceding
the decay, the solitons become decelerated. For the
slower soliton this can readily be seen in Fig. 2 (beginning
at r =480). However, the dynamical stability against dis-
turbances is seen in Fig. 2, where the slower soliton re-
covers its original shape after the fluctuation at t =600.

Important questions concern (i) the universality of the
threshold energy for soliton-pair formation, E, [i.e., how

E, depends on initial conditions —in our case on en-

velope type (sech, Gaussian, etc.) and width b, of the ini-
tial phonon pulse], and (ii) for which range of initial con-
dition parameters soliton formation is possible at all.
Table I comprises the results for ( uo ), and E, of several
series of computer simulations for sech-type initial pho-
non pulses with different b (A, =O. 5, D =4, M = 1). Oth-
er pulse shapes (e.g., Gaussian or box shape) do not give
rise to substantial changes, except for a larger phonon
background which raises E, .

Soliton formation is possible for a broad range of 5:

For A, =0.5 the lower limit is 6=1; below this value,
dispersion effects become too strong. There appears to be
no upper limit (simulations have been performed for
b, =40 and 60), provided that the system size is at least
about 1 order of magnitude larger than 6 so that the
different excitations may develop and separate well.

The threshold energy E, depends (i) on the total energy
of the formed soliton pair (depending on b„ the solitons
have different velocities at the threshold), and (ii) on the
total energy of the phonon background formed besides
the soliton pair. The smallest E, is obtained for 6=8 (see
Table I), which is the value chosen for Figs. 1 and 2.
Thus E, is not universal. Universal, i.e., independent of
initial conditions, is only the relation between the single
soliton s total energy, its velocity, and half-width. This
has been shown both numerically and analytically, the
latter with the approximations commonly applied in SIT,
but is not presented in this paper.

Depending on 5 we can distinguish between two
significantly different soliton-formation processes (explicit
numerical values are given for A. =0.5, D =4, and M = 1):
In the simulations with 6 b,h=4, the dynamic process-
es follow in principle the evolution depicted in Figs.
1(a)—1(c), with a hierarchy of phonons, breathers, and,
for E =E„abreather state which finally divides into two
solitons. For b &6,h there is no distinct hierarchy of
phonons and breathers (besides a certain phonon back-
ground which is formed in general). For any uo the ini-

tial excitation at once divides into two stable pulses,
which are similar to those formed after breather decay
for b, & 6,„. However, while for 6 ~ h, h the electronic ex-
citation discontinuously jumps from (N2)m, „=0.5 to 1

for E=E„ for h&h, h the inversion continuously in-
creases for increasing uo, until —for E =E,—complete
inversion is obtained and thereby solitons are formed.

Thus we can define h, h as the threshold width, where
the character of nonlinear dynamics significantly changes
from continuous (b, (b,h) to discontinuous (b, ~ b,,h) be-
havior at the energy threshold E, . For very broad initial
phonon pulses (b, )20) the additional excitations formed
besides the soliton pair (for E ~ E, ) become so strong that
they induce nonlinear processes by themselves, which
may result in the formation of further breather and soli-
ton pairs. As mentioned above, for such simulations
(b, =40 and 60) the system has to be chosen large enough
(N=900), so that the breather and soliton pairs can
separate properly.

The formation of such soliton pairs in homogeneous
systems with periodic boundary conditions reminds one
of topological kink-antikink sine-Gordon solitons.
Indeed the equations of motion for the system of exactly
resonant electronic centers considered here can be
transformed to a sine-Gordon equation if the RWA and
continuum approximation are applied, together with
some other approximations like the neglect of both the
Doppler broadening and the phase variation of the pho-
nons. However, it is remarkable that soliton formation
can be shown at all, and even for such narrow nontopo-
logical solitons as described in this paper, where the
preconditions for the validity of most of these approxima-
tions are heavily violated. Two significant differences to
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the sine-Gordon case, (i) the localization of phonons
around fast solitons and (ii) the possible soliton decay in
scattering processes, will be described in Secs. V and VI.

Up to now we have discussed soliton formation in
homogeneous systems. However, both from theoretical
and experimental points of view it is interesting to study
soliton formation in structured systems. Indeed, it is pos-
sible to form single solitons without any background exci-
tation, if a system geometry is chosen where the initial
phonon pulse starts from a region A without electronic
centers and then enters a region B with electron-phonon
coupling (cf. Fig. 3 with A, =0.2, D =4, M =1). It should
be mentioned that in all the computer simulations per-
formed no reflection of the input phonon pulse is seem, in-
dependent of whether the phonon pulse shape is of sech,
Gaussian, or step-function type. The whole input energy
is transferred through the interface. Depending on the
pulse envelope, zero, one, or more solitons with or
without phonons and breathers is (are) formed. It turns
out that single solitons, without background, are formed
if the input phonon pulse has a sech-type envelope and
satisfies certain requirements concerning uo and 6: uo
must equal the maximum amplitude u, of the phonon
part of the formed soliton. It is easily seen that then the
width b,

' of the incident pulse has to be chosen c/U, times
the width b, of the phonon part inside the soliton. Here
v, is the soliton velocity and c the group velocity of the
incident phonon pulse. Only solitons with v, c are
found. For decreasing uo, i.e., decreasing soliton energy,
U, becomes very small compared to c [cf. the slow soliton
in Fig. 4(d)]. The simulations show that as a consequence
6, is much smaller than 5'. Again, this effect could be
called "acoustical pulse compression, " but now it is
occurring in a heterosystem. In our system, where dissi-
pation effects are neglected, there is no lower limit for uo,
i.e., no upper limit for 5 . This shows that at interfaces it
is possible to form solitons from an incident phonon

TIME
(2')

pulse, with an amplitude considerably too small for soli-
ton formation in homogeneous systems [cf. Fig. 1(a)]: At
interfaces even a small-amplitude excitation is able to in-
duce nonlinear effects as the whole phonon pulse passes
the electronic centers directly at the interface unattenuat-
ed, and its effect on these centers is integrated over time,
thus producing inversion. In the homogeneous case, on
the other hand, every part of the extended phonon pulse
excites another electronic center, so that the pulse has
been absorbed long before inversion could be reached.
Clearly, in reality, dissipation effects will de6ne an upper
limit for the time over which very slow solitons can be
formed.

We have seen that for given uo there exists a pulse
width 6' where the phonon pulse does not change its am-
plitude while passing the interface, i.e., it is only
compressed during soliton formation. It is interesting
that 5 may vary inside a certain range around 6', and yet
single solitons are formed without background. In such a
case the resulting phonon amplitude inside the soliton is
smaller (b, &b, ') or larger (6)5') than uo. This range
will be called the "soliton window, "but will not be deter-
mined numerically in this paper. If b, is outside the soli-
ton window, either only phonons or breathers are formed
(for small b, ) or a soliton plus background is produced
(for large 5). If, in the latter case, b is further increased,
a second soliton window is entered, where two solitons
without background are formed: Increasing b, subse-
quently opens energetically equidistant soliton windows.
This is an analogy to the area theorem of SIT. ' In such
a way it is possible to build up from an incoming plane
wave a train of solitons nearly without any background
excitation, where the velocity, width, and energy content
of each soliton is the same and determined by the ampli-
tude of the incident wave.

For pulse shapes other than sech type (e.g., Gaussian
or box shape), the simulations performed always show the
formation of a certain amount of background excitation.
Clearly in this case only the lower limit of each soliton
window can be determined precisely: This is the smallest
6 where one (two, three, . . . ) soliton(s) are formed, re-
spectively.
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FIG. 3. Heterostructure with A, =O in region A and A, =0.2 in
region 8. The initial condition is a resonant sech-type phonon
pulse in region A with maximum amplitude u 0 =0.55.

As has been shown, the present initial condition of a
resonant phonon pulse on a homogeneous chain with
nonexcited electronic centers leads to the creation of soli-
ton pairs if the excitation energy is above the threshold.
The nonlinear dynamics in this region is now further il-
lustrated in Figs. 4(a) —4(d) for an initial phonon pulse of
sech type [see Eq. (4.1)] with fixed 6=8 and uo varying
between u0=2. 31 and 4.2. From now on we set A, =0.2
(and D =4, M=1 as usual) in order to demonstrate the
phenomena more clearly. Figure 4(a) shows [like Fig.
1(c) for the A, =0.5 case] that at threshold and in a small
range above the threshold exactly two solitons without
any background are created, if the initial phonon pulse
has a sech-type envelope. Comparison to Figs. 1(c) and 2
makes evident that the smaller the electron-phonon cou-



41 ULTRASHORT SOLITONS IN COUPLED ELECTRON-PHONON SYSTEMS 3633

pling constant, the broader the solitons, very much like in
the SIT case. Other initial phonon pulse shapes (e.g. ,
Gaussian or box-type envelopes) always lead to an addi-
tional creation of phonons (linear excitations) besides the
soliton pair.

The pair consists of solitons with the same shape of the
electronic excitation, the same half-width, but different
velocities and different phonon amplitudes, which are
proportional to the velocity of the solitons in the rest
frame of the system. It is clear that in such a case the
phonon amplitude must be larger for faster solitons be-
cause the processes of absorption and induced emission
must be quicker, which requires larger amplitudes. On
the other hand, the slower a soliton the smaller the ratio
of vibronic energy to electronic energy. The extreme case
is the transition to a localized excited electronic state
without any vibronic excitation. This is often the result
of decay processes arising from fluctuations during
scattering, and will be discussed in the next section.

The existence of very slow solitons with a correspond-
ingly small amount of vibrational energy shows that the
nonlinear dynamics of a single soliton is not necessarily

connected with a high energy density in the vibrational
system, as is assumed in the normal case.

Simulations up to t =1000 have shown that these soli-
tons are more stable than in the A, =0.5 case (see Fig. 2).
As solitons are sensitive to interactions with resonant
phonons, the reason for the stability may be that contrary
to Fig. 2 no background phonons are seen in Fig. 4(a).

If Uf is the velocity of the fast soliton and U, that of the
slower one, we obtain for the case in Fig. 4(a) u, =0.40
and Uf =1.39 in units of lattice constants per time unit,
where D =4 and M =1 yield a sound velocity (group ve-

locity around ko=m. /3) of c =1.73.
Increase of the initial phonon amplitude [u0=3. 15 in

Fig. 4(b)] reduces the half-width of the solitons and in-
creases the velocity difference between the solitons of the
pair, i e., the slower soliton nearly comes to rest
[u, =0.09 in Fig. 4(b)] while the faster one approaches
sound velocity with vf = 1.62. Detailed studies of the sol-
iton velocities reveal that v, =c—

Uf holds, similar to the
sine-Gordon case. Above threshold [Fig. 4(b)] there ap-
pears an additional excitation between the two solitons
comparable to the "linear excitation" of Fig. 1(a). A gen-
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FIG. 4. Same as Fig. 1, but X=0.2 and (a) uo =2.31, close above threshold: Two solitons are formed without any background ex-
citations. (b) uo =3.15: two solitons plus additional linear excitations are formed. (c) u0=4. 03: an additional breather —instead of
linear excitations —is formed. (d) u0=4. 2: two pairs of solitons are seen. The two leading excitations interact, lose the proper soli-
ton shape, but are still stable.
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eral feature of our above-threshold computer simulations
is that such background excitations partially localize
around the faster soliton. As a consequence, the faster
soliton becomes broader than the small one [see Fig.
4(b)]. This is in agreement with the results of Ruckh and
Sigmund, who have analytically shown (with the RWA
and continuum approximation) that the phonon disper-
sion relation is influenced by the soliton in such a way
that phonons are localized around the soliton.

Comparison of Figs. 4(b) —4(d} shows a certain repeti-
tion of the hierarchy of excitations of Figs. 1(a)—1(c) that
appear now between the two solitons of a pair: linear ex-
citation [Fig. 4(b}], a breather [Fig. 4(c}], and a second
pair of solitons [Fig. 4(d)]. The difference from the case
of Fig. 1 is the partial localization of a part of the linear
excitation or the breather around the leading soliton.

This leads to certain deformations of the leading soli-
ton, which is nevertheless as stable against scattering pro-
cesses and fluctuations as customary solitons, although it
is approaching sound velocity, as our numerical studies
have shown. The reason could be that the vibrational
part of this coupled excitation becomes more dominant
the more energy is included from phonons or breathers.
As a result, the dynamical equilibrium between the elec-
tronic and vibronic parts becomes less important, and the
sensitivity against fluctuations decreases correspondingly,
especially for very high excitation energies. It may even
happen that no complete inversion is obtained anymore.

In the case of two pairs of solitons [Fig. 4(d)] the two
leading solitons are not clearly separated. Corresponding
to the localization of parts of the phonon excitations or
breathers around the fast soliton, an attractive interac-
tion occurs between fast solitons with the same direction
of motion. Thus the two leading solitons influence one
another with the result that they lose the proper soliton
shape. Nevertheless it is seen that they form excitations
with nearly the same dynamical stability (also during
scattering processes) as proper solitons.

Concluding, one can say that fast solitons (i.e., v =c)
attract both one another and subthreshold excitations
(phonons and breathers). Therefore, the velocity
difference between the two leading solitons is much small-
er than the relative velocity of the two slower solitons
which separate very well [see Fig. 4(d)].

Further increase of the initial amplitude uo results in
the creation of a third pair of solitons. The slower ones
of the already existing two pairs become even slower and
narrower, while the leading excitation as a combination
of the fast solitons will further approach c.

VI. SCATTERING PROCESSES

In the following, we take as an initial condition the sol-
itons described in Sec. V, which are then placed at
separate initial positions on the lattice (A, =0.2). We dis-
tinguish between unidirectional and bidirectional scatter-
ing processes: The reference system for this distinction is
the rest frame of the lattice. In the unidirectional case
the solitons taking part in the scattering process have
different velocity values, but the same direction of
motion. In the bidirectional case they have a different or

the same velocity value, but opposite directions of motion.
This cannot be considered by theories that use the RWA
because to obtain solutions with different directions of
motion it is necessary to solve second-order field equa-
tions. R%A field equations commonly are of first order.
It happens that just the case of bidirectional scattering is
interesting because here the solitons lose energy (we call
this an inelastic process) and may even decay.

A. Unidirectional scattering

B.Bidirectional scattering

As an example of bidirectional scattering between fast
solitons [Fig. 6(a)], we chose solitons like the fast one in
Fig. 4(a) moving in different directions. There is no spe-
cial reason for choosing the same velocity value.
Different, but sufficiently large velocity values lead to the
same qualitative behavior.

During the scattering process, a highly oscillatory elec-
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FIG. 5. Unidirectional scattering process between the slow
and fast solitons of Fig. 4(a). Except for a phase shift, the soli-
tons are left unaffected.

Because of the periodic boundary conditions, Fig. 5
can simply be obtained by continuation of the simulation
shown in Fig. 4(a). After the collision the original shapes
of the solitons are perfectly recovered without any energy
loss, i.e., this scattering process is elastic. The interaction
between the solitons produces phase shifts: The center of
the fast soliton is shifted in the direction of motion (i.e.,
to the right in Fig. 5), whereas the slower one is moved
opposite the direction of motion (i.e., to the left in Fig. 5).
It is interesting that during the scattering process there is
a moment where the whole excitation energy has been
transferred to the vibrational system. It is then the same
state as at the beginning (t =0) of the simulation in Fig.
4(a). The results are very similar to those obtained by
conventional analytic approaches in the field of SIT
where the model system is reduced to a sine-Gordon sys-
tem. Moreover, it is shown here that elastic scattering is
maintained even for ultrashort solitons.
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tronic excitation is created where the minima are approx-
imately at those points where the displacement u„passes
zero. This is because during the scattering process the
electronic excitation is coupled to a standing vibrational
mode. Simulations with a standing phonon mode as an
initial condition lead to the same oscillatory pattern of
the electronic excitation as is seen in the center of the
scattering complex. Finally, a part of the electronic exci-
tation decouples from the solitons and marks the place of
the soliton-soliton collision. There is nearly no induced
emission of the localized, split-off electronic excitation
because of the lack of phonons —the latter remain part of
the soliton dynamics. However, these electronic excita-
tions would decay by spontaneous processes which are
neglected in this approach. What remains is that a part
[about 6% in Fig. 6(a)] of the total soliton energy is split
off: bidirectional scattering processes are, in this sense,

slightly inelastic. This also holds for SIT bidirectional
scattering.

In the case of bidirectional scattering, phase shifts are
seen too: The center of each soliton is shifted in the
direction of motion.

Because of the energy loss of the solitons the question
arises whether a slow soliton may decay into linear exci-
tations during a bidirectional soliton-soliton scattering
process. Figure 6(b) shows that this is indeed the case.
The solitons are the same as in Fig. 5, but with different
directions of motion. The weak phonon part of the slow
soliton is not able to restore the original soliton shape
from the highly oscillatory electronic intermediate state.
Obviously the colliding solitons, whatever their velocity,
together lose about the same absolute amount of energy
AE, which is roughly determined by the spatial extension
hx of the highly oscillatory electronic state in the scatter-
ing region: LEE SfiQ b.x. This means that the slow soli-
ton loses so much energy to the electronic excitation
which remains at the location of the scattering process
that the phonon part of the decaying soliton is not able to
restore dynamical stability. In other words, in the case of
slow solitons the localization of the phonon part by the
electronic excitation is stronger than in fast solitons. If
the electronic excitation is disturbed (e.g., by a bidirec-
tional scattering process with solitons or phonons), it is
more diScult to keep the balance between absorption and
induced emission for slow solitons than it is for fast ones.
The result may be the decoupling of the electronic from
the vibronic excitation, i.e., the decay of the slow soliton.

The striking stability of the localized states that are left
over by the scattering process is interesting. Although
the vibronic excitation clearly could induce emission by
the electronic centers, this does not happen: The locali-
zation effect of the electronic centers on the phonons is
obviously more important in this case.

Figure 7 illustrates a soliton-resonant-phonon scatter-
ing process. Again there is a small soliton phase shift in
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FIG. 6. (a) Bidirectional scattering process between two fast
solitons of Fig. 4(a) as an initial condition. Note the trapped
electronic excitation which marks the collision region: inelastic
scattering. (b) Bidirectional scattering process between the slow
and fast solitons of Fig. 4(a). The slow soliton decays because of
the energy loss.
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FIG. 7. Bidirectional soliton-phonon interaction: the initial
condition is the fast soliton of Fig. 4(a); the phonon excitation
starts with u0=0. 63. Note the strong electronic fluctuations
between t =70 and t =90.
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in the case of reflection only the electronic excitation of
the one soliton is interacting with both the incoming and
reflected vibrational excitations. This means that during
the reflection process we are dealing with a standing vi-
brational mode. The result is again a highly oscillatory
electronic excitation which, however, is transformed back
to a perfect soliton shape by the reflected phonon pulse,
except for a trapped rest excitation which finally decays
into phonons. The conclusion is that, besides some ener-

gy loss, these reflection processes retain the soliton prop-
erties.

VIII. CONCLUSIONS
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FIG. 8. Inelastic reflection process from the free surface of a
finite lattice: the initial condition is the fast soliton of Fig. 4(a).
Note the highly oscillatory electronic excitation at t =75, which
is partly transformed back to soliton shape later on.

the direction of motion. The energy loss of the soliton is
very small; more important are the relative1y large fluc-
tuations, here for t =70 up to t =90. In Sec. IV [Fig.
l(c)] we have already seen that this kind of fluctuation
may lead to the decay of solitons, especially in the case of
narrow solitons and a larger concentration of phonons.
Solitons with a larger half-width (i.e., smaller A.) are not
so sensitive to interactions with phonons. To conclude,
the energy loss of solitons when scattered by phonons is
not so important as the fluctuations that are introduced
into the dynamics of the soliton. In general, the scatter-
ing from resonant phonons (linear excitations) is much
more important for the decay of solitons than the
influence of the discreteness of the electronic center dis-
tribution.

VII. REFLECTION PROCESSES

In this section the behavior of solitons in finite systems
with free-surface boundary conditions is investigated.
The result is a kind of "soliton echo" (cf. Fig. 8).

Due to symmetry arguments, reflection processes from
the "open end" of a pure vibronic system are analogous
to bidirectional scattering processes of identical phonon
pulses (if certain phase conditions are fulfilled). This
analogy no longer holds for coupled coherent excitations.
During the scattering process the electronic excitations of
the two solitons interact via the vibrational system, ynd

This numerical investigation shows the existence of ul-
trashort solitons. These are coupled coherent propaga-
ting excitations in both the electronic and the phonon
systems that interact by absorption and induced emission
processes forming a dynamically metastable state. Stabil-
ity is preserved for half-widths down to one wavelength
of the carrier phonons, which are in resonance with the
energy splitting of the electronic systems.

Very similar to the SIT case, there exists also for ul-
trashort excitations a threshold behavior and a hierarchy
of excitations with qualitatively different behavior: linear
excitations, which blur over the whole system; breathers,
that periodically change their shape; and above the
threshold solitons.

Increasing the electron-phonon coupling constant re-
sults in a decreasing half-width of the soliton solutions
connected with an increasing instability of the solitons
against fluctuations induced by phonons (linear excita-
tions).

Incident phonon pulses pass interfaces (where
changes from zero to a finite value) without reflection.
Their amplitude defines the resulting soliton energy. If
the pulse width lies within a soliton window, the phonon
pulse is converted into a soliton without any background
excitation.

Scattering experiments reveal elastic unidirectional and
inelastic bidirectional processes. In the case of slow soli-
tons with a small phonon amplitude, bidirectional
scattering may even lead to the decay of the solitons into
localized electronic excitations and decoupled phonons.

Investigations of finite systems have shown that in the
case of soliton reflection from the free surface of the lat-
tice the process is inelastic, i.e., besides the reflected soli-
ton, linear excitations are formed.
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